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We study the monogamy and polygamy inequalities of unified entanglement in multipartite quan-

tum systems. We first derive the monogamy inequality of unified-(q, s) entanglement for multi-

qubit states under arbitrary bipartition, and then obtain the monogamy inequalities of the αth

(0 ≤ α ≤ r

2
, r ≥

√
2) power of entanglement of formation for tripartite states and their general-

izations in multi-qubit quantum states. We also generalize the polygamy inequalities of unified-(q, s)

entanglement for multi-qubit states under arbitrary bipartition. Moreover, we investigate polygamy

inequalities of the βth (β ≥ max{1, s}, 0 ≤ s ≤ s0, 0 ≤ s0 ≤
√
2) power of the entanglement of

formation for 2⊗ 2⊗ 2 and n-qubit quantum systems. Finally, using detailed examples, we show that

the results are tighter than previous studies.

Keywords: Monogamy, Polygamy, Unified-(q, s) entanglement, Entanglement of for-

mation

1. Introduction

Quantum entanglement is an important phenomenon in quantum physics. In multipartite

quantum systems, one subsystem’s entanglement with other subsystems is usually limited to

some extent by the entire system. In other words, the entanglement relation between sub-

systems cannot be freely and unconditionally transitioned and this property is known as the

monogamy of entanglement [1]. Monogamy relations exist for various entanglement measures

and information-theoretic entropies which underscore their importance and applications in

quantum information processing.

Most notable entanglement measures include concurrence, negativity and their general-

izations. The first quantitative monogamy relation regarding concurrence was established by
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Coffman, Kundu and Wootters in three-qubit syatems [2], and the CKW inequality was later

generalized to arbitrary n-qubit quantum systems [3]. Monogamy inequality of negativity, like

the CKW inequality, was given for three-qubit pure states and then extended to multi-qubits

[4]. The authors in [5] derived monogamy relations of the convex-roof extended negativity

(CREN) and higher-dimensional extensions. General monogamy inequalities were provided by

the αth (α ≥ 2) power of concurrence for multi-qubit states [6]. A class of monogamy inequali-

ties of αth power of CREN regarding multiqubit entanglement for α ≥ 1 were discovered in [7].

General monogamy relations were also derived for the βth (0 ≤ β ≤ 2) powers of concurrence,

negativity, and CREN in [8]. The authors in [9] proposed the tighter monogamy relations of

the αth (0 ≤ α ≤ 2) power of concurrence under different partition. Some tighter monogamy

inequalities [10, 11, 12] were obtained for multipartite entangled systems in entanglement dis-

tributions.

Further monogamy relations for information-theoretic measures and entropies were discov-

ered for the entanglement of formation (EoF) [13, 14, 15], the Rényi-q entropy [16], the Tsallis-q

entropy [17] and the unified-(q, s) entropy [18]. Using the Tsallis-q entropy to quantify bipartite

entanglement, monogamy of entanglement in multi-qubit systems was proposed in [19]. The

αth (α ≥ 2) power of several quantum measures was also found to satisfy certain monogamy

inequalities. This type of monogamy relations was derived for the entanglement of formation

(Eα) in [20], the Rényi-q entropy (Rα
q ) in [21], and the Tsallis-q entropy (T α

q ) in [22]. Moreover,

some tight monogamy inequalities of the αth-power of unified-(q, s) entanglement for α ≥ 1

were also found for multipartite systems in [23, 24]. All these monogamy relations were pre-

sented separately and derived in different manners, but they displayed some similarity in the

format and content. Thus unified and tightened monogamy relations of entanglement measures

were studied obtained in [25, 26]. There seems to be a need to formulate a unified treatment for

all these entanglement measures in bipartite systems and even multipartite quantum systems.

It is known that the assisted entanglement has a dually monogamous property in multipar-

tite systems. Similarly, polygamy inequalities also provide some bounds for the distribution of

entanglement of multipartite quantum states. The polygamy relation was first established in
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terms of the entanglement of assistance for three-qubit systems [27]. It was later generalized

to multiqubit systems by using various assisted entanglements [17, 18, 28]. For the arbitrary-

dimensional quantum systems, using entanglement of assistance, general polygamy inequalities

of multipartite entanglement were also proposed in [29, 30, 31]. Using Hamming weight of the

binary vectors related with the distribution of subsystems, some tighter polygamy inequalities

of entanglement of assistance were derived in multipartite quantum systems [24, 32]. The au-

thors in [24, 26] provided some polygamy inequalities in terms of unified entanglements. In

[33], polygamy inequalities of the βth (0 ≤ β ≤ α) power of quantum correlations based on

residual quantum correlations were presented.

In this paper, we will present a unified and tighter monogamy and polygamy relations for all

aforementioned important entanglement measures and entropies, which include the unified-(q, s)

entanglement, the Rényi-q entropy, the Tsallis-q entropy, and the entanglement of formation for

multipartite systems. In other words, our formulation of the entanglement constraints is done

in terms of the unified general (q, s) entropy, which specializes to the aforementioned various

entropies and measurements when q, s take special values. In this way, we hope to see the

intrinsic relationships among various monogamy relations. We remark that the βth (β ≥ 1)

power of unified entanglement has a different range of β from that of [33] and both have no

overlaps in multi-qubit quantum systems. The polygamy inequalities considered in our case for

the Tsallis q-entropy and q-expectation (q ≥ 1) are tighter than those provided in [34].

