Skip to main content
Log in

A novel fault-tolerant quantum divider and its simulation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Efficient quantum circuits of algebraic operations are vital for quantum algorithms. In this paper, we propose a novel fault-tolerant quantum divider based on long division algorithm using Clifford+T gates. Firstly, two efficient quantum subtractors are designed which we call them equal-bit subtractor and unequal-bit subtractor. The advantage of these quantum subtractors is that the number of the constant inputs is 2, which will dramatically reduce the qubit cost. Then, based on the quantum comparator and the quantum subtractors, we propose a novel fault-tolerant quantum divider. Compared with existing work, the proposed quantum divider has better performances in quantum cost, T-depth, T-count, qubit cost, constant inputs and garbage outputs. Finally, we simulate these algorithms on IBM Quantum Experience (IBM Q Experience) platform, and the probability histograms show that these algorithms are feasible and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Peter, W.S.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  2. Lov, K.G.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  Google Scholar 

  3. Paul, B.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  MathSciNet  Google Scholar 

  4. David, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)

    ADS  MathSciNet  Google Scholar 

  5. Sean, H.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. In: Proc. Thiry Fourth Annual ACM Sympos. Theory Comput., pp. 653–658 (2002)

  6. Wim, V.D., Sean, H.: Efficient quantum algorithms for shifted quadratic character problems, arXiv preprint arXiv:quant-ph/0011067 (2000)

  7. Wim, V.D., Sean, H., Lawrence, I.: Quantum algorithms for some hidden shift problems. SIAM J. Comput. 36(3), 763–778 (2006)

    Article  MathSciNet  Google Scholar 

  8. Guodong, S., Shenghui, S., Maozhi, S.: Quantum algorithm for polynomial root finding problem. In: 2014 Tenth International Conference on Computational Intelligence and Security, pp. 469–473 (2014)

  9. Aram, W., Avinatan, H., Seth, L.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  Google Scholar 

  10. Glenn, B., Chris, L., Charles, C.: Quantum image processing (quip). In: 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings, pp. 39–44 (2003)

  11. Wim, V.D., Igor, E.S.: Classical and quantum algorithms for exponential congruences. In: Workshop on Quantum Computation, Communication, and Cryptography, pp. 1–10 (2008)

  12. Mathias, S., Martin, R., Nathan, W., Giovanni, D.M.: Design automation and design space exploration for quantum computers. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 470–475 (2017)

  13. Mihir, K.B., Stuart, H., Anargyros, P., Iasonas, P.: Quantum algorithms and circuits for scientific computing. arXiv preprint arXiv:1511.08253 (2015)

  14. Xinlan, Z., Debbie, W.L., Isaac, L.C.: Methodology for quantum logic gate construction. Phys. Rev. A 62(5), 052316 (2000)

    Article  Google Scholar 

  15. Matthew, A., Dmitri, M., Michele, M.: Polynomial-time \(T\)-depth optimization of Clifford+ \(T\) circuits via matroid partitioning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1476–1489 (2014)

    Article  Google Scholar 

  16. Alexandru, P., Ilia, P., Kae, N., Simon, J.D.: Fault-tolerant, high-level quantum circuits: form, compilation and description. Quant. Sci. Technol. 2(2), 025003 (2017)

    Article  Google Scholar 

  17. Harry, B., Richard, C., Monique, L., Noah, L., Alexander, S., Falk, U.: New limits on fault-tolerant quantum computation. In: 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 411–419 (2016)

  18. David, G., Vadym, K., Michele, M., Vincent, R.: An algorithm for the \(T\)-count. arXiv preprint arXiv:1308.4134 (2013)

  19. Oscar, P.B., Tal, N., Matthew, P., Vwani, R., Farrokh, V.: A new universal and fault-tolerant quantum basis. Inf. Process. Lett. 75(3), 101–107 (2000)

    Article  MathSciNet  Google Scholar 

  20. Ismail, G., Lamjed, T., Bouraoui, O.: Division circuit using reversible logic gates. In: 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET), pp. 60–65 (2018)

