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Information about an unknown quantum state can be encoded in weak values of projectors be-
longing to a complete eigenbasis. A protocol that enables one party – Bob – to remotely determine
the weak values corresponding to weak measurements performed by another spatially separated
party – Alice is presented. The particular set of weak values contains complete information of the
quantum state encoded on Alice’s register, which enacts the role of preselected system state in the
aforementioned weak measurement. Consequently, Bob can determine the quantum state from these
weak values, which can also be termed as remote state determination or remote state tomography.
A combination of non-product bipartite resource state shared between the two parties and classical
communication between them is necessary to bring this statistical scheme to fruition. Significantly,
the information transfer of a pure quantum state of any known dimensions can be effected even with
resource states of low dimensionality and purity with a single measurement setting at Bob’s end.
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I. MOTIVATION

A. Quantum communication

Quantum communication protocols such as random-
ness and measurement-based (BB84 [1]) or entanglement-
based [2, 3] (E91 [4]) quantum key distribution (M-QKD
or E-QKD respectively), quantum teleportation [5] (QT),
and remote state preparation [6, 7] (RSP) allow secure
data transmission beyond what is possible classically
based on fundamental principles of quantum mechanics.
Specifically, we rely on perfect randomness in choosing
bits and measurement bases [1], uncertainty in the out-
comes of (for the basic version) dichotomic projective
quantum measurements [1], and quantum entanglement.
The QKD protocols aim to distribute a secret key, which
is a binary bit string of certain length, between remote
agents Alice and Bob who seek to communicate without
an eavesdropper Eve getting information about it [8]. In
the M-QKD scheme, single photons are transmitted di-
rectly from Alice to Bob followed by a public certifica-
tion process which establishes and verifies a secret key
whose length is typically much lesser than the number of
photons transmitted to begin with – this ratio is termed
as the secret key rate. In the E-QKD scheme, entan-
gled photons are used by Alice and Bob to detect an
eavesdropper and develop a secret key based again on a
public certification process. QT and RSP seek to trans-
mit quantum states from Alice to Bob using a quantum
entangled bipartite resource state and a classical commu-
nication channel, where the latter protocol requires lesser
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classical communication because knowledge of the state
to be transmitted is known beforehand. The overarching
goals of these methods are to establish large-scale quan-
tum networks for secure communication, and to enable
distributed quantum computation.

Several constraints must be overcome to achieve these
goals. In teleportation (and RSP), we are restricted to
qudit states (d-level quantum systems) and pure bipartite
qudit resources, which has since been extended to tele-
port continuous variable quantum states [9–14] as well
as to teleport from continuous to discrete variable quan-
tum registers [15]. These extensions and experimental
implementations are conditional upon the dimensional-
ity, purity, and amount of entanglement in the shared
resource state [16–21]. A teleported quantum state does
not provide classically useful information to conventional
computers (the “output problem” [22]) and tomography
on a large number of copies teleported with high fidelity
would be required if this is to succeed. For M-QKD,
photon losses in the quantum channel restrict the com-
munication distance and low efficiency of single-photon
detectors is a roadblock in increasing the communication
rate. For continuous variable QKD, the bandwidth of
homodyne and heterodyne detectors and low electronic
noise is a major issue. Generally, the heterodyne detec-
tors are more sensitive to losses and detectors and opti-
cal fibres work in tandem for navigating the loss regime.
The colder the detector is, the more loss it can tolerate
in the fibre [23]. Another source of error in the E-QKD
scheme is the impure entanglement shared between dis-
tant parties. Here the detector efficiency is also affected
by the coupling efficiencies of a parametric down conver-
sion process subject to crystal nonlinearity. Additionally,
background events of the coincidence counts reduce the
probability of a genuine concidence event corresponding
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to a pump pulse [24], which affects the communication
rate. To increase E-QKD distance, quantum repeaters
are needed for entanglement swapping and distillation
among multiple distinct photon pairs. As such, many
trusted nodes are required for this to succeed over inter-
continental distances [25]. Another peculiarity of E-QKD
is its low key-generation rate in the low and medium loss
regimes [24, 25].

B. Direct tomography using weak values

Weak values proposed in a seminal paper [26] are com-
plex entities which appear as a shift in the expectation
value of a pointer observable when a weak von Neu-
mann interaction between the system (observable Â) and
pointer states is followed by post selection on the system
state [27, 28]:

〈Â〉w =
〈ψf |A|ψi〉
〈ψf |ψi〉

, (1)

where |ψf 〉 and |ψi〉 are the final and initial system states
respectively. Although weak measurements were initially
introduced in the context of continuous variable Gaus-
sian pointer states, the paradigm has since been theoret-
ically and experimentally established for qubit pointer
states [29–31], entangled pointer states [32, 33] and most
generally to arbitrary pointer states [34, 35]. The concept
of weak values and measurement has led to the develop-
ment of ingenious methods for direct determination of
a quantum wave-function and density matrix of mixed
states followed by their experimental demonstration [36–
39]. These schemes enable the state of a quantum system
being probed appear directly as a shift in the expecta-
tion value of the pointer observable in terms of the weak
values without the complicated state reconstruction pro-
cess in conventional tomography [40, 41]. For a contin-
uous variable pure state expressed as a quantum wave-
function ψ(x), the wave-function at a particular position
is equal to the weak value of position observable |x0〉 〈x0|
obtained after post-selection on a zero momentum eigen-
state [36]. Measuring a number of these weak values for
several position eigenkets is thus enough to faithfully ap-
proximate the wave-function. A discrete variable pure
state defined on a d-dimensional Hilbert space can be ex-
pressed in terms of vectors of a d-element orthonormal
basis set: |ψ〉 = Σd−1

k=0 〈ak|ψ〉 |ak〉. Given such a set, it
is possible to find another basis set which is mutually
unbiased with respect to the former and has an element
|b0〉 which is a discrete analogue (|+〉 state correspond-
ing to the d-dimensional Hadamard transform of |0〉) of
the zero momentum eigenstate in the continuous basis.
This element satisfies 〈b0|ak〉 = 1/

√
d ∀ k. Thus, one can

write:

〈ak|ψ〉 =
√
d 〈b0|ψ〉

〈b0|ak〉 〈ak|ψ〉
〈b0|ψ〉

=
√
d 〈b0|ψ〉 (Π̂k)w,

(2)

where Π̂k is the projector corresponding to |ak〉. The
state can be rewritten in terms of these weak values:
|ψ〉 =

√
d 〈b0|ψ〉Σd−1

k=0(Π̂k)w |ak〉.

C. Objective

We shall seek solutions to the quantum communication
challenges by effectively combining broad characteristics
of the above two seemingly distinct quantum information
theoretic schemes and devise a non-local scenario of weak
measurement to accomplish remote state determination
(RSD) or remote state tomography (RST). RSD can
transfer the information of an unknown pure quantum
state |ψ〉I of any known dimensions, by encoding its am-
plitudes in a complete set of weak values, from one party,
Alice, to another spatially separated party, Bob, with any
shared non-product resource state ρAB using local oper-
ations and classical communication. This attempts a si-
multaneous resolution to the threefold issues of resource
dimensionality, purity, and amount of entanglement in
protocols such as E-QKD, teleportation, and RSP which
require pure entanglement. Therefore, it could princi-
pally resolve the issue of distance affecting these meth-
ods. Further, it can be compared with M-QKD, which
requires the single-photons to be in an almost pure state
when they reach Bob, detected by him with high prob-
ability and whose distance is affected by photon losses
and noise in the quantum channel. Thus, it could solve
the following problems: (i) it could be used as a method
to establish a secret key between very distant observers
while maintaining a reasonable data transmission rate by
encoding the key in amplitudes of the state whose infor-
mation is transferred; (ii) it could be used to transmit
high-dimensional quantum states for distributed quan-
tum information processing on qudits which otherwise
requires high-dimensional pure entanglement shared over
long distance to achieve using teleportation; and (iii) it
could be used as a secure method to directly transmit any
information (without establishing a secret key) encoded
in amplitudes of the quantum state being transmitted. It
(along with its possible variants) could also be used as a
single solution to more than one of the three tasks within
a broader quantum communication system.

