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Abstract. The dynamical behavior of quantum coherence of a displaced
squeezed thermal state in contact with an external bath is discussed in the present
work. We use a Fano-Anderson type of Hamiltonian to model the environment
and solve the quantum Langevin equation. From the solution of the quantum
Langevin equation we obtain the Green’s functions which are used to calculate the
expectation value of the quadrature operators which are in turn used to construct
the covariance matrix. We use a