Skip to main content
Log in

Efficient generation protocol for the three-level logical entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The three-level logical entanglement which includes the logical level, block level, and physical level has an important application in quantum repeater to achieve fast and efficient long distance quantum communication. In the paper, we propose the first generation protocol of the three-level logical Greenberger–Horne–Zeilinger (GHZ) state with single photons. We adopt the cross-Kerr nonlinearity to construct the qubit-parity meter. In this generation protocol, we first generate the physical GHZ state and then transform each of its physical qubit into a block and finally generate the three-level logical GHZ state. The whole generation process can be deterministic in theory. This protocol only requires two different cross-Kerr nonlinearities and does not require the sophisticated Toffoli gates. Based on above features, our generation protocol may have application potential in the future quantum communication field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  3. Hu, X.M., Zhang, C., Zhang, C.J., Liu, B.H., Huang, Y.F., Han, Y.J., Li, C.F., Guo, G.C.: Experimental certification for nonclassical teleportation. Quantum Eng. 1, e3 (2019)

    Article  Google Scholar 

  4. Yan, Z.H., Qin, J.L., Qin, Z.Z., Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Generation of non-classical states of light and their application in deterministic quantum teleportation. Fundam. Res. 1, 43–49 (2021)

    Article  Google Scholar 

  5. Yamagami, T., Segawa, E., Konno, N.: General condition of quantum teleportation by one-dimensional quantum walks. Quantum Inf. Process. 20, 224 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  6. Quan, Q., Zhao, M.J., Fei, S.M., Fan, H., Yang, W.L., Wang, T.J., Long, G.L.: Two-copy quantum teleportation based on GHZ measurement. Quantum Inf. Process. 19, 205 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175. IEEE, New York (1984)

  8. Ekert, A.K.: Quantum crytography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Lu, W.Z., Huang, C.H., Hou, K., Shi, L.T., Zhao, H.H., Li, Z.M., Qiu, J.F.: Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution. Quantum Inf. Process. 17, 109 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Yin, Z.Q., Lu, F.Y., Teng, J., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Twin-field protocols: towards intercity quantum key distribution without quantum repeaters. Fundam. Res. 1, 93–95 (2021)

    Article  Google Scholar 

  11. Guo, H., Li, Z.Y., Yu, S., Zhang, Y.C.: Toward practical quantum key distribution using telecom components. Fundam. Res. 1, 96–98 (2021)

    Article  Google Scholar 

  12. Hajji, H., El-Baz, M.: Qutrit-based semi-quantum key distribution protocol. Quantum Inf. Process. 20, 4 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zhang, C.Y., Zheng, Z.J.: Entanglement-based quantum key distribution with untrusted third party. Quantum Inf. Process. 20, 146 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  14. Long, G.L., Liu, X.S.: Theoretical efficient high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2000)

    Article  ADS  Google Scholar 

  15. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  16. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  17. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  18. Zhu, F., Zhang, W., Sheng, Y.B., et al.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)

    Article  Google Scholar 

  19. Chen, S.S., Zhou, L., Zhong, W., et al.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 090312 (2018)

    Article  Google Scholar 

  20. He, R., Ma, J.G., Wu, J.W.: A quantum secure direct communication protocol using entangled beam pairs. EPL 127, 50006 (2019)

    Article  ADS  Google Scholar 

  21. He, Y.F., Ma, W.P.: Multiparty quantum secure direct communication immune to collective noise. Quantum Inf. Process. 18, 4 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1, e26 (2019)

    Article  Google Scholar 

  23. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)

    Article  Google Scholar 

  24. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)

    Article  ADS  Google Scholar 

  25. Liu, L., Niu, J.L., Fan, C.R., Feng, X.T., Wang, C.: High-dimensional measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19, 404 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sun, Z., Song, L., Huang, Q., et al.: Toward practical quantum secure direct communication: a quantum-memory-free protocol and code design. IEEE Trans. Commun. 68, 5778–5792 (2020)

    Article  Google Scholar 

  27. Pan, D., Lin, Z.S., Wu, J.W., et al.: Experimental free-space quantum secure direct communication and its security analysis. Photonics Res. 8, 1522–1531 (2020)

    Article  Google Scholar 

  28. Yang, L., Wu, J.W., Lin, Z.S., et al.: Quantum secure direct communication with entanglement source and single-photon measurement. Sci. China Phys. Mech. Astron. 63, 110311 (2020)