The layout of the paper is as follows. In Section 2, we obtain the monogamy inequality

of unified-(q, s) entanglement for any multipartite system under arbitrary bipartition. The

monogamy inequalities of entanglement of formation for 2⊗ 2⊗ 2 and n-qubit quantum states

are presented. Then the monogamy relation is generalized to several measures of entanglement

for multipartite quantum systems. We show that our results are tighter than previous results by

detailed examples. In Section 3, the polygamy inequality of unified entanglement with respect

to bipartition is obtained for the multipartite quantum system. Then we derive the polygamy

inequalities of entanglement for 2⊗2⊗2 and n-qubit quantum systems. We also give examples

to show that our bounds are tighter than previous available results. Comments and conclusions
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are given in Section 4.

2. Monogamy relations of quantum correlations

For a quantum state ρ, the unified-(q, s) entropy is defined by [18]:

Sq,s(ρ) :=
1

(1− q)s
[(trρq)s − 1], (1)

where q ≥ 0, q 6= 1 and s > 0. The unified-(q, s) entropy specializes to the Rényi-q entropy

Rq(ρ) =
1

1−q
log[tr(ρq)] as s tends to 0, the Tsallis-q entropy Tq(ρ) =

1
1−q

[tr(ρq)− 1] as s tends

to 1, and the von Neumann entropy S(ρ) = −tr(ρ log ρ) as q tends 1. For this reason, we also

denote S1,s(ρ) ≡ S(ρ) and Sq,0(ρ) ≡ Rq(ρ). The unified-(q, s) entanglement of a bipartite pure

state |ϕ〉A1A2 ∈ HA1 ⊗ HA2 is defined by

Eq,s(|ϕ〉A1A2) := Sq,s(ρA1), (2)

where q, s ≥ 0, and ρA1 is the reduced density matrix of ρ = |ϕ〉A1A2〈ϕ|, ρA1 = trA2(ρ). For

a mixed bipartite quantum state ρA1A2 =
∑

i pi|ϕi〉A1A2〈ϕi| ∈ HA1 ⊗ HA2 , its unified-(q, s)

entanglement is defined by the convex roof as usual:

Eq,s(ρA1A2) := min
∑

i

piEq,s(|ϕi〉A1A2), (3)

where the minimum is taken over all possible convex partitions of ρA1A2 into pure state ensem-

bles {pi, |ϕi〉}, 0 ≤ pi ≤ 1 and
∑

i pi = 1.

When s tends to 0 or 1, the unified-(q, s) entanglement of ρA1A2 reduces to one-parameter

class of entanglement measures—the Rényi-q entanglement Rq(ρA1A2) or the Tsallis-q entangle-

ment Tq(ρA1A2) respectively. As q tends to 1, the unified-(q, s) entanglement of ρA1A2 converges

to the entanglement of formation (EoF) Ef (ρA1A2).

Let HA1 and HA2 be dA1- and dA2-dimensional Hilbert spaces respectively. The concurrence

of a bipartite quantum pure state |ϕ〉A1A2 ∈ HA1 ⊗ HA2 is defined by [35]:

C(|ϕ〉A1A2) =
√

2[1− tr(ρ2A1
)], (4)
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where ρA1 is the reduced density matrix ρA1 = trA2(ρ) of ρ = |ϕ〉A1A2〈ϕ|. For a mixed bipartite

quantum state ρA1A2 =
∑

i pi|ϕi〉A1A2〈ϕi| ∈ HA1 ⊗HA2, the concurrence is given by the convex

roof:

C(ρA1A2) = min
{pi,|ϕi〉}

∑

i

piC(|ϕi〉A1A2), (5)

where the minimum is taken over all possible convex partitions of ρAB into pure state ensembles

{pi, |ϕi〉}, 0 ≤ pi ≤ 1 and
∑

i pi = 1.

The concurrence of a 2-qubit mixed state ρ is given by the remarkable formula [2]:

C(ρ) = max{λ1 − λ2 − λ3 − λ4, 0}, (6)

where λi, i = 1, · · · , 4, are the square roots of nonnegative eigenvalues of the matrix ρ(σy ⊗
σy)ρ

∗(σy⊗σy) arranged in decreasing order, σy is the Pauli matrix, and ρ∗ denotes the complex

conjugate of ρ.

For any 2⊗d pure state |ϕ〉A1A2, the unified-(q, s) entanglement and the concurrence satisfy

the functional equation [36]:

Eq,s(|ϕ〉A1A2) = fq,s(C
2(|ϕ〉A1A2)), (7)

where fq,s(x) =
((1+

√
1−x2)q+(1−

√
1−x2)q)s−2qs

(1−q)s2qs
with 0 ≤ x ≤ 1. Similar relation holds for 2-qubit

mixed states with 0 ≤ s ≤ 1 and 1 ≤ q ≤ s
3
.

For an n-qubit quantum state ρA1|A2A3···An
, the unified-(q, s) entanglement obeys the in-

equality [23]:

Eα
q,s(ρA1|A2A3···An

) ≥ Eα
q,s(ρA1A2) + Eα

q,s(ρA1A3) + · · ·+ Eα
q,s(ρA1An

), (8)

where ρA1|A2A3···An
is a quantum state under bipartition A1 and A2A3 · · ·An, α ≥ 1, q ≥ 2,

0 ≤ s ≤ 1, qs ≤ 3.