We begin with a mathematical description of the pro-
tocol in Sec. II A and II B which enables the remote de-
termination of a single weak value. Then we delineate the
physical entities that need to be pre-decided in Sec. II C,
the classical communication requirements in Sec. II D and
the necessary and sufficient conditions to facilitate com-
plete information transfer of any pure state in Sec. II E.
This is followed by a representative example in Sec. III,
remarks on noise and error analysis in Sec. IV, and an
outlook of this work in Sec. V.
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II. PROTOCOL

Alice and Bob share a bipartite non-product pure or
mixed quantum state, ρAB , which enacts the role of the
resource. Alice has an system register on which the state
ρI , unknown to her, is encoded. As explained before, the
state’s probability amplitudes can be expressed as a set
of weak values (Π̂k

I )w where index k corresponds to one of
the projectors belonging to its complete basis. In a single
round of experimental runs, we seek to transfer one of
these weak values. From hereon, we shall drop the index
k. Alice begins by performing a weak interaction between
her part (A) of the shared state and system (I) by letting

them jointly evolve under the unitary Û = eigΠ̂I⊗Â [42].
The total state after the weak interaction, characterized
by expanding the coupling unitary up to the first order is
ρtw ≈ [I+ igΠ̂I ⊗ Â⊗ I]ρI ⊗ρAB [I− igΠ̂I ⊗ Â⊗ I], where
ρtw is the total (t) post weak-interaction (w) state.

A. Transferring imaginary part of the weak value

We first derive the procedure with which Bob obtains
imaginary part of the concerned weak value. To this end,
Alice must perform a projective post-selection on ρI us-
ing the projector |b0〉 〈b0| ≡ π̂vI . Index v denotes selection
of the vth eigenvector of the chosen projection basis. Af-
ter the post-selection, Bob’s state can be obtained by
tracing over parts A and I of the total state [see Der. 1
in Supplementary Materials]. Hence, the unnormalized
state on Bob’s side is ρunB = TrI,A(π̂vI ρtw):

ρunB ≈ Tr(π̂vI ρI)((TrA(ρAB)− ig(Π̂I)
∗
w TrA(ρAB(Â⊗ I))

+ ig(Π̂I)w TrA((Â⊗ I)ρAB))). (3)

Here, we have used the definition of the complex weak
value corresponding to the weak measurement performed
by Alice between her part A of the shared state and the
system I on which the state whose information is to be

transferred is encoded: (Π̂I)w ≡ Tr
(
π̂vI Π̂IρI

)
/Tr(π̂vI ρI).

It can be decomposed into its real and imaginary com-
ponents: (Π̂I)w = Re(Π̂I)w + i Im(Π̂I)w. When Bob

measures the expectation value of an observable B̂ with
respect to the normalized version of the above state [see
Der. A3 and A4 in A], it allows us to write the imaginary
part of the weak value as

Im(Π̂I)w =
〈B̂〉Imf − Tr

(
B̂ρinB

)
2g

(
Tr
(

(Â⊗ I)ρAB
)

Tr
(
B̂ρinB

)
− Tr

(
B̂ TrA((Â⊗ B̂)ρAB)

))

.(4)

〈B̂〉Imf denotes the expectation value obtained by Bob

on measuring his observable in this (first) set of experi-
mental runs. ρinB denotes Bob’s initial reduced state. At
this point, the expectation value with Bob has no infor-
mation about the real part of (Π̂I)w. Once he obtains
the imaginary part of the weak value from the first set
of experimental runs, Alice and Bob will proceed to the
scheme for obtaining the real part.

B. Transferring real part of the weak value

In the 2nd set of experimental runs, Alice changes the
post-selection process. In addition to post-selecting on
ρI , she also post-selects on part A of the shared state
ρAB using the projector π̂lA (index l denotes the lth eigen-
vector of the chosen projection basis) which does not

commute with Â. We can therefore write Bob’s unnor-
malized final state [see Der. B1 in B] by tracing over
parts I and A corresponding to Alice’s quantum regis-
ters: ρunB = TrI,A((π̂vI ⊗ π̂lA ⊗ I)ρtw). In order to nor-
malize, we compute its norm by tracing over its entire
Hilbert space [see Der. B2 in B]:

Tr(ρunB ) ≈ Tr(π̂vI ρI) Tr
(
(π̂lA ⊗ I)ρAB

)
((1

− ig(Π̂I)
∗
w(Â)∗w′ + ig(Π̂I)w(Â)w′)). (5)

Here, we have defined the complex entity (Â)w′ to be
the weak-partial-value. “Partial” because while the quan-
tum state (density matrix ρAB) appearing in it is bipar-
tite and the trace operation is performed over the entire
Hilbert space, the system measurement observable Â and
the post-selection projector πlA both act only on part A
of ρAB

1. Thus, we have

(Â)w′ ≡
Tr
(

(π̂lAÂ⊗ I)ρAB
)

Tr
(
(π̂lA ⊗ I)ρAB

) . (6)

Bob will now measure expectation value of the observ-
able B̂ with respect to the above state (after normal-
ization) using the complex decomposition of the weak-

partial-value: (Â)w′ = Re(Â)w′ + i Im(Â)w′ [see Der. B5

in B]. Note that the expectation value 〈B̂〉Ref in the sec-
ond set of runs would be different from the first set. Since
we already know the imaginary part of the weak value
from the first set of runs, the real part can be obtained
from the second set of runs:

1 This can in a restricted sense be also defined as the weak value
of Â⊗ I if one defines the projection operator to be πl

A ⊗ I.
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Re(Π̂I)w =

〈B̂〉Ref × Tr
(
(π̂lA ⊗ I)ρAB

)
− Tr

(
(π̂lA ⊗ B̂)ρAB

)
− g Im(Π̂I)w

(
2 Re(Â)w′ Tr

(
(π̂lA ⊗ B̂)ρAB

)
+ Tr

(
(π̂lA ⊗ B̂){(Â⊗ I), ρAB}

))
2g Im(Â)w′ Tr

(
(π̂lA ⊗ B̂)ρAB

)
+ igTr

(
(π̂lA ⊗ B̂)[(Â⊗ I), ρAB ]

) .

(7)

Here, [x, y] and {x, y} denote the commutator and the
anticommutator respectively.

