Skip to main content
Log in

Optimization of realignment criteria and its applications for multipartite quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By combining a parameterized Hermitian matrix, the realignment matrix of the bipartite density matrix, and multiple rows and columns from vectorization of reduced density matrices, the authors of Shen (Phys. Rev. A 92: 042332, 2015) presented a family of separable criteria to improve the computable cross-norm or realignment criterion Rudolph (Phys. Rev. A 67: 032312, 2003); Chen (Quantum Inf. Comput. 3: 193-202, 2003). In this paper, we first show that these criteria achieve their optimization when the parameterized matrix is chosen to be a constant matrix. It is then proved that the optimized criterion is equivalent to the corresponding criterion with one additional row and one additional column. This reduces the computation cost, since the combined realignment matrix possesses a lower dimension. Finally, the optimized criterion is further used to achieve the separable criterion for multipartite quantum states, which, by using a numerical example, is more efficient than the corresponding previous criteria based on linear contraction methods and sequential realignment methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  2. Gurvits, L.: in Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (ACM Press, New York, 2003), pp. 10-19

  3. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. Rudolph, O.: Some properties of the computable cross-norm criterion for separability. Phys. Rev. A 67, 032312 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. Rudolph, O.: Further results on the cross norm criterion for separability. Quantum Inf. Process. 4, 219–239 (2005)

    Article  MathSciNet  Google Scholar 

  7. Chen, K., Wu, L.A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193–202 (2003)

    MathSciNet  MATH  Google Scholar 

  8. de Vicente, J.I.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624 (2007)

    MathSciNet  MATH  Google Scholar 

  9. de Vicente, J.I.: Further results on entanglement detection and quantification from the correlation matrix criterion. J. Phys. A: Math. Theor. 41, 065309 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed quantum states: linear contractions and permutation. Open Syst. Inf. Dyn. 13, 103–111 (2006)

    Article  MathSciNet  Google Scholar 

  14. Chen, K., Wu, L.A.: The generalized partial transposition criterion for separability of multipartite quantum states. Phys. Lett. A 306, 14–20 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhang, Y.H., Lu, Y.Y., Wang, G.B., Shen, S.Q.: Realignment criteria for recognizing multipartite entanglement of quantum states. Quantum Inf. Process. 16, 106 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Shen, S.Q., Wang, M.Y., Li, M., Fei, S.M.: Separability criteria based on the realignment of density matrices and reduced density matrices. Phys. Rev. A 92, 042332 (2015)

    Article  ADS  Google Scholar 

  17. Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Entanglement detection beyond the computable cross-norm or realignment criterion. Phys. Rev. A 77, 060301(R) (2008)

    Article  ADS  Google Scholar 

  18. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Phys. Rev. Lett. 82, 5385 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  19. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the referees and the editor for their invaluable comments. This work is supported by NSFC (11775306, 12075159), the Shandong Provincial Natural Science Foundation for Quantum Science (ZR2021LLZ002), and the Fundamental Research Funds for the Central Universities (19CX02050A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Qian Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, SQ., Chen, L., Hu, AW. et al. Optimization of realignment criteria and its applications for multipartite quantum states. Quantum Inf Process 21, 135 (2022). https://doi.org/10.1007/s11128-022-03463-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03463-3

Keywords

Navigation