Lemma 1. For real numbers k ≥ 1 and t ≥ k,

(1) if 0 ≤ x ≤ 1
2
, we have

(1 + t)x ≥ (
1

2
)x +

(1 + k)x − (1
2
)x

kx
tx. (9)
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(2) if x ≥ 1, we have

(1 + t)x ≤ (
1

2
)x +

(1 + k)x − (1
2
)x

kx
tx. (10)

Proof. Two inequalities are proved similar. We just check the first one. Consider g(x, y) =

(1 + 1
y
)x−1 − (1

2
)x where 0 ≤ x ≤ 1

2
and 0 < y ≤ 1

k
with real number k ≥ 1. Then ∂g

∂x
=

(1 + 1
y
)x−1ln(1 + 1

y
) − (1

2
)xln1

2
> 0 as 1 + 1

y
≥ 2. So g(x, y) is an increasing function of x

when y is fixed, i.e, g(x, y) ≤ g(1
2
, y) = (1 + 1

y
)−

1
2 − (1

2
)
1
2 ≤ 0 as 0 < (1 + 1

y
)−1 ≤ 1

2
. Let

f(x, y) = (1 + y)x − (1
2
y)x with 0 ≤ x ≤ 1

2
and 0 < y ≤ 1

k
. As (1 + 1

y
)x−1 − (1

2
)x ≤ 0, then

∂f

∂y
= xyx−1[(1 + 1

y
)x−1 − (1

2
)x] ≤ 0. Thus f(x, y) is a decreasing function of y, so for t ≥ k,

f(x, 1
t
) =

(1+t)x−( 1
2
)x

tx
≥ f(x, 1

k
) =

(1+k)x−( 1
2
)x

kx
. Therefore (1 + t)x ≥ (1

2
)x +

(1+k)x−( 1
2
)x

kx
tx.

Lemma 2. For nonnegative numbers p1 ≥ p2 ≥ · · · ≥ pn,

(1) if 0 ≤ x ≤ 1
2
, one has

(p1 + p2 + · · ·+ pn)
x ≥ (

1

2
)x(ln−1px1 + ln−2px2 + · · ·+ pxn), (11)

where l =
(1+k)x−( 1

2
)x

kx
with k ≥ 1.

(2) if x ≥ 1, one has

(p1 + p2 + · · ·+ pn)
x ≤ (

1

2
)x(ln−1px1 + ln−2px2 + · · ·+ pxn), (12)

where l =
(1+k)x−( 1

2
)x

kx
with k ≥ 1.

Proof. These two inequalities are shown by induction on n similarly. Take the first one for

example. The case of n = 1 holds trivially. Assume that inequality (11) holds for n = k with

k ≥ 1. Next we consider the case of n = k + 1. When pk+1 = 0, the inequality (11) holds

obviously. Let pk+1 6= 0 and τ = p1+p2+···+pk
pk+1

, we get τ ≥ k as p1 ≥ p2 ≥ · · · ≥ pk+1 > 0. Then

we get

(p1 + p2 + · · ·+ pk + pk+1)
x = pxk+1(1 +

p1 + p2 + · · ·+ pk

pk+1
)x

= pxk+1(1 + τ)x

≥ pxk+1[(
1

2
)x + lτx]

= (
1

2
)xpxk+1 + l(p1 + p2 + · · ·+ pk)

x, (13)
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where l =
(1+k)x−( 1

2
)x

kx
and the inequality is due to (9) of Lemma 1. Combing this with the

inequality of n = k completes the proof.

Next we consider the unified entanglement of ρA1A2···Am|Am+1···An
, m = 1, · · · , n−1, with re-

spect to the bipartition A1A2 · · ·Am and Am+1 · · ·An. For any n-qubit state ρA1A2···Am|Am+1···An
,

m = 1, · · · , n − 1, on Hilbert space HA1 ⊗ · · · ⊗ HAn
, the unified entanglement satisfies the

following [25]:

Eα
q,s(ρA1A2···Am|Am+1···An

) ≥
m
∑

i=1

n
∑

j=m+1

Eα
q,s(ρAiAj

), (14)

where α ≥ 1, q ≥ 2, 0 ≤ s ≤ 1, qs ≤ 3, and ρAiAj
, i = 1, · · · , m, j = m + 1, · · · , n are

reduced density operators of ρA1A2···Am|Am+1···An
. Using Lemma 2, we can derive the monogamy

inequality of multi-qubit states under arbitrary bipartition based on the αth-power of unified-

(q, s) entanglement for 0 ≤ α ≤ r
2
with r ≥ 1.

Theorem 1. For any n-qubit quantum state ρA1A2···Am|Am+1···An
, m = 1, · · · , n − 1, and real

number k ≥ 1, q ≥ 2, 0 ≤ s ≤ 1 and qs ≤ 3, we have that

Eα
q,s(ρA1A2···Am|Am+1···An

) ≥ (
1

2
)
α
r

n−m
∑

i=1

m−1
∑

j=0

l(m−j)(n−m)−iEα
q,s(ρAj+1Am+i

), (15)

where 0 ≤ α ≤ r
2
, r ≥ 1 and l =

(1+k)
α
r −( 1

2
)
α
r

k
α
r

.