C. Pre-decided entities

In order to obtain the full weak value using expressions
4 and 7, Bob must know the shared state ρAB , the weak
interaction observable Â, the projector π̂lA used by Alice
for the post-selection and the interaction strength g. To
allow Bob obtain the full quantum state, they must have
also pre-decided the mutually unbiased bases correspond-
ing to the observables involved in the weak interaction
and the post-selection. The sequence in which projectors
from these basis sets will be used for the weak measure-
ment must be fixed so as to ensure that Bob knows what
projector corresponds to the weak value he obtained in a
given round of the protocol. Also, they must know the di-
mensionality of the unknown quantum state so that basis
sets with appropriate number of elements can be chosen.
These entities can be easily fixed by communicating over
a public or encrypted classical channel or by Alice and
Bob being at the same location prior to commencement
of the protocol since these entities do not change with the
quantum state whose information is transferred, as long
its dimensionality is constant. Also, Bob’s knowledge of
the shared state over a noisy channel can be fixed by
doing a distance-dependent pre-analysis of the channel
noise, losses and decoherence (see Werner state example
section IV) before the protocol begins so that Bob will
know the shared state even if the communication distance
changes. Upon obtaining all the weak values and normal-
izing, Bob can find the overall factor

√
d 〈b0|ψ〉 to express

the full quantum state (ignoring the overall phase).

D. Classical communication requirements

Communication from Alice to Bob via classical chan-
nel(s) aids the remote determination of the weak value
(see Figure 1). On receiving the appropriate message,

Bob measures the value of observable B̂ with respect to
his state. After sufficiently many such measurements,
the recorded statistics will give him the expectation value
of B̂. The total number of classical bits communicated
from Alice to Bob is given by the sum of bits commu-
nicated during the first and second sets of experimen-

𝜌𝐴𝐵

𝜌𝐼

෡𝑈

෠𝐵

(a)

𝜌𝐴𝐵

𝜌𝐼

(b)

|+⟩ |F⟩

෡𝐻

|𝑙⟩ |F⟩
ො𝜋𝐴

෠𝐵

|+⟩ |F⟩

෡𝐻
෡𝑈

FIG. 1. (a) The first set of experimental runs entails post-
selection only on Alice’s system. Bob will measure observable
B̂ upon receiving the classical bit 1. Classical channel is rep-
resented by a dashed line. Upon action of the Hadamard
operator Ĥ on the state of interest, |+〉 and |F 〉 represent
post-selection success and failure and correspond to 1 and 0
on the classical channel respectively. (b) The second set of ex-
perimental runs requires post-selection on Alice’s system as
well as part A of the shared resource. |l〉 corresponds to suc-
cessful post-selection and its outcome is carried by the second
classical channel. Bob measures observable B̂ upon receiving
the outcome 1 from the classical AND gate which corresponds
to instances of simultaneous post-selection success on parts I
and A.

tal runs corresponding to the real (CRk) and imaginary
(CIk) parts of each weak value respectively. Thus, we

have C =
∑d−1
k=0(CIk + CRk):

C = N

d−1∑
k=0

[
Tr
(
π̂vI ρ

2
twk

)
+ Tr

(
(π̂vI ⊗ π̂lA ⊗ I)ρ2

twk

)]
, (8)

where N is the number of shared copies of the resource in
a single set of experimental runs (total number is 2Nd),
d is the dimensionality of the unknown quantum state, k
indexes the weak interaction of the kth projector and the
two entities appearing in the parentheses are probabili-
ties of successful post-selection for the 1st and 2nd set of
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runs of the protocol respectively. These probabilities are
determined by the overlap between the total state after
weak interaction and the total state after post-selection.
If a continuous variable state is to be transferred, the
sum would be over several position eigenkets (or another
continuous variable observable) whose weak values are
to be remotely measured by Bob to know the full state.
After faithfully obtaining a particular expectation value
within a certain error threshold (see section on noise),
Bob communicates via a reverse classical channel to Al-
ice (total d-bits) to proceed to the next weak value. We
note that if Alice can choose the mutually unbiased bases
such that all the weak values of projectors in which infor-
mation about the quantum state is encoded are purely
imaginary, the second set of experiments would not be
necessary. This can happen provided Alice has sufficient
information about the quantum state beforehand. There-
fore, there is a trade off between complexity of the pro-
tocol and the predetermined knowledge of the quantum
state whose information is to be transferred.

E. Proof

We shall prove that RSD fails, that is, real and imagi-
nary parts of the weak value, as supposed to be obtained
by Bob (see Equations. 4 and 7), are both equal to zero
if and only if ρAB = ρA ⊗ ρB .

We first seek to prove that Im(Π̂I)w = 0 iff ρAB =
ρA ⊗ ρB . Let us consider set of observables where de-
nominator of Im(Π̂I)w is not equal to zero as B. Within
the set B, there will always exist an observable basis,
that is d2 − 1 observables spanning the space of Her-
mitian observables which is denoted as Bbase. Since
Bbase is a complete basis, any observable Ô can be
written as linear combination of the members of Bbase:
Ô =

∑
B̂∈Bbase

aBB̂. 〈B̂ρB1〉 = 〈B̂ρB2〉 for all mem-

bers of Bbase implies that 〈ÔρB1〉 = 〈ÔρB2〉 which is

equivalent to ρB1 = ρB2. We consider Im(Π̂I)w =

〈B̂〉Imf − Tr
(
B̂ρinB

)
= 0 while the denominator of Eq.4

is non-zero (see also points (1) and (2) in Appendix.C).

This is equivalent to 〈B̂〉Imf = Tr
(
B̂ρinB

)
= 〈B̂〉in, which

is further equivalent to ρfB = ρinB provided the set of ob-

servables B̂ – which must be within the set of observables
where denominator is non-zero – are d2−1 spin-1/2 (with
their d-dimensional versions) observables in respective
higher dimensions (see point (3) in Appendix.C). This
implies ρAB = ρA ⊗ ρB .

Furthermore, ρAB = ρA ⊗ ρB implies ρNB =
ρunB /Tr(ρunB ) = ρB (see Der. C1 in Appendix. C) which

is equivalent to Im(Π̂I)w = 0. Therefore, Im(Π̂I)w = 0 if
and only if ρAB = ρA ⊗ ρB .

By considering Re(Π̂I)w = 0, we find (see Der.C2, C3,

C4, and C5 in Appendix. C),

〈B̂〉Ref = Tr
(
B̂ρinB

)
+ g
〈B̂〉Imf − Tr

(
B̂ρinB

)
Denominator

p∑
i=1

[T1l]El

+g
〈B̂〉Imf − Tr

(
B̂ρinB

)
Denominator

p∑
i=1

[T2l]Nl, (9)

where T1l and T2l are the respective terms in Equa-
tion. C3. Since [π̂lA, Â] 6= 0, let [π̂lA, Â] = K =⇒
π̂lAÂ = K + Âπ̂lA. Therefore, {π̂lA, Â} = π̂lAÂ + Âπ̂lA =

K + 2Âπ̂lA 6= 0, where K 6= −2Âπ̂lA. We also have

ρAB = ρ†AB . Therefore, T1l 6= 0 and T2l 6= 0. This

implies 〈B̂〉Ref = Tr
(
B̂ρinB

)
if and only if 〈B̂〉Imf =

Tr
(
B̂ρinB

)
, that is Im(Π̂w) = 0. But we have proven

that Im(Π̂I)w = 0 if and only if ρAB = ρA ⊗ ρB . Hence,

〈B̂〉Ref = Tr
(
B̂ρinB

)
, that is, Re(Π̂I)w = 0 if and only if

ρAB = ρA ⊗ ρB .