    Article  ADS  Google Scholar 

  29. Wang, C.: Quantum secure direct communication: intersection of communication and cryptography. Fundam. Res. 1, 91 (2021)

    Article  Google Scholar 

  30. Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66, 1267 (2021)

    Article  Google Scholar 

  31. Qi, Z.T., Li, Y.H., Huang, Y.W., et al.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021)

    Article  ADS  Google Scholar 

  32. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67, 367 (2022)

    Article  Google Scholar 

  33. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65, 250311 (2022)

    Article  ADS  Google Scholar 

  34. Chen, Y.A., Zhang, Q., Chen, T.Y., et al.: An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 589, 214–219 (2021)

    Article  ADS  Google Scholar 

  35. Kwek, L.C., Cao, L., Luo, W., et al.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021)

    Article  Google Scholar 

  36. Simon, C., De Riedmatten, H., Afzelius, M., et al.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  37. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  38. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)

    Article  ADS  Google Scholar 

  39. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Knill, E., Laflamme, R., Viola, L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525–2528 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Terhal, B.M.: Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. Fowler, A.G., Wang, D.S., Hill, C.D., et al.: Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010)

    Article  ADS  Google Scholar 

  43. Munro, W.J., Stephens, A.M., Devitt, S.J., et al.: Quantum communication without the necessity of quantum memories. Nat. Photonics 6, 777–781 (2012)

    Article  ADS  Google Scholar 

  44. Muralidharan, S., Kim, J., Lütkenhaus, N., et al.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)

    Article  ADS  Google Scholar 

  45. Azuma, K., Tamaki, K., Lo, H.K.: All-photonic quantum repeaters. Nat. Commun. 6, 1–7 (2015)

    Google Scholar 

  46. Ewert, F., Bergmann, M., van Loock, P.: Ultrafast long-distance quantum communication with static linear optics. Phys. Rev. Lett. 117, 210501 (2016)

    Article  ADS  Google Scholar 

  47. Ewert, F., van Loock, P.: Ultrafast fault-tolerant long-distance quantum communication with static linear optics. Phys. Rev. A 95, 012327 (2017)

    Article  ADS  Google Scholar 

  48. Lee, S.W., Ralph, T.C., Jeong, H.: Fundamental building block for all-optical scalable quantum networks. Phys. Rev. A 100, 052303 (2019)

    Article  ADS  Google Scholar 

  49. Pant, M., Krovim, H., Englund, D., et al.: Rate-distance tradeoff and resource costs for all-optical quantum repeaters. Phys. Rev. A 95, 012304 (2017)

    Article  ADS  Google Scholar 

  50. Li, Z.D., Zhang, R., Yin, X.F., et al.: Experimental quantum repeater without quantum memory. Nat. Photonics 13, 644–648 (2019)

    Article  ADS  Google Scholar 

  51. Hasegawa, Y., Ikuta, R., Matsuda, N., et al.: Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters. Nat. Commun. 10, 378 (2019)

    Article  ADS  Google Scholar 

  52. Hilaire, P., Barnes, E., Economou, S.E.: Resource requirements for efficient quantum communication using all-photonic graph states generated from a few matter qubits. Quantum 5, 397 (2021)

    Article  Google Scholar 

  53. Johannes, B., Hannes, P., Tim, Schröder, et al.: One-way quantum repeater based on near-deterministic photon-emitter interfaces. Phys. Rev. X 10, 021071 (2021)

    Google Scholar 

  54. Zeng, B., Zhou, D.L., Xu, Z.P., Sun, C.P., You, L.: Encoding a logical qubit into physical qubits. Phys. Rev. A 71, 022309 (2005)

    Article  ADS  Google Scholar 

  55. Shaw, B., Wilde, M.M., Oreshkov, O., Kremsky, I., Lidar, D.A.: Encoding one logical qubit into six physical qubits. Phys. Rev. A 78, 012337 (2008)

    Article  ADS  Google Scholar 

  56. Fröwis, F., Dür, W.: Stable macroscopic quantum superpositions. Phys. Rev. Lett. 106, 110402 (2011)

    Article  ADS  Google Scholar 

  57. Kesting, F., Fröwis, F., Dür, W.: Effective noise channels for encoded quantum systems. Phys. Rev. A 88, 042305 (2013)

    Article  ADS  Google Scholar 

  58. Fröwis, F., Dür, W.: Stability of encoded macroscopic quantum superpositions. Phys. Rev. A 85, 052329 (2012)

    Article  ADS  Google Scholar 

  59. Ding, D., Yan, F.L., Gao, T.J.: Preparation of km-photon concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales. J. Opt. Soc. Am. B 30, 3075 (2013)