Proof. We can relabel the subsystems so that Er
q,s(ρAiAj

) ≥ Er
q,s(ρAiAj+1

) ≥ Er
q,s(ρAi+1Am+1)

with i = 1, · · · , m − 1, j = m + 1, · · · , n− 1. It follows from inequality (11) of Lemma 2 and

7



(14) that

Eα
q,s(ρA1A2···Am|Am+1···An

)

= (Er
q,s(ρA1A2···Am|Am+1···An

))
α
r

≥ (

m
∑

i=1

n
∑

j=m+1

Er
q,s(ρAiAj

))
α
r

≥ (
1

2
)
α
r (

n−m
∑

i=1

lm(n−m)−iEα
q,s(ρA1Am+i

) +

n−m
∑

i=1

l(m−1)(n−m)−iEα
q,s(ρA2Am+i

) + · · ·

+
n−m
∑

i=1

ln−m−iEα
q,s(ρAmAm+i

))

= (
1

2
)
α
r

n−m
∑

i=1

m−1
∑

j=0

l(m−j)(n−m)−iEα
q,s(ρAj+1Am+i

), (16)

where 0 ≤ α ≤ r
2
, r ≥ 1, k ≥ 1, q ≥ 2, 0 ≤ s ≤ 1 and qs ≤ 3.

Remark 1. For the αth power of unified-(q, s) entanglement, Theorem 1 provides a general

monogamy relation for 0 ≤ α ≤ r
2
and r ≥ 1. When s tends to 0 or 1, Theorem 1 gives the

monogamy inequalities of the Rényi-q entanglement or the Tsallis-q entanglement respectively.

When q tends to 1, the monogamy inequality for entanglement of formation (EoF) is also

obtained from our general result.

In the following we discuss the EoF as an analytical unified-(q, s) entanglement under

bipartite partition A1|A2A3 · · ·An and prove tighter monogamy relations. We first give some

basic definition. Let HA1 and HA2 be m and n (m ≤ n) dimensional Hilbert spaces respectively.

The EoF of a pure quantum state |ϕ〉A1A2 ∈ HA1 ⊗HA2 is defined by [37]

E(|ϕ〉A1A2) = S(ρA1), (17)

where ρA1 = trA2(|ϕ〉A1A2) and S(ρA1) = −tr(ρA1 log ρA1). For a mixed bipartite quantum state

ρA1A2 =
∑

i pi|ϕi〉〈ϕi| ∈ HA1 ⊗HA2, the EoF is given by the convex roof

E(ρA1A2) = min
{pi,|ϕi〉}

∑

i

piE(|ϕi〉), (18)
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where the minimum is taken over all possible convex partitions of ρA1A2 into pure state ensem-

bles {pi, |ϕi〉}, where 0 ≤ pi ≤ 1 and
∑

i pi = 1.

For a 2 ⊗ m(m ≥ 2) pure state |ϕ〉, Wootters obtained that E(|ϕ〉) = f(C2(|ϕ〉)), and
E(ρ) = f(C2(ρ)) for 2-qubit mixed states, where f(x) = h(1+

√
1−x
2

) and h(x) = −x log x− (1−
x) log(1 − x) in [37]. The function f(x) is a monotonically increasing one for 0 ≤ x ≤ 1, and

f
√
2(x2 + y2) ≥ f

√
2(x2) + f

√
2(y2) in [6]. By using (1 + t)x ≥ 1 + tx for x ≥ 1 and 0 ≤ t ≤ 1,

we have f r(x2 + y2) ≥ f r(x2) + f r(y2) for r ≥
√
2.

Lemma 3. If f r(y2) ≥ kf r(x2), we have

fα(x2 + y2) ≥ (
1

2
)
α
r fα(x2) +

(1 + k)
α
r − (1

2
)
α
r

k
α
r

fα(y2), (19)

where 0 ≤ x, y ≤ 1, 0 ≤ α ≤ r
2
, r ≥

√
2, and k ≥ 1.

Proof. Whenf r(y2) ≥ kf r(x2), we have

fα(x2 + y2) = f ru(x2 + y2) ≥ (f r(x2) + f r(y2))u

= f ru(x2)(1 +
f r(y2)

f r(x2)
)u

≥ f ru(x2)[(
1

2
)u +

(1 + k)u − (1
2
)u

ku
(
f r(y2)

f r(x2)
)u]

= (
1

2
)uf ru(x2) +

(1 + k)u − (1
2
)u

ku
f ru(y2)

= (
1

2
)
α
r fα(x2) +

(1 + k)
α
r − (1

2
)
α
r

k
α
r

fα(y2), (20)

where 0 ≤ α ≤ r
2
as 0 ≤ u ≤ 1

2
, k ≥ 1, the first inequality is obtained by f r(x2 + y2) ≥

f r(x2) + f r(y2) for r ≥
√
2 and the second one is due to (9) of Lemma 1.

For the n-qubit quantum state ρA1|A2A3···An
, regarded as a bipartite state under bipartite

partition A1|A2A3 · · ·An, the concurrence satisfies the monogamy inequality for α ≥ 2 [6]:

Cα(ρA1|A2A3···An
) ≥ Cα(ρA1A2) + Cα(ρA1A3) + · · ·+ Cα(ρA1An

), (21)

where ρA1Ai
= trA2···Ai−1Ai+1···An

(ρ), i = 2, · · · , n, are the reduced density matrices of ρ.