F. Security

To demonstrate that our protocol is secure against
a classical eavesdropper Eve, consider the following at-
tack: interference in the classical communication chan-
nel which transfers bits from the post-selection results
to Bob. As is evident from the expression for C (Equa-
tion 8: the number of cbits communicated), these clas-
sical bits carry no information about the quantum state
that was encoded on Alice’s system state, which makes
the protocol secure against classical eavesdropping. An-
other way Eve can interfere is by blocking Bob’s part of
the entangled/non-product photons or another bipartite
resource (for example, a continuous variable resource)
that is shared by Alice and Bob. In this kind of attack,
Eve can make her own measurements of an observable Ê
and get access to the classical communication channel in
an attempt to reconstruct Alice’s encoded state. This,
however, will inform Bob who will notice that he is no
longer receiving a part of the bipartite resource states he
is supposed to and can inform Alice via a reverse classical
channel to stop the communication. Thus, statistical na-
ture of the protocol prevents this kind of eavesdropping.

This security can be viewed in the context of a clas-
sical protocol where Alice performs local quantum state
tomography and transmits the results to Bob via clas-
sical communication. This implementation is not quan-
tum mechanically secure because results of the tomog-
raphy can only be secured by classical encryption, key
distribution, one-time pad methods etc. Eve can hack
the encryption system used or directly read off the clas-
sical channel if there is no encryption. As such, it does
not provide us security beyond what is classically possi-
ble. This, in fact, has been the main motivation behind
quantum communication protocols such as quantum key
distribution and quantum teleportation.
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III. EXAMPLE

We shall demonstrate RSD using the Bell-diagonal
state in H2⊗H2 as the shared resource: ρAB = (1/4)[I+∑3
i=1 ci(σiA ⊗ σiB)]. Here σi represent Pauli matrices

in H2 and ci ∈ [−1, 1]. We choose Â =

[
a11 a12

a12∗ a22

]
,

B̂ =

[
b11 b12

b12∗ b22

]
, and π̂lA = |σzA = −1〉 〈σzA = −1|.

From these choices, Equations 4 and 7 reduce to simple
forms [see Eq. D1 and D2 in D]. Let us consider the trans-

fer of a d-dimensional pure state |ψ〉 =
∑d−1
k=0 ak |ak〉.

Therefore, |b0〉 = (1/
√
d)
∑d−1
k=0 |ak〉 and all the weak val-

ues would be (Π̂m
I )w = am/(

∑d−1
k=0 ak). Plugging these

entities in Eq. 8, using π̂vI = |b0〉 〈b0|, and ρI = |ψ〉 〈ψ|,
we have C = (3Nd/2) Tr(π̂vI ρI) Tr

(
ρ2
AB

)
(see Eq. D5 in

Appendix D), where Tr
(
ρ2
AB

)
= 1/4(1+c21+c22+c33) is the

purity of the Bell-diagonal state. This reflects the prob-
abilities during first and second set of experimental runs,
given by dTr(π̂vI ρI) Tr

(
ρ2
AB

)
and (d/2) Tr(π̂vI ρI) Tr

(
ρ2
AB

)
respectively (see Eq. D4 in Appendix D).

IV. REMARKS ON NOISE, ERROR AND
EXPERIMENTAL IMPLEMENTATION

Statistical error in determining the state |ψ〉I on Bob’s
side originates from his measurement of the expected
value of B̂ and propagates [43] through the expressions
4 and 7 for the real and imaginary parts of the in-
dividual weak values respectively. In Eq. 4, replacing

Im(Π̂k
I )w ≡ WIk, 〈B̂〉Imf ≡ BIk, Tr

(
B̂ρinB

)
≡ A and the

denominator with XIk, we have,

WIk =
BIk −A
XIk

. (10)

Thus, we get the error to be,

(∆WIk)2 =

(
∂WIk

∂BIk

)2

(∆BIk)2 =

(
∆BIk
XIk

)2

.

Likewise, in Eq. 7, replacing Re(Π̂k
I )w ≡ WRk, 〈B̂〉Ref ≡

BRk, the other constant elements in the numerator and
denominator as Y1Rk, Y2Rk, Y3Rk and Y4Rk respectively,
and using Eq. 10, we get

WRk =
XIkBRkY1Rk − Y2RkXIk −BIkY3Rk +AY3Rk

Y4RkXIk
.

Thus, the error is,

(∆WRk)2 =

(
∂WRk

∂BRk

)2

(∆BRk)2 +

(
∂WRk

∂BIk

)2

(∆BIk)2

=

(
Y1Rk∆BRk

Y4Rk

)2

+

(
Y3Rk∆BIk
Y4RXIk

)2

.

Considering the standard error scaling [43] when obtain-
ing the expectation values ∆BRk and ∆BIk as propor-
tional to 1/

√
CRk and 1/

√
CIk respectively. Combining

this with the above, we see that errors in determining
respective weak values and in effect, coefficients char-
acterizing the state scale as ∼ 1/

√
C and therefore as

∼ 1/
√

Tr(ρ2
AB) [see Der. D3 in D].

It is known that sharing a resource state over a noisy
quantum channel decreases its purity. A tractable exam-
ple to demonstrate this would be the Werner state, with a
singlet content quantified by z ∈ [0, 1], and a non-product
nature for the full range of z encompassing the regimes of
discord and entanglement: ρw = z |ψ−〉 〈ψ−|+ 1−z

4 I4. Its

purity is given by (1/4)(1+3z2). Upon sending this state
through a decoherent optical fibre [44, 45], it changes to

ρ′w =


1−z

4 0 0 0

0 z+1
4 − z2e

−4∆φ2

0

0 − z2e
−4∆φ2 z+1

4 0
0 0 0 1−z

4

 . (11)

The purity now becomes (1/4)[1+(1+2e−8∆φ2

)z2] clearly
indicating Tr

(
ρ′2w
)
< Tr

(
ρ2
w

)
. Suppose the accepted er-

ror threshold for a faithful run of the protocol demands
N copies of the Werner state shared via noiseless chan-
nels. To obtain the same efficiency when the resources are
shared over noisy channels, one would have to increase
the number of copies shared to N ′ given by

N ′ = d
N Tr

(
ρ2
w

)
Tr(ρ′2w)

e. (12)

This would also allow to switch between fibers with dif-
ferent noise profiles or different lengths without compro-
mising the faithfulness of the protocol. For example,
typical range of ∆φ corresponding to telecommunication-
wavelength for an optical fiber of 500 meters is 190-250
radians [44, 45]. Comparing the case where there is no
noise (N shared copies) to the case where ∆φ = 200rad
(N ′ shared copies) for a state characterized by z = 0.4
would give us N ′ = 1.27586N . Thus, irrespective of the
amount of noise in the channel, faithfulness of the proto-
col would not be compromised provided enough number
of noisy but non-product resource states are shared by
the two parties. It may also be noted that the protocol
would continue to work even if z < 1/3, when the Werner
state is solely discordant [46, 47]. Here the sole focus
was on the error due to noise in the channel reflected
statistically through the entity 〈B̂〉Re/Imf . A full recon-

struction of the state possible either through real [38]
or simulated experiments [48] would allow a comparison
between the state determined by Bob and the state that
was intended to be transferred using a metric such as fi-
delity or trace distance. This would also account for the
error pertaining to imperfectly restricting the coupling
interaction strength to the first order due to the weak
approximation.