    Article  ADS  Google Scholar 

  60. Lu, H., Chen, L.K., Liu, C., et al.: Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions. Nat. Photonics 8, 364–368 (2014)

    Article  ADS  Google Scholar 

  61. Chen, S.S., Zhou, L., Sheng, Y.B.: Generation of an arbitrary concatenated Greenberger–Horne–Zeilinger state with single photons. Laser Phys. Lett. 14, 025203 (2017)

    Article  ADS  Google Scholar 

  62. Zheng, H., Zhou, L., Zhong, W., et al.: Generation of an arbitrary logic W state with cross-Kerr nonlinearities. Laser Phys. Lett. 17, 115203 (2020)

    Article  ADS  Google Scholar 

  63. Lee, S.W., Park, K., Ralph, T.C., Jeong, H.: Nearly deterministic Bell measurement for multiphoton qubits and its application to quantum information processing. Phys. Rev. Lett. 114, 113603 (2015)

    Article  ADS  Google Scholar 

  64. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-not gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  65. Munro, W.J., Nemoto, K., Beausoleil, R.G., Spiller, T.P.: High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71, 033819 (2005)

    Article  ADS  Google Scholar 

  66. Loock, V.P.: Optical hybrid approaches to quantum information. Laser Photonics Rev. 5, 167–200 (2011)

    Article  ADS  Google Scholar 

  67. Müller, M., Bounouar, S., Jöns, K.D., Glässl, M., Michler, P.: On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224 (2014)

    Article  ADS  Google Scholar 

  68. Claudon, J., Bleuse, J., Malik, N.S., Bazin, M., Jaffrennou, P., Gregersen, N., Sauvan, C., Lalanne, P., Gerard, J.M.: A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174 (2010)

    Article  ADS  Google Scholar 

  69. Loredo, J.C., Zakaria, N.A., Somaschi, N., et al.: Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016)

    Article  ADS  Google Scholar 

  70. Wang, H., Duan, Z.C., Li, Y.H., et al.: Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016)

    Article  ADS  Google Scholar 

  71. Kim, J.H., Cai, T., Richardson, C.J.K., et al.: Two-photon interference from a bright single-photon source at telecom wavelengths. Optica 3, 577–584 (2016)

    Article  ADS  Google Scholar 

  72. Somaschi, N., Giesz, V., De Santis, L., et al.: Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340–345 (2016)

    Article  ADS  Google Scholar 

  73. Ding, X., He, Y., Duan, Z.C., et al.: On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016)

    Article  ADS  Google Scholar 

  74. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  75. Tang, Z., Liao, Z., Xu, F.H., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)

    Article  ADS  Google Scholar 

  76. Tang, Y.C., Yin, H.L., Chen, S.J., et al.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2014)

    Article  ADS  Google Scholar 

  77. Zhu, C., Huang, G.: Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures. Opt. Express 19, 23364 (2011)

    Article  ADS  Google Scholar 

  78. Hoi, I.C., Kockum, A.F., Palomaki, T., et al.: Giant cross-Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111, 053601 (2013)

    Article  ADS  Google Scholar 

  79. He, B., Sharypov, A.V., Sheng, J., Simon, C., Xiao, M.: Two-photon dynamics in coherent Rydberg atomic ensemble. Phys. Rev. Lett. 112, 133606 (2014)

    Article  ADS  Google Scholar 

  80. Beck, K.M., Hosseini, M., Duan, Y.H., Vuletic, V.: Large conditional single-photon cross-phase modulation. PNAS 113, 9740 (2016)

    Article  ADS  Google Scholar 

  81. Tiarks, D., Schmidt, S., Rempe, G., Dürr, S.: Optical \(\pi \) phase shift created with a single-photon pulse. Sci. Adv. 2, e1600036 (2016)

    Article  ADS  Google Scholar 

  82. Sinclair, J., Angulo, D., Lupu-Gladstein, N., Bonsma-Fisher, K., Steinberg, A.M.: Observation of a large, resonant, cross-Kerr nonlinearity in a cold Rydberg gas. Phys. Rev. Res. 1, 033193 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11974189 and 12175106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhou, L., Zhong, W. et al. Efficient generation protocol for the three-level logical entangled states. Quantum Inf Process 21, 178 (2022). https://doi.org/10.1007/s11128-022-03521-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03521-w

Keywords

Navigation