9



Theorem 2. For any 2 ⊗ 2 ⊗ 2 tripartite state ρA1A2A3 ∈ HA1 ⊗HA2 ⊗HA3 and real number

k ≥ 1,

(1) if Er(ρA1A3) ≥ kEr(ρA1A2), then the EoF satisfies

Eα(ρA1|A2A3
) ≥ (

1

2
)
α
r Eα(ρA1A2) +

(1 + k)
α
r − (1

2
)
α
r

k
α
r

Eα(ρA1A3), (22)

where 0 ≤ α ≤ r
2
and r ≥

√
2.

(2) if Er(ρA1A2) ≥ kEr(ρA1A3), then the EoF satisfies

Eα(ρA1|A2A3
) ≥ (

1

2
)
α
r Eα(ρA1A3) +

(1 + k)
α
r − (1

2
)
α
r

k
α
r

Eα(ρA1A2), (23)

where 0 ≤ α ≤ r
2
and r ≥

√
2.

Proof. Assuming Er(ρA1A3) ≥ kEr(ρA1A2), k ≥ 1, we have

Eα(ρA1|A2A3) ≥ fα(C2(ρA1|A2A3))

≥ fα(C2(ρA1A2) + C2(ρA1A3))

≥ (
1

2
)
α
r fα(C2(ρA1A2)) +

(1 + k)
α
r − (1

2
)
α
r

k
α
r

fα(C2(ρA1A3))

= (
1

2
)
α
r Eα(ρA1A2) +

(1 + k)
α
r − (1

2
)
α
r

k
α
r

Eα(ρA1A3), (24)

where 0 ≤ α ≤ r
2
, r ≥

√
2, the first inequality is obtained by E(ρA1|A2A3) ≥ f(C2(ρA1|A2A3))

as qubit states in [10], the second one is due to inequality (21) and the fact that f(x) is a

monotonically increasing function, and the last inequality is due to Lemma 3. The equality

holds since E(ρ) = f(C2(ρ)) for 2-qubit states. Similar proof gives inequality (23) by using

Lemma 3.

For simplicity, denote E(ρA1Ai
), C(ρA1Ai

), E(ρA1|Aj+1···An
), C(ρA1|Aj+1···An

) by EA1Ai
, CA1Ai

,

EA1|Aj+1···An
, CA1|Aj+1···An

respectively, where i = 2, · · · , n − 1 and j = 1, · · · , n − 1. Let

l =
(1+k)

α
r −( 1

2
)
α
r

k
α
r

with 0 ≤ α ≤ r
2
, r ≥

√
2 and k ≥ 1. The monogamy inequalities of the αth

power of the EoF for n-qubit quantum states are given by the following theorem for 0 ≤ α ≤ r
2

and r ≥
√
2.
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Theorem 3. For any n-qubit quantum state ρA1A2A3···An
and real number k ≥ 1, we have that

(1) if kEr
A1Ai

≤ Er
A1|Ai+1···An

for i = 2, · · · , m and Er
A1Aj

≥ kEr
A1|Aj+1···An

for j = m +

1, · · · , n− 1, ∀ 2 ≤ m ≤ n− 2, n ≥ 4, then we have

Eα
A1|A2A3···An

≥ (
1

2
)
α
r (Eα

A1A2
+ lEα

A1A3
+ · · ·+ lm−2Eα

A1Am
)

+ lm[Eα
A1Am+1

+ (
1

2
)
α
r Eα

A1Am+2
+ · · ·+ (

1

2
)
(n−m−2)α

r Eα
A1An−1

]

+ lm−1(
1

2
)
(n−m−1)α

r Eα
A1An

, (25)

where 0 ≤ α ≤ r
2
and r ≥

√
2.

(2) if kEr
A1Ai

≤ Er
A1|Ai+1···An

for i = 2, · · · , n− 1 and n ≥ 3, then we have that

Eα
A1|A2A3···An

≥ (
1

2
)
α
r (Eα

A1A2
+ lEα

A1A3
+ · · ·+ ln−3Eα

A1An−1
) + ln−2Eα

A1An
, (26)

where 0 ≤ α ≤ r
2
and r ≥

√
2.

(3) if Er
A1Ai

≥ kEr
A1|Ai+1···An

for i = 2, · · · , n− 1 and n ≥ 3, then we have that

Eα
A1|A2A3···An

≥ l(Eα
A1A2

+ (
1

2
)
α
r Cα

A1A3
+ · · ·+ (

1

2
)
(n−3)α

r Eα
A1An−1

) + (
1

2
)
(n−2)α

r Eα
A1An

, (27)

where 0 ≤ α ≤ r
2
and r ≥

√
2.

Proof. For arbitrary 2⊗ 2⊗ 2n−2 tripartite state, one has in [6]

C2
A1|A2A3

≥ C2
A1A2

+ C2
A1A3

. (28)

For n-qubit quantum state ρA1A2A3···An
, if kEr

A1Ai
≤ Er

A1|Ai+1···An
for i = 2, · · · , m, we have

Eα
A1|A2A3···An

≥ fα(C2
A1|A2A3···An

)

≥ fα(C2
A1A2

+ C2
A1|A3···An

)

≥ (
1

2
)
α
r fα(C2

A1A2
) + lfα(C2

A1|A3···An
)

≥ · · ·

≥ (
1

2
)
α
r (fα(C2

A1A2
) + lfα(C2

A1A3
) + · · ·+ lm−2fα(C2

A1Am
))

+ lm−1fα(C2
A1|Am+1···An

)

= (
1

2
)
α
r (Eα

A1A2
+ lEα

A1A3
+ · · ·+ lm−2Eα

A1Am
) + lm−1fα(C2

A1|Am+1···An
), (29)

11



where the first inequality follows from EA1|A2A3···An
≥ f(C2

A1|A2A3···An
) for the n-qubit mixed

quantum states in [10], the second one is due to (28) and f(x) being a monotonically increasing

function. Using Lemma 3, we get the third inequality. Other inequalities are consequences of

Lemma 3 and the last equality holds due to E(ρ) = f(C2(ρ)) for 2-qubit states.