Due to the flexibility in choice of the resource state
with regard to dimensionality as well as purity, the pro-



7

tocol can, in principle, be implemented in all architec-
tures [13, 15, 49, 50] that admit at least one kind of non-
product resources – whether shared Bell pairs, Laguerre
Gauss (LG)-mode pointer states with non-zero orbital
angular momentum (OAM), or entangled multi-mode
Gaussian states, among others. We also note that, since
multiple non-product states are necessary for the proto-
col to work, we want an experimental setup which can
produce bipartite entangled (a subset of non-product)
states with a consistently high rate. This also opens the
tantalizing possibility of implementing the protocol by
constructing quantum communication networks involv-
ing more than two parties [12, 13, 51–53], even when it
is difficult to maintain a high degree of multipartite en-
tanglement.

V. CONCLUSION AND OUTLOOK

In essence, we have developed a method to transfer in-
formation of an unknown quantum state of any known di-
mensions, encompassing continuous variable states, from
one party to another spatially separated party using a
non-product bipartite quantum state of any dimension-
ality as a resource. The fundamental principle underly-
ing RSD as well as other quantum communication proto-
cols like teleportation and remote state preparation [5–
7, 54, 55] is the creation of transitive correlation between
parts I and B due to the von Neumann interaction [42]
and the subsequent entanglement caused between I and
A and the correlation (encompassing non-product nature
of all states in our case) which is already present between
A and B. In case of teleportation, the von Neumann in-
teraction is strong and translates to the C-NOT gate for
qubit registers [56]. For remote state preparation, the
strong interaction translates to a C-U gate (controlled
unitary [56]), where the rotation U is determined by Al-
ice’s knowledge of the quantum state which is to be pre-
pared at Bob’s end. The transitive correlation facilitates
information sharing between spatially separated parts.
E-QKD uses direct correlation by sending photons of an
entangled state to Alice and Bob and it is known that an
entanglement-breaking channel does not allow M-QKD
to succeed [8]. In this protocol, we operationally exploit
all correlations manifested in any non-product state [57–
66] using local operations and classical communication.
In light of this, it may be interesting to pursue robust
non-locality criteria [57–59, 61, 67–70] which encompass
such wide class of correlations.

It is pertinent to note that quantum correlations be-
yond entanglement – specifically quantum discord – have
been used in the deterministic quantum computation
with one pure qubit (DQC1) model [71] as well as in
a slight variant of quantum teleportation [72] before. In
the latter method, information about a qubit state can
be transmitted using a mixed two-qubit resource state
which may have no entanglement, and should be followed
by state tomography on Bob’s reduced density matrix to

determine parameters of the state that was meant to be
transmitted by Alice. So, the limitations of teleportation
get carried over to this method (also see below).

Conventional analogues of the current protocol would
be (i) teleportation followed by state tomography [40, 41],
and (ii) tomography followed by E-QKD or M-QKD
where the implementation challenges will apply when
transmitting amplitudes of the state. Specifically, on
lines similar to Ref. [48], one may be able to perform an
analysis comparing this protocol to (i), provided the ex-
ponential scaling with dimensionality of the state at hand
in terms of the number of measurements for specific sets
of observables to determine the respective probabilities
and phases can be managed efficiently – a difficult task.
Such an analysis, of course, would be possible only if a
given resource state can be used to teleport the state of
interest. For the many state-resource pairs where this is
not possible, the protocol could serve as an alternative
method for quantum state transfer provided a reliable
state preparation mechanism is in place at the receiver’s
end, thus enabling high-dimensional distributed quan-
tum computing. Another point of comparison with QKD
is the determination of data transmission rates possible
with the protocol and its variants. While the protocol is
trivially secure against attack by a classical eavesdrop-
per (assuming he even knows the basis), it would be in-
teresting to investigate security against an attack by a
quantum eavesdropper as done for teleportation [73] and
quantum key distribution [25]. These investigations to
operationalize the protocol further will be taken up in
future work.

In addition to quantum information transfer, remote
determination of a single weak value in itself is use-
ful in that all of the characteristics of the weak value
and the weak measurement are now available to be ex-
plored remotely. These include parameter estimation
via weak value amplification [74], resolution of quantum
paradoxes etc. [see Ref. [75] for an instructive review].
During development of the protocol, we introduced an
entity called the weak-partial-value, where the interac-
tion and post-selection is performed only on a part of a
non-product state. It can be generalized to an entire class
wherein Hilbert space selective weak interaction(s) and
post-selection(s) are performed. Such quantities might
indeed arise when the protocol is extended to enable com-
munication between more than two parties. It is there-
fore worthwhile investigating the properties, their impli-
cations, and operational significance of the weak-partial-
value. The protocol could be extended to enable informa-
tion transfer of mixed states if one is able to remotely de-
termine the joint weak values and use these to express the
joint weak averages which constitute all elements of the
density matrix [37], and it could be implemented using
certain experimental methods [76, 77] to achieve remote
determination of high-dimensional states. Although it
is difficult to achieve the former with a general pointer
state, it could be possible with the non-product tripartite
version of specific pointers like separable (on one part)
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Gaussian [78] or the LG-mode pointer states [79] with
non-zero OAM.

Note added.— After completion of this manuscript, a
slightly related work by Ref. [80] came to notice. There,
the post-selection is performed by Bob, dimensions of
system and resource state are interdependent, and the
method depends on entanglement of the resource state.
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Appendix A: Protocol algebraic details – transferring imaginary part of the weak value

1. Bob’s unnormalized state corresponding to the measurement of the imaginary part of the weak value:

ρunB = TrI,A(π̂vI ρtw)

≈ TrI,A(π̂vI (I + igΠ̂I ⊗ Â⊗ I)ρI ⊗ ρAB(I− igΠ̂I ⊗ Â⊗ I))
= TrI,A(π̂vI (ρI ⊗ ρAB + igΠ̂IρI ⊗ (Â⊗ I)ρAB)(I− igΠ̂I ⊗ Â⊗ I))
= TrI,A(π̂vI (ρI ⊗ ρAB − igρIΠ̂I ⊗ ρAB(Â⊗ I) + igΠ̂IρI ⊗ (Â⊗ I)ρAB))

= TrI,A((π̂vI ρI ⊗ ρAB)− igπ̂vI ρIΠ̂I ⊗ ρAB(Â⊗ I) + ig(π̂vI Π̂IρI)⊗ (Â⊗ I)ρAB)

= TrI(π̂
v
I ρI)((TrA(ρAB)− ig(Π̂I)

∗
w TrA(ρAB(Â⊗ I)) + ig(Π̂I)w TrA((Â⊗ I)ρAB))). (A1)

2. Normalizing the above state:
Cyclic property of the trace allows us to write TrA(ρAB(Â ⊗ I)) = TrA((Â ⊗ I)ρAB). Bob’s initial state is
TrA(ρAB) ≡ ρinB . Thus, we can write

ρunB ≈ TrI(π̂
v
I ρI)(ρ

in
B − 2g Im(Π̂I)w TrA((Â⊗ I)ρAB)).

Further, using Tr
(
ρinB
)

= 1:

ρNB =
ρunB

Tr(ρunB )
≈

(
ρinB − 2g Im(Π̂I)w TrA((Â⊗ I)ρAB)

)
(

1− 2g Im(Π̂I)w Tr
(

(Â⊗ I)ρAB
)) .

(A2)

In line with the weak approximation, one can bring the denominator to the numerator and Taylor expand up
to the first order in g:

ρNB ≈
(
ρinB − 2g Im(Π̂I)w TrA((Â⊗ I)ρAB)

)(
1 + 2g Im(Π̂I)w Tr

(
(Â⊗ I)ρAB

))
= ρinB + 2g Im(Π̂I)w Tr

(
(Â⊗ I)ρAB

)
ρinB − 2g Im(Π̂I)w TrA((Â⊗ I)ρAB)

= ρinB + 2g Im(Π̂I)w

(
Tr
(

(Â⊗ I)ρAB
)
ρinB − TrA((Â⊗ I)ρAB)

)
.

