Skip to main content
Log in

Coherence-breaking superchannels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Coherence is an important resource in quantum information processing; preserving coherence is a major challenge in practical scenarios. In this work, we develop the theories of the coherence-breaking channel and coherence-breaking superchannel, respectively. We define a new kind of coherence-breaking channel which is called strong coherence-breaking channel. The coherence-breaking superchannel is also introduced as a generalization of the coherence-breaking channel in the dynamical resource theory of coherence. Several equivalent characterizations of coherence-breaking superchannel are given. As a demonstration, we also study the coherence-breaking superchannel which maps a qubit channel to the other qubit channel and give the form of such superchannel. Finally, the coherence-breaking indices of superchannel are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Asbóth, J.K., Calsamiglia, J., Helmut, R.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    Article  ADS  Google Scholar 

  2. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  3. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  4. Brandao, F.G., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115(7), 070503 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Braun, D., Giraud, O., Nechita, I., Pellegrini, C., Žnidarič, M.: A universal set of qubit quantum channels. J. Phys. A: Math. Theor. 47(13), 135302 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bu, K., Singh, U., Wu, J.: Coherence-breaking channels and coherence sudden death. Phys. Rev. A 94, 052335 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Transforming quantum operations: quantum supermaps. EPL (Europhys. Lett.) 83(3), 30004 (2008)

  8. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117(3), 030401 (2016)

    Article  ADS  Google Scholar 

  9. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91(2), 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chitambar, E., Hsieh, M.-H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117(2), 020402 (2016)

    Article  ADS  Google Scholar 

  11. Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Towards fully quantum second laws of thermodynamics: limitations on the evolution of quantum coherences. arXiv:1405.5029 (2014)

  12. Deveaud-Plédran, B., Quattropani, A., Schwendimann, P.: Quantum Coherence in Solid State Systems. IOS Press, Amsterdam (2009)

    Google Scholar 

  13. Gour, G.: Comparison of quantum channels by superchannels. IEEE Trans. Inf. Theory 65, 5880–5904 (2019)

    Article  MathSciNet  Google Scholar 

  14. Gour, G., Winter, A.: How to quantify a dynamical quantum resource. Phys. Rev. Lett. 123, 150401 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. Heinosaari, T., Kiukas, J., Reitzner, D., Schultz, J.: Incompatibility breaking quantum channels. J. Phys. A: Math. Theor. 48(43), 435301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Heinosaari, T., Miyadera, T.: Incompatibility of quantum channels. J. Phys. A: Math. Theor. 50(13), 135302 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(06), 629–641 (2003)

    Article  MathSciNet  Google Scholar 

  18. Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54(4), 181–207 (2013)

    Article  ADS  Google Scholar 

  19. Ivan, J.S., Sabapathy, K.K., Simon, R.: Nonclassicality breaking is the same as entanglement breaking for bosonic gaussian channels. Phys. Rev. A 88, 032302 (2013)

    Article  ADS  Google Scholar 

  20. Karlström, O., Linke, H., Karlström, G., Wacker, A.: Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84(11), 113415 (2011)

    Article  ADS  Google Scholar 

  21. King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theory 47(1), 192–209 (2001)

    Article  MathSciNet  Google Scholar 

  22. Lami, L., Giovannetti, V.: Entanglement-breaking indices. J. Math. Phys. 56(9), 092201 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)

    Article  Google Scholar 

  24. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  25. Roden, J.J., Bennett, D.I., Whaley, K.B.: Long-range energy transport in photosystem II. J. Chem. Phys. 144(24), 245101 (2016)

    Article  ADS  Google Scholar 

  26. Rudnicki, Ł, Puchała, Z., Zyczkowski, K.: Gauge invariant information concerning quantum channels. Quantum 2, 60 (2018)

    Article  Google Scholar 

  27. Ruskai, M.B.: Qubit entanglement breaking channels. Rev. Math. Phys. 15(06), 643–662 (2003)

    Article  MathSciNet  Google Scholar 

  28. Sabapathy, K.K.: Process output nonclassicality and nonclassicality depth of quantum-optical channels. Phys. Rev. A 93(4), 042103 (2016)

    Article  ADS  Google Scholar 

  29. Saxena, G., Chitambar, E., Gour, G.: Dynamical resource theory of quantum coherence. Phys. Rev. Res. 2, 023298 (2020)

    Article  Google Scholar 

  30. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Streltsov, A., Rana, S., Bera, M.N., Lewenstein, M.: Towards resource theory of coherence in distributed scenarios. Phys. Rev. X 7(1), 011024 (2017)

    Google Scholar 

  32. Streltsov, A., Rana, S., Boes, P., Eisert, J.: Structure of the resource theory of quantum coherence. Phys. Rev. Lett. 119(14), 140402 (2017)

    Article  ADS  Google Scholar 

  33. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. Theurer, T., Egloff, D., Zhang, L., Plenio, M.B.: Quantifying operations with an application to coherence. Phys. Rev. Lett. 122, 190405 (2019)

    Article  ADS  Google Scholar 

  35. Watrous, J.: The Theory of Quantum Information. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  36. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116(12), 120404 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Y. Luo was supported by Research Funds for the Central Universities under Grants No. GK202003070 and the National Natural Science Foundation of China (Grant No. 62001274). Y. Li was supported by the National Natural Science Foundation of China (Grant No. 12071271). Z. Xi was supported by the National Natural Science Foundation of China (Grants No. 62171266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Li, Y. & Xi, Z. Coherence-breaking superchannels. Quantum Inf Process 21, 176 (2022). https://doi.org/10.1007/s11128-022-03511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03511-y

Keywords

Navigation