For Er
A1Aj

≥ kEr
A1|Aj+1···An

for j = m + 1, · · · , n − 1, similar proof gives the following

inequality by using Lemma 3:

fα(C2
A1|Am+1+···+An

) ≥ lfα(C2
A1Am+1

) + (
1

2
)
α
r fα(C2

A1|Am+2···An
)

≥ · · ·

≥ l[Eα
A1Am+1

+ (
1

2
)
α
r Eα

A1Am+2
+ · · ·+ (

1

2
)
(n−m−2)α

r Eα
A1An−1

]

+ (
1

2
)
(n−m−1)α

r Eα
A1An

. (30)

Combining (29) and (30), one obtains (25). If all kEr
A1Ai

≤ Er
A1|Ai+1···An

for i = 2, · · · , n− 1 or

Er
A1Ai

≥ kEr
A1|Ai+1···An

for i = 2, · · · , n− 1, we have the inequality (26) and (27).

Remark 2. Take tripartite quantum states as an example, when Er(ρA1A3) ≥ kEr(ρA1A2),

the authors in [26] give Eα(ρA1|A2A3) ≥ Eα(ρA1A2) +
(1+k)

α
r −1

k
α
r

Eα(ρA1A3) = µ1. In Theorem 2,

the αth power of the EoF satisfies Eα(ρA1|A2A3
) ≥ (1

2
)
α
r Eα(ρA1A2)+

(1+k)
α
r −( 1

2
)
α
r

k
α
r

Eα(ρA1A3) = µ2.

Let µ = µ2 − µ1, we find µ ≥ 0 for 0 ≤ α ≤ r
2
and r ≥ 2, so our results are tighter than that in

[26].

Remark 3. In addition to the EoF, our monogamy relations also work for other quantum

correlation measures such as the concurrence by a similar method. In fact, for any 2⊗ 2⊗ 2n−2

tripartite state ρA1A2A3 ∈ HA1 ⊗ HA2 ⊗ HA3, 0 ≤ α ≤ r
2
, r ≥ 2, and k > 1, if Cr(ρA1A3) ≥

kCr(ρA1A2), the concurrence satisfies C
α(ρA1|A2A3) ≥ (1

2
)
α
r Cα(ρA1A2)+

(1+k)
α
r −( 1

2
)
α
r

k
α
r

Cα(ρA1A3) ≥
Cα(ρA1A2) +

(1+k)
α
r −1

k
α
r

Cα(ρA1A3) ≥ Cα(ρA1A2) + (2
α
r − 1)Cα(ρA1A3) since (1+k)

α
r −1

k
α
r

≥ 2
α
r − 1.

Thus the conclusion in Theorem 3 is also tighter than that in [8].

Example 1. Consider the quantum state ρ = |ϕ〉〈ϕ| ∈ H2
1 ⊗ H2

2 ⊗ H2
3 , written in the

generalized Schmidt decomposition [38]:

|ϕ〉 = λ0|000〉+ λ1e
iθ|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉, (31)

12



where 0 ≤ θ ≤ π, λi ≥ 0, i = 0, · · · , 4 and
∑4

i=0 λ
2
i = 1. We have C(ρA1|A2A3) = 2λ0

√

λ2
2 + λ2

3 + λ2
4,

C(ρA1A2) = 2λ0λ2, and C(ρA1A3) = 2λ0λ3. Let λ0 = λ3 = 1
2
, λ2 =

√
2
2
, λ1 = λ4 = 0, and k =

1.71, then E(ρA1|A2A3) = 2− 3
4
log 3 ≈ 0.81, E(ρA1A2) = −2+

√
2

4
log 2+

√
2

4
− 2−

√
2

4
log 2−

√
2

4
≈ 0.60,

E(ρA1A3) = −2+
√
3

4
log 2+

√
3

4
− 2−

√
3

4
log 2−

√
3

4
≈ 0.35. Thus, Eα(ρA1|A2A3

) = 0.81α. By Theorem

2, the lower bound of Eα(ρA1|A2A3) is z1 = (1
2
)
α
r 0.35α+

(1+1.71)
α
r −( 1

2
)
α
r

1.71
α
r

0.6α. By Theorem 1 in [26],

the lower bound of Eα(ρA1|A2A3
) is z2 = 0.35α + (1+1.71)

α
r −1

1.71
α
r

0.6α. Fig. 1 shows that our result

is tighter than that of [26]. To see this clearer, let z = z1 − z2 = ((1
2
)
α
r − 1)0.35α +

1−( 1
2
)
α
r

1.71
α
r
0.6α.

Fig. 2 depicts the value of z for 0 ≤ α ≤ 1 and r ≥
√
2, which confirms that Theorem 2 is

indeed stronger than that of [26].

Fig. 1: The gray surface represents the EoF of the state |ϕ〉. The lower bound in [26] is shown

by the yellow surface and the red surface is our result in Theorem 2.