(A3)
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3. Bob’s expectation value:

〈B̂〉Imf = Tr
(
B̂ρNB

)
≈ Tr

(
B̂ρinB

)
+ 2g Im(Π̂I)w

(
Tr
(

(Â⊗ I)ρAB
)

Tr
(
B̂ρinB

)
− Tr

(
B̂ TrA((Â⊗ I)ρAB)

))
. (A4)

Appendix B: Protocol algebraic details – transferring real part of the weak value

1. Bob’s unnormalized state:

ρunB = TrI,A((π̂vI ⊗ π̂lA ⊗ I)ρtw)

≈ TrI,A((π̂vI ⊗ π̂lA ⊗ I)(I + igΠ̂I ⊗ Â⊗ I)ρI ⊗ ρAB(I− igΠ̂I ⊗ Â⊗ I))
= TrI,A((π̂vI ⊗ π̂lA ⊗ I)(ρI ⊗ ρAB + igΠ̂IρI ⊗ (Â⊗ I)ρAB)(I− igΠ̂I ⊗ Â⊗ I))
= TrI,A((π̂vI ⊗ π̂lA ⊗ I)(ρI ⊗ ρAB − igρIΠ̂I ⊗ ρAB(Â⊗ I) + igΠ̂IρI ⊗ (Â⊗ I)ρAB))

= TrI,A((π̂vI ρI ⊗ (π̂lA ⊗ I)ρAB − igπ̂vI ρIΠ̂I ⊗ (π̂lA ⊗ I)ρAB(Â⊗ I) + igπ̂vI Π̂IρI ⊗ (π̂lA ⊗ I)(Â⊗ I)ρAB))

= TrI(π̂
v
I ρI)(TrA((π̂lA ⊗ I)ρAB)− ig(Π̂I)

∗
w TrA((π̂lA ⊗ I)ρAB(Â⊗ I)) + ig(Π̂I)w TrA((π̂lA ⊗ I)(Â⊗ I)ρAB)).

Taking the partial trace operation over I and A inside the parenthesis, one finds:

ρunB ≈ ((TrI(π̂
v
I ρI) TrA((π̂lA ⊗ I)ρAB)− igTrI(π̂

v
I ρIΠ̂I) TrA((π̂lA ⊗ I)ρAB(Â⊗ I)) + igTrI(π̂

v
I Π̂IρI) TrA((π̂lA ⊗ I)(Â⊗ I)ρAB)))

= TrI(π̂
v
I ρI)((TrA((π̂lA ⊗ I)ρAB)− igTrI(π̂

v
I ρIΠ̂I) TrA((π̂lA ⊗ I)ρAB(Â⊗ I)) + igTrI(π̂

v
I Π̂IρI) TrA((π̂lA ⊗ I)(Â⊗ I)ρAB)))

= TrI(π̂
v
I ρI)(TrA((π̂lA ⊗ I)ρAB)− ig(Π̂I)

∗
w TrA((π̂lA ⊗ I)ρAB(Â⊗ I)) + ig(Π̂I)w TrA((π̂lA ⊗ I)(Â⊗ I)ρAB)). (B1)

2. Trace of the unnormalized state:

Tr(ρunb ) ≈ Tr
(

TrI(π̂
v
I ρI)((TrA((π̂lA ⊗ I)ρAB)− ig(Π̂I)

∗
w TrA((π̂lA ⊗ I)ρAB(Â⊗ I)) + ig(Π̂I)w Tr

(
(π̂lA ⊗ I)(Â⊗ I)ρAB

)
))
)

= TrI(π̂
v
I ρI)((Tr

(
(π̂lA ⊗ I)ρAB

)
− ig(Π̂I)

∗
w Tr

(
(π̂lA ⊗ I)ρAB(Â⊗ I)

)
+ ig(Π̂I)w Tr

(
(π̂lA ⊗ I)(Â⊗ I)ρAB

)
))

= TrI(π̂
v
I ρI) Tr

(
(π̂lA ⊗ I)ρAB

)
((1− ig(Π̂I)

∗
w(Â)∗w′ + ig(Π̂I)w(Â)w′)). (B2)

3. Now, let us normalize Bob’s state using its norm in the denominator:

ρNB =
ρunB

Tr(ρunB )

≈ TrI(π̂
v
I ρI)((TrA((π̂lA ⊗ I)ρAB)− ig(Π̂I)

∗
w TrA((π̂lA ⊗ I)ρAB(Â⊗ I)) + ig(Π̂I)w TrA((π̂lA ⊗ I)(Â⊗ I)ρAB)

TrI(π̂vI ρI) Tr
(
(π̂lA ⊗ I)ρAB

)
(1− ig(Π̂I)∗w(Â)∗w′ + ig(Π̂I)w(Â)w′)

. (B3)

Using the weak approximation, the inverse of the denominator can be Taylor expanded up to the first order in
g:

ρNB ≈
1

Tr
(
(π̂lA ⊗ I)ρAB

) (TrA((π̂lA ⊗ I)ρAB)− ig(Π̂I)
∗
w TrA((π̂lA ⊗ I)ρAB(Â⊗ I))

+ig(Π̂I)w TrA((π̂lA ⊗ I)(Â⊗ I)ρAB))(1 + ig(Π̂I)
∗
w(Â)∗w′ − ig(Π̂I)w(Â)w′)

=
1

Tr
(
(π̂lA ⊗ I)ρAB

) (TrA((π̂lA ⊗ I)ρAB) + ig(Π̂I)
∗
w(Â)∗w′ TrA((π̂lA ⊗ I)ρAB)− ig(Π̂I)w(Â)w′ TrA((π̂lA ⊗ I)ρAB)

−ig(Π̂I)
∗
w TrA((π̂lA ⊗ I)ρAB(Â⊗ I)) + ig(Π̂I)w TrA((π̂lA ⊗ I)(Â⊗ I)ρAB)). (B4)
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4. Bob’s expectation value:

〈B̂〉Ref = Tr
(
B̂ρNB

)
≈ 1

Tr
(
(π̂lA ⊗ I)ρAB

)[Tr
(

(π̂lA ⊗ I)(I⊗ B̂)ρAB

)
+ ig(Π̂I)

∗
w(Â)∗w′ Tr

(
(π̂lA ⊗ I)(I⊗ B̂)ρAB

)
−ig(Π̂I)w(Â)w′ Tr

(
(π̂lA ⊗ I)(I⊗ B̂)ρAB

)
− ig(Π̂I)

∗
w Tr

(
(π̂lA ⊗ I)(I⊗ B̂)ρAB(Â⊗ I)

)
+ig(Π̂I)w Tr

(
(π̂lA ⊗ I)(I⊗ B̂)(Â⊗ I)ρAB

)]
=

1

Tr
(
(π̂lA ⊗ I)ρAB

)[Tr
(

(π̂lA ⊗ I)(I⊗ B̂)ρAB

)
− igRe(Π̂I)w(2i Im(Â)w′ Tr

(
(π̂lA ⊗ I)(I⊗ B̂)ρAB

)
−Tr

(
(π̂lA ⊗ I)(I⊗ B̂)[(Â⊗ I), ρAB ]

)
) + g Im(Π̂I)w(2 Re(Â)w′ Tr

(
(π̂lA ⊗ I)(I⊗ B̂)ρAB

)
+

Tr
(

(π̂lA ⊗ I)(I⊗ B̂){(Â⊗ I), ρAB}
)

)

]
, (B5)

where [x, y] and {x, y} denote the commutator and the anticommutator respectively.