  21. Noor, M.N., Adnan, H., Mutasimul, H., Lafifa, J., Hafiz, M.H.B.: Novel reversible division hardware. In: 2009 52nd IEEE International Midwest Symposium on Circuits and Systems, pp. 1134–1138 (2009)

  22. Faraz, D., Majid, H.: A novel nanometric fault tolerant reversible divider. Int. J. Phys. Sci. 6(24), 5671–5681 (2011)

    Google Scholar 

  23. Hafiz, M.H.B., Solaiman, M.M.: Design of a compact reversible fault tolerant division circui. Microelectron. J. 51, 15–29 (2016)

    Article  Google Scholar 

  24. Ali, B., Majid, H.: Optimised reversible divider circuit. Int. J. Innovative Comput. Appl. 7(1), 13–33 (2016)

    Article  MathSciNet  Google Scholar 

  25. Lafifa, J., Hafiz, M.H.B.: Efficient approaches to design a reversible floating point divider. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3004–3007 (2013)

  26. Sayanton, V.D., Hafiz, M.H.B., Lafifa, J.: An efficient design technique of a quantum divider circuit. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2102–2105 (2016)

  27. Himanshu, T., Edgard, M.C., TSS, V., Travis, H.: Quantum circuit designs of integer division optimizing \(T\)-count and \(T\)-depth. In: IEEE Transactions on Emerging Topics in Computing (2019)

  28. Michael, A.N., Isaac, C.: Quantum computation and quantum information. American Association of Physics Teachers (2002)

  29. Tycho, S., Harald, W.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74(20), 4087 (1995)

    Article  MathSciNet  Google Scholar 

  30. Suzhen, Y., Chao, W., Bo, H., Yu, G.: The dual-threshold quantum image segmentation algorithm and its simulation. Quantum Inf. Process. 19(12), 1–21 (2020)

    ADS  MathSciNet  Google Scholar 

  31. Haiying, X., Haisheng, L., Han, Z., Yan, L., Jing, Z.: Novel multi-bit quantum comparators and their application in image binarization. Quantum Inf. Process. 18(7), 1–17 (2019)

    MathSciNet  Google Scholar 

  32. Himanshu, T., Nagarajan, R.: Design of efficient reversible logic-based binary and BCD adder circuits. ACM J. Emerg. Technol. Comput. Syst. (JETC) 9(3), 1–31 (2013)

    Google Scholar 

  33. Hafiz, M.H.B., Ahsan, R.C.: Design of a compact reversible binary coded decimal adder circuit. J. Syst. Architect. 52(5), 272–282 (2006)

    Article  Google Scholar 

  34. Ashis, K.W., Mahmudul, M.H., Ahsan, R.C., Hafiz, M.H.B.: Efficient approaches for designing reversible binary coded decimal adders. Microelectron. J. 39(12), 1693–1703 (2008)

    Article  Google Scholar 

  35. Michael, K.T., Robert, G.: Optimized reversible binary-coded decimal adders. J. Syst. Architect. 54(7), 697–706 (2008)

    Article  Google Scholar 

  36. Majid, M., Mohammad, E., Majid, H., Abbas, B.: Design and optimization of reversible bcd adder/subtractor circuit for quantum and nanotechnology based systems. World Appl. Sci. J. 4(6), 787–792 (2008)

    Google Scholar 

  37. Majid, M., Majid, H., Mohammad, E., Keiva, N.: Minimization and optimization of reversible BCD-Full adder/subtractor using genetic algorithm and Don’t Care concept. Int. J. Quantum Inf. 7(05), 969–989 (2009)

    Article  Google Scholar 

  38. Gadi, A., Thomas, A., Panagiotis, B., Luciano, B., Yael, B.H., David, B.: Qiskit: An open-source framework for quantum computing. Accessed on Mar 16 (2019)

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (61801061), The Natural Science Foundation of Chongqing(CSTC2016jcyjA0028), The Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJQN201800607, KJ1704090), and the valuable inputs of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzhen Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, S., Gao, S., Wen, C. et al. A novel fault-tolerant quantum divider and its simulation. Quantum Inf Process 21, 182 (2022). https://doi.org/10.1007/s11128-022-03523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03523-8

Keywords

Navigation