Fig. 2: The blue surface is the difference z between the lower bounds of the entanglement of

formation z1 from Theorem 2 and that of in [26].
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3. Polygamy relations of quantum correlations

In this section, we study the polygamy inequalities for multipartite quantum systems. Recall

that the unified-(q, s) entropy of a quantum state ρ satisfies the subadditivity [39]:

Sq,s(ρA1A2) ≤ Sq,s(ρA1) + Sq,s(ρA2), (32)

where q > 1, qs ≥ 1. Based on this, we obtain the following result.

Theorem 4. For any n-qubit quantum state ρA1A2···Am|Am+1···An
and real number k ≥ 1, suppose

that Eq,s(ρAj |Aj
) ≥ Eq,s(ρAj+1|Aj+1

), then

Eβ
q,s(ρA1A2···Am|Am+1···An

) ≤ (
1

2
)β(lm−1Eq,s(ρA1|A1

) + · · ·+ Eq,s(ρAm|Am
)), (33)

where l =
(1+k)β−( 1

2
)β

kβ
, β ≥ 1, q > 1, qs ≥ 1, and Ai, i = 1, · · · , m, are the complements of Ai

in {A1A2 · · ·AmAm+1 · · ·An}.

Proof. For a quantum state ρA1A2···Am|Am+1···An
=

∑

j pj |ϕj〉A1A2···Am|Am+1···An
〈ϕj|, according to

the definition of unified-(q, s) entanglement Eq,s(|ϕ〉AB) := Sq,s(ρA) with q, s ≥ 0 from (2) and

Eq,s(ρAj |Aj
) ≥ Eq,s(ρAj+1|Aj+1

), we have

Eβ
q,s(ρA1A2···Am|Am+1···An

) = (min
∑

j

pjEq,s(|ϕj〉A1A2···Am|Am+1···An
))β

= (min
∑

j

pjSq,s(ρ
j
A1A2···Am

))β

≤ (min
∑

j

m
∑

i=1

pjSq,s(ρ
j
Ai
))β

= (min
∑

j

m
∑

i=1

pjEq,s(|ϕj〉Ai|Ai
))β

= (

m
∑

i=1

Eq,s(ρAi|Ai
))β

≤ (
1

2
)β(lm−1Eq,s(ρA1|A1

) + · · ·+ Eq,s(ρAm|Am
)), (34)

where l =
(1+k)β−( 1

2
)β

kβ
, β ≥ 1, k ≥ 1, q > 1, qs ≥ 1, Ai, i = 1, · · · , m, are the complements of

Ai in {A1A2 · · ·AmB1B2 · · ·Bn}, the first equality is due to equality (3), the first and second
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inequality are due to (32) and inequality (12) of Lemma 2 respectively. The first three minima

are taken over all possible pure state decompositions of the mixed state ρA1A2···Am|B1B2···Bn
while

the last minimum is taken over all pure state decompositions of ρAi|Ai
.

Remark 4. Theorem 4 provides a general polygamy relation of the unified-(q, s) entan-

glement for the multipartite quantum system under arbitrary bipartition with β ≥ 1. When s

tends to 0 or 1, the polygamy inequalities of the Rényi-q entanglement or the Tsallis-q entan-

glement are obtained respectively. When q tends to 1, the polygamy inequality for EoF also

follows.

In [40], the authors give the polygamy inequality of entanglement for an n-qubit quantum

state ρA1A2A3···An
, i.e, if there are at least two states such that C(ρA1Aj1

)C(ρA1Aj2
) 6= 0 for

j1 6= j2 ∈ {2, · · · , n}, then

Es(ρA1|A2A3···An
) ≤

n
∑

i=2

Es(ρA1Ai
), (35)

where 0 ≤ s ≤ s0, 0 < s0 ≤
√
2 and

∑n

i=2E
s0(ρA1Ai

) = 1. Using inequality (35), one can prove

the following Theorem.

Theorem 5. Let ρA1A2A3 be a tripartite state in HA1 ⊗HA2 ⊗HA3 and k ≥ 1 a real number.

(1) If Es(ρA1A3) ≥ kEs(ρA1A2), then the EoF satisfies

Eβ(ρA1|A2A3) ≤ (
1

2
)
β
s Eβ(ρA1A2) +

(1 + k)
β

s − (1
2
)
β

s

k
β

s

Eβ(ρA1A3), (36)

where β ≥ max{1, s}, 0 ≤ s ≤ s0, 0 < s0 ≤
√
2 and Es0(ρA1A2) + Es0(ρA1A3) = 1.

(2) If Es(ρA1A2) ≥ kEs(ρA1A3), then the EoF satisfies

Eβ(ρA1|A2A3) ≤ (
1

2
)
β

s Eβ(ρA1A3) +
(1 + k)

β

s − (1
2
)
β

s

k
β

s

Eβ(ρA1A2), (37)

where β ≥ max{1, s}, 0 ≤ s ≤ s0, 0 < s0 ≤
√
2 and Es0(ρA1A2) + Es0(ρA1A3) = 1.
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Proof. Assuming Es(ρAC) ≥ kEs(ρAB) > 0, we have

Eβ(ρA1|A2A3) ≤ (Es(ρA1A2) + Es(ρA1A3))
x

= Esx(ρA1A2)(1 +
Es(ρA1A3)

Es(ρA1A2)
)x

≤ Esx(ρA1A2)[(
1

2
)x +

(1 + k)x − (1
2
)x

kx
(
Es(ρA1A3)

Es(ρA1A2)
)x]

= (
1

2
)
β

s Eβ(ρA1A2) +
(1 + k)

β

s − (1
2
)
β

s

k
β

s

Eβ(ρA1A3), (38)

where β ≥ max{1, s}, 0 ≤ s ≤ s0, 0 < s0 ≤
√
2 and Es0(ρA1A2) + Es0(ρA1A3) = 1, the first

inequality is due to (35) and the second one follows from (10) of Lemma 1. Similar argument

shows inequality (37) by using Lemma 1.