Appendix C: Algebraic details – Proof

1. Now we proceed to prove that denominators of the real and imaginary parts of the weak value do not go to zero
for generic choices of Â and B̂. Considering the extreme case, when all of the ρij = 0 for a 2⊗ 2 resource state,

B̂ =

[
b11 b12

b∗12 b22

]
, Â =

[
a11 a12

a∗12 a22

]
, π̂lA = |ψ〉 〈ψ| (where |ψ〉 = p1 |0〉 + p2 |1〉), p1 ≡ p1R + ip1I , p2 ≡ p2R + ip2I ,

and a12 ≡ a12R + ia12I , denominator of real part of the weak value is given by b22g(a12p2p1 + (2p2(a12Ip1Ip2I +
a12Rp1Rp2I − a12Rp1Ip2R + a12Ip1Rp2R)− ip1a

∗
12)ip∗2 and denominator of the imaginary part of the weak value

is given by a22b22 − a22b
2
22 − a22b12b

∗
12. Clearly, both of these are non-zero for any choice of observables Â, B̂,

and p̂1.

2. For a 2×2 state ρAB , we take B̂ to be a spin-1/2 observable n̂.σ̂. Since B̂2 = 1 and TrA((Â⊗11)ρAB) = Tr
(
ÂρinA

)
,

when we equate denominator of the imaginary part (Eq. 4) to zero, we find the condition Tr
(
B̂ρinB

)
= 1. This

is satisfied when Bob’s reduced state ρinB – when it is pure – is an eigenstate of B̂. So to ensure Tr
(
B̂ρinB

)
6= 1,

set of observables B̂ must exclude the observable whose “up” eigenstate is ρinB . When ρinB is a mixed state, the

observable set B̂ must be such that it has the elements of a complete observable basis set {n̂1.σ̂, n̂2.σ̂, n̂3.σ̂}
such that n̂1 ⊥ n̂2 ⊥ n̂3.

3. Consider spin-1/2 observables Bα = (1/
√
n2

1α + n2
2α + n2

3α) ~nα.~σ, Bβ = (1/
√
n2

1β + n2
2β + n2

3β) ~nβ .~σ, and Bγ =

(1/
√
n2

1γ + n2
2γ + n2

3γ) ~nγ .~σ. Solving the set of equations Tr(Bαρ) = Tr(Bαρ
′); Tr(Bβρ) = Tr(Bβρ

′); Tr(Bγρ) =

Tr(Bγρ
′) (where ρ and ρ′ are general 2 × 2 density matrices) leads to ρ = ρ′. This is easily extended to higher

dimensions by considering higher dimensional versions of Pauli matrices [81, 82].

4. Substituting ρAB = ρA ⊗ ρB in Eq. (A2), which corresponds to the first set of experimental runs (imaginary
part), implies:

ρNB =
ρunB

Tr(ρunB )
≈ ρB − 2g Im(Π̂I)w TrA((Â⊗ I)ρA ⊗ ρB)(

Tr(ρB)− 2g Im(Π̂I)w Tr
(

(Â⊗ I)ρA ⊗ ρB
))

=
(1− 2g Im(Π̂I)w TrA(ÂρA))ρB

(1− 2g Im(Π̂I)w TrA(ÂρA)) TrB ρB

= ρB . (C1)
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5. For real part of the weak value, we consider

Re(Π̂I)w =

〈B̂〉Ref × Tr
(
(π̂lA ⊗ 11)ρAB

)
− Tr

(
(π̂lA ⊗ B̂)ρAB

)
− g Im(Π̂I)w

(
2 Re(Â)w′ Tr

(
(π̂lA ⊗ B̂)ρAB

)
+ Tr

(
(π̂lA ⊗ B̂){(Â⊗ 11), ρAB}

))
= 0. (C2)

This leads to

〈B̂〉Ref =
Tr
(

(π̂lA ⊗ B̂)ρAB

)
Tr
(
(π̂lA ⊗ 11)ρAB

) + g Im(Π̂I)w
[Tr
(

(π̂lAÂ⊗ 11)ρAB

)
Tr
(
(π̂lA ⊗ 11)ρAB

) +
Tr
(

(Âπ̂lA ⊗ 11)ρ†AB

)
Tr
(

(π̂lA ⊗ 11)ρ†AB

) ]Tr
(

(π̂lA ⊗ B̂)ρAB

)
Tr
(
(π̂lA ⊗ 11)ρAB

)
+g Im(Π̂I)w

[Tr
(

(π̂lAÂ⊗ B̂)ρAB

)
+ Tr

(
(Âπ̂lA ⊗ B̂)ρAB

)
Tr
(
(π̂lA ⊗ 11)ρAB

) ]
, (C3)

For the lth projector (total p projectors on the Hilbert space of same dimensions), El ≡ Tr
(

(π̂lA ⊗ B̂)ρAB

)
,

Nl ≡ Tr
(
(π̂lA ⊗ 11)ρAB

)
, and E ≡ Tr

(
B̂ρinB

)
= Tr

(
(11⊗ B̂)ρAB

)
. We have

∑p
l=1El = E. Substituting these

entities in Equation. C3 and replacing terms in the brackets corresponding to the projectors with T1l and T2l
respectively, we find:

〈B̂〉Ref = El/Nl + g Im(Π̂I)w[T1l]El/Nl + g Im(Π̂I)w[T2l]

=⇒
p∑
l=1

Nl〈B̂〉Ref =

p∑
l=1

El + g Im(Π̂I)w

p∑
l=1

[T1l]El + g Im(Π̂I)w

p∑
l=1

[T2l]Nl (C4)

Since
∑p
l=1 = π̂lA = 11,

∑p
l=1Nl = Tr(ρAB) = 1. Therefore,

〈B̂〉Ref = E + g Im〈Π̂I〉w
p∑
l=1

[T1l]El + g Im〈Π̂I〉w
p∑
l=1

[T2l]Nl (C5)

6. Substituting ρAB = ρA ⊗ ρB in Eq. (B3), corresponding to the second set of experimental runs (real part),
implies:

ρNB =
ρunB

Tr(ρunB )
≈

TrI(π̂
v
I ρI)((TrA(π̂lAρA)ρB − ig(Π̂I)

∗
w TrA(π̂lAρAÂ)ρB + ig(Π̂I)w TrA(π̂lAÂρA)ρB))

TrI(π̂vI ρI) Tr(ρB)((TrA(π̂lAρA)− ig(Π̂I)∗w TrA(π̂lAρAÂ) + ig(Π̂I)w TrA(π̂lAÂρA)))

=
TrI(π̂

v
I ρI)((TrA(π̂lAρA)− ig(Π̂I)

∗
w TrA(π̂lAρAÂ) + ig(Π̂I)w TrA(π̂lAÂρA)))ρB

TrI(π̂vI ρI)((TrA(π̂lAρA)− ig(Π̂I)∗w TrA(π̂lAρAÂ) + ig(Π̂I)w TrA(π̂lAÂρA)))

= ρB . (C6)

Like in case of the first set of experiments, here too, Bob’s state contains no signature of the weak measurement
performed by Alice if ρAB is a product state.

