Skip to main content
Log in

Analysis of bistatic quantum radar cross section for multi-photon illumination of typical ship structure

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum radar cross section (QRCS) has attracted extensive attention due to its unique characteristics of enhancing the visibility of sidelobe targets compared with classical radar cross section. However, the previous studies were mainly with the aim of monostatic or bistatic quantum radar scattering of single-photon incident. In this paper, based on M. J. Brandsema’s method, the characteristics of bistatic quantum radar cross section (BIQRCS) with multiple photons illumination for the typical ship structure, a rectangular plate, are studied in detail. Furthermore, we verify the resulting equation by comparing with numerical simulations. Subsequently, the effects of the incident angles, the number and wavelength of signal photons, and the target size on the BIQRCS are analyzed separately and compared with the case of monostatic. Simulation results show that appropriate selection of the number and wavelength of signal photons can enable the bistatic quantum radar to obtain more target information at certain angles, and it is found that the bistatic quantum radar has more advantages in stealth target detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Knott, E.F., Schaeffer, J.F., Tulley, M.T.: Radar Cross Section. SciTech Publishing, Raleigh (2004)

    Book  Google Scholar 

  2. Lu, J.: Design Technology of Synthetic Aperture Radar. Wiley, Newark (2019)

    Book  Google Scholar 

  3. Zohuri, B.: Radar Energy Warfare and the Challenges of Stealth Technology. Springer, Cham (2020)

    Book  Google Scholar 

  4. Lynch, D.: Introduction to RF stealth. Scitech Publishing Inc, Raleigh (2004)

    Book  Google Scholar 

  5. Jia, Y., Liu, Y., Zhang, W., Wang, J., Liao, G.: In-band radar cross section reduction of slot array antenna. IEEE Access 6, 23561–23567 (2018)

    Article  Google Scholar 

  6. Maccone, L., Ren, C.: Quantum radar. Phys. Rev. Lett. 124(20), 200503 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. Salmanogli, A., Gokcen, D.: Analysis of quantum radar cross-section by canonical quantization method (full quantum theory). IEEE Access 8, 205487–205494 (2020)

    Article  Google Scholar 

  8. Lloyd, S.: Enhanced sensitivity of photodetection via quantum illumination. Science (American Association for the Advancement of Science) 321(5895), 1463–1465 (2008)

    Article  ADS  Google Scholar 

  9. Nair, R., Gu, M.: Fundamental limits of quantum illumination. Optica 7(7), 771 (2020)

    Article  ADS  Google Scholar 

  10. Lanzagorta, M.: Low-brightness quantum radar. In: Radar Sensor Technology XIX; and Active and Passive Signatures VI, pp. 346–370 (2015)

  11. Saharia, A., Bansal, S.: A review on quantum radar technology and its application in defence equipment. SSRG Int. J. Electron. Commun. Eng. 3(8), 55–58 (2016)

    Google Scholar 

  12. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004)

    Article  ADS  Google Scholar 

  13. Nagata, T., Okamoto, R., O’Brien, J.L., Sasaki, K., Takeuchi, S.: Beating the standard quantum limit with four-entangled photons. Science (American Association for the Advancement of Science) 316(5825), 726–729 (2007)

    Article  ADS  Google Scholar 

  14. Assalini, A., Dalla Pozza, N., Pierobon, G.: Revisiting the dolinar receiver through multiple-copy state discrimination theory. Phys. Rev. A Atom. Mol. Opt. Phys. 84(2), 042342 (2011)

    ADS  Google Scholar 

  15. Vilnrotter, V.A.: Quantum receiver for distinguishing between binary coherent-state signals with partitioned-interval detection and constant-intensity local lasers. NASA IPN Progress Rep. 42, 189 (2012)

    Google Scholar 

  16. Jiang, K., Lee, H., Gerry, C.C., Dowling, J.P.: Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit. J. Appl. Phys. 114(19), 193102 (2013)

    Article  ADS  Google Scholar 

  17. Lopaeva, E.D., Ruo Berchera, I., Degiovanni, I.P., Olivares, S., Brida, G., Genovese, M.: Experimental realization of quantum illumination. Phys. Rev. Lett. 110(15), 153603 (2013)

    Article  ADS  Google Scholar 

  18. Lopaeva, E.D., Ruo Berchera, I., Olivares, S., Brida, G., Degiovanni, I.P., Genovese, M.: A detailed description of the experimental realization of a quantum illumination protocol. Phys. Scr. T160(1), 14026–14031 (2014)

    Article  ADS  Google Scholar 

  19. Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J.H., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114(8), 080503 (2015)

    Article  ADS  Google Scholar 

  20. Sanz, M., Las Heras, U., García-Ripoll, J.J., Solano, E., Di Candia, R.: Quantum estimation methods for quantum illumination. Phys. Rev. Lett. 118(7), 070803 (2017)

    Article  ADS  Google Scholar 

  21. Zhang, T., Zeng, H., Chen, R.: Simulation of quantum radar cross section for electrically large targets with GPU. IEEE Access 7, 154260–154267 (2019)

    Article  Google Scholar 

  22. Lanzagorta, M.: Quantum Radar. Morgan & Claypool Publishers, San Rafael (2011)

    Google Scholar 

  23. Lanzagorta, M.: Quantum radar cross sections. In: Proceedings of the SPIE Conference on Quantum Optics, Brussels, Belgium, p. 77270 (2010)

  24. Liu, K., Xiao, H., Fan, H., Fu, Q.: Analysis of quantum radar cross section and its influence on target detection performance. IEEE Photon. Technol. Lett. 26(11), 1146–1149 (2014)

    Article  ADS  Google Scholar 

  25. Liu, K., Xiao, H.-T., Fan, H.-Q.: Analysis and simulation of quantum radar cross section. Chin. Phys. Lett. 31(3), 62–64 (2014)

    Article  Google Scholar 

  26. Liu, K., Jiang, Y., Li, X., Cheng, Y., Qin, Y.: New results about quantum scattering characteristics of typical targets. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2669–2671 (2016)

  27. Xu, S.-L., Hu, Y.-H., Zhao, N.-X., Wang, Y.-Y., Li, L., Guo, L.-R.: Impact of metal target’s atom lattice structure on its quantum radar cross-section. Acta Physica Sinica 64(15), 154203 (2015)

    Article  Google Scholar 

  28. Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets. Quantum Inf. Process. 16(1), 1–27 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: The effect of polarization on the quantum radar cross section response. IEEE J. Quantum Electron. 53(2), 1–9 (2017)

    Article  Google Scholar 

  30. Fang, C., Hui, T., Liu, Q.F., Li, T., Liang, H.: The calculation and analysis of the bistatic quantum radar cross section for the typical 2d plate. IEEE Photon. J. 10(2), 1–14 (2018)

    Article  Google Scholar 

  31. Fang, C., Chen, Y., Xu, Y., Hua, L.: The analysis of change factor of the simulation of the bistatic quantum radar cross section for the typical ship structure. In: 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), pp. 190–193 (2018)

  32. Fang, C.: The closed-form expressions for the bistatic quantum radar cross section of the typical simple plates. IEEE Sens. J. 20(5), 2348–2355 (2019)

    Article  ADS  Google Scholar 

  33. Fang, C., Shi, X., Lu, L., Yue, T.: Stealth design of the quantum radar scattering based on the two typical 2d targets. In: 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall), pp. 2770–2774 (2019)

  34. Brandsema, M.J.: Formulation and analysis of the quantum radar cross section. PhD thesis (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Li, H. & Xia, C. Analysis of bistatic quantum radar cross section for multi-photon illumination of typical ship structure. Quantum Inf Process 21, 179 (2022). https://doi.org/10.1007/s11128-022-03516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03516-7

Keywords

Navigation