Simply denote E(ρA1Ai
) (i = 2, · · · , n− 1) by EA1Ai

, E(ρA1|Aj+1···An
) (j = 1, · · · , n− 1) by

EA1|Aj+1···An
and l =

(1+k)
β
s −( 1

2
)
β
s

k
β
s

. Using similar idea of Theorem 5, the polygamy inequality of

the βth power of EoF for an n-qubit quantum state is obtained in the following theorem for

β ≥ s, 0 ≤ s ≤ s0 and 0 < s0 ≤
√
2.

Theorem 6. For any n-qubit quantum state ρA1A2A3···An
and real number k ≥ 1, we have the

following results:

(1) If kEs
A1Ai

≤ ∑n

j=i+1E
s
A1Aj

for i = 2, · · · , m and Es
A1Ai

≥ k
∑n

j=i+1E
s
A1Aj

for i =

m+ 1, · · · , n− 1, ∀2 ≤ m ≤ n− 2, n ≥ 4, then

E
β

A1|A2A3···An
≤ (

1

2
)
β

s (Eβ
A1A2

+ lE
β
A1A3

+ · · ·+ lm−2E
β
A1Am

)

+ lm[Eβ
A1Am+1

+ (
1

2
)
β

sE
β
A1Am+2

+ · · ·+ (
1

2
)
(n−m−2)β

s E
β
A1An−1

]

+ lm−1(
1

2
)
(n−m−1)β

s E
β
A1An

, (39)

where β ≥ s, 0 ≤ s ≤ s0, 0 < s0 ≤
√
2, and

∑n
i=2E

s0(ρA1Ai
) = 1.

(2) If kEs
A1Ai

≤
∑n

j=i+1E
s
A1Aj

for i = 2, · · · , n− 1 and n ≥ 3, then

E
β

A1|A2A3···An
≤ (

1

2
)
β

s (Eβ
A1A2

+ lE
β
A1A3

+ · · ·+ ln−3E
β
A1An−1

) + ln−2E
β
A1An

, (40)

where β ≥ s, 0 ≤ s ≤ s0, 0 < s0 ≤
√
2, and

∑n

i=2E
s0(ρA1Ai

) = 1.
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(3) If Es
A1Ai

≥ k
∑n

j=i+1E
s
A1Aj

for i = 2, · · · , n− 1 and n ≥ 3, then

E
β

A1|A2A3···An
≤ l[Eβ

A1A2
+ (

1

2
)
β

sE
β
A1A3

+ · · ·+ (
1

2
)
(n−3)β

s E
β
A1An−1

] + (
1

2
)
(n−2)β

s E
β
A1An

, (41)

where β ≥ s, 0 ≤ s ≤ s0, 0 < s0 ≤
√
2, and

∑n
i=2E

s0(ρA1Ai
) = 1.

Example 2. Consider the W state |ϕ〉 = 1√
3
(|100〉+ |010〉+ |001〉). We have E(ρA1|A2A3

) ≈
0.92, and E(ρA1A2) = E(ρA1A3) ≈ 0.55. Then k = 1. Let Es0(ρA1A2) +Es0(ρA1A3) = 1, then we

get s0 ≈ 1.16. We can get Eβ(ρA1|A2A3
) ≤ (1

2
)
β

sEβ(ρA1A2) +
(1+k)

β
s −( 1

2
)
β
s

k
β
s

Eβ(ρA1A3) = 2
β

s 0.55β

for 0 < s ≤ 1.16 and β ≥ s. In Fig. 3, we find that our result is tighter when s is larger.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

s=0.9

s=1

s=1.1

y

Fig. 3: The y axis is the EoF and its upper bound. The yellow, red, or purple line represents

the upper bound from our result for s = 0.9, s = 1, or s = 1.1 respectively and the black line

represents the EoF of |ϕ〉.

4. Conclusion

Monogamy and polygamy inequalities of measures for quantum correlation are one of the fun-

damental properties for multipartite quantum systems. In this paper, we have formulated

monogamy inequalities of the unified entanglement for multipartite quantum states under ar-

bitrary bipartition. In particular, we have derived the unified monogamy inequality of the αth

(0 ≤ α ≤ r
2
, r ≥

√
2) power of the EoF for 2 ⊗ 2 ⊗ 2 quantum states. Similarly, analytical

monogamy inequalities for the n-qubit states have been presented. The same method is general-

ized to the monogamy relations of quantum correlation for multipartite quantum systems. With
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examples, we have shown that our results are tighter than the existing ones. Moreover, we have

presented for the polygamy inequality of the βth (β ≥ max{1, s}, 0 ≤ s ≤ s0, 0 < s0 ≤
√
2)

power of the EoF for 2⊗2⊗2 quantum states and generalized to the n-qubit quantum systems.
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