Appendix D: Algebraic details – Bell-diagonal state as resource

1. Imaginary part:

Im(Π̂I)w =
b11 + b22 − 2〈B̂〉Imf(

g[(a11 + a22)[(b11 − 1)b11 + (b22 − 1)b22 + 2(a11 + a22)|b12|2+
(b11 + b22)(4 Re(a12) Re(b12)c1 + 4 Im(a12) Im(b12)c2 + (a11 − a22)(b11 − b22)c3)]]

) . (D1)

Here, 〈〉Im represents expectation value obtained in the set of experiments which correspond to obtaining the
imaginary part of the weak value.
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2. Real part:

Re(Π̂I)w =(
2〈B̂〉Ref + b11(c3 − 4a22g Im〈Π̂I〉w − 1)− b22(c3 + 4a22g Im〈Π̂I〉w + 1)

− 4g Im〈Π̂I〉w[Re(a12) Re(b12)c1 + Im(a12) Im(b12)c2 + c3a22(b22 − b11)]

)
4g(Im(a12) Re(b12)c1 + iRe(a12)(b12 − Re(b12))c2)

. (D2)

Here too, 〈〉Re represents expectation value obtained in the set of experiments which correspond to obtaining
the real part of the weak value.

3. Number of classical bits to be communicated:
The total state after weak interaction is ρtwk = UρI ⊗ ρABU† ≈ ρI ⊗ ρAB + ig[|ak〉 〈ak| , ρI ] ⊗ [Â ⊗ I, ρAB ].

Similarly, ρ2
twk = Uρ2

I ⊗ ρ2
ABU

† ≈ ρ2
I ⊗ ρ2

AB + ig |ak〉 〈ak| ρ2
I ⊗ (Â⊗ Iρ2

AB)− igρ2
I |ak〉 〈ak| ⊗ (ρ2

ABÂ⊗ I). Here, we

have chosen Π̂k
I = |ak〉 〈ak|. Substituting π̂vI = |b0〉 〈b0| = (1/d)

∑d−1
a,b=0 |a〉 〈b| and ρ2

I = ρI =
∑d−1
a,b=0 ψaψ

∗
b |a〉 〈b|

into Equation 8, where the first and second terms in the parenthesis correspond to post-selection probabilities
for the first and second set of experimental runs respectively, we get:

C = N

d−1∑
k=0

[
Tr
(
π̂vI ρ

2
twk

)
+ Tr

(
(π̂vI ⊗ π̂lA ⊗ I)ρ2

twk

)]

≈ N
d−1∑
k=0

[
Tr
(
π̂vI ρI ⊗ ρ2

AB + igπ̂vI |ak〉 〈ak| ρI ⊗ (Â⊗ Iρ2
AB)− igπ̂vI ρI |ak〉 〈ak| ⊗ (ρ2

ABÂ⊗ I)
)

+ Tr
(
π̂vI ρI ⊗ ((π̂lA ⊗ I)ρ2

AB) + igπ̂vI |ak〉 〈ak| ρI ⊗ (π̂lA ⊗ I)(Â⊗ Iρ2
AB)− igπ̂vI ρI |ak〉 〈ak| ⊗ (π̂lA ⊗ I)(ρ2

ABÂ⊗ I)
)]

= N

d−1∑
k=0

[
Tr(π̂vI ρI) Tr

(
ρ2
AB

)
+ igTr(π̂vI |ak〉 〈ak| ρI) Tr

(
Â⊗ Iρ2

AB

)
− igTr(π̂vI ρI |ak〉 〈ak|) Tr

(
ρ2
ABÂ⊗ I

)
+ Tr(π̂vI ρI) Tr

(
(π̂lA ⊗ I)ρ2

AB

)
+ igTr(π̂vI |ak〉 〈ak| ρI) Tr

(
π̂lAÂ⊗ Iρ2

AB

)
−igTr(π̂vI ρI |ak〉 〈ak|) Tr

(
(π̂lA ⊗ I)(ρ2

ABÂ⊗ I)
)]

= N

[ d−1∑
k=0

(Tr(π̂vI ρI) Tr
(
ρ2
AB

)
) + igTr

(
π̂vI

d−1∑
k=0

|ak〉 〈ak| ρI

)
Tr
(
Â⊗ Iρ2

AB

)
− igTr

(
π̂vI ρI

d−1∑
k=0

|ak〉 〈ak|

)
Tr
(
ρ2
ABÂ⊗ I

)
+

d−1∑
k=0

Tr(π̂vI ρI) Tr
(
(π̂lA ⊗ I)ρ2

AB

)
+ igTr

(
π̂vI

d−1∑
k=0

|ak〉 〈ak| ρI

)
Tr
(
π̂lAÂ⊗ Iρ2

AB

)
−igTr

(
π̂vI ρI

d−1∑
k=0

|ak〉 〈ak|

)
Tr
(

(π̂lA ⊗ I)(ρ2
ABÂ⊗ I)

)]
; (D3)

since
∑d−1
k=0 |ak〉 〈ak| = I and

∑d−1
k=0 1 = d, we have,

C ≈ N
[
dTr(π̂vI ρI) Tr

(
ρ2
AB

)
+ igTr(π̂vI ρI) Tr

(
Â⊗ Iρ2

AB

)
− igTr(π̂vI ρI) Tr

(
ρ2
ABÂ⊗ I

)
+dTr(π̂vI ρI) Tr

(
(π̂lA ⊗ I)ρ2

AB

)
+ igTr(π̂vI ρI) Tr

(
π̂lAÂ⊗ Iρ2

AB

)
−igTr(π̂vI ρI) Tr

(
(π̂lA ⊗ I)(ρ2

ABÂ⊗ I)
)]
. (D4)

Substituting Â =

[
a11 a12

a12∗ a22

]
, and π̂lA = |σzA = −1〉 〈σzA = −1|, we get

C ≈ N [dTr(π̂vI ρI) Tr
(
ρ2
AB

)
+ (d/2) Tr(π̂vI ρI) Tr

(
ρ2
AB

)
]

= (3/2)NdTr(π̂vI ρI) Tr
(
ρ2
AB

)
. (D5)
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The post-selection probabilities corresponding to the first and second runs of the protocol are represented by the
first and second terms in the parenthesis respectively. As expected from the simultaneous success probability
requirement, in the second set of experimental runs, post-selection succeeds exactly half the number of times

it does in the first set. Considering the system state to be transferred as ρI = |ψ〉 〈ψ| =
∑d−1
k=0 aka

∗
k |ak〉 〈ak|,

we have C ∝ Tr(π̂vI ρI) = Tr
(
|b0〉 〈b0|

∑d−1
k=0 a

∗
kal |al〉 〈ak|

)
= Tr

(
(1/d)

∑d−1
a,b=0 |a〉 〈b|

∑d−1
k,l=0 a

∗
kal |al〉 〈ak|

)
=

(1/d)
∑d−1
a,b=0

∑d−1
k=0 a

∗
kal 〈b|al〉 〈ak|a〉 = (1/d)

∑d−1
k=0

∑d−1
a,b=0 a

∗
kalδbalδaka =

∑d−1
a,b=0 a

∗
baa = 0 (because 〈b|ak〉 =

δbak and 〈ak|a〉 = δaak). The solution space for
∑d−1
k=0 ak = 0 is negligible compared to rest of the possibilities.

Therefore, the success probability is unlikely to go to zero for any state of interest that is to be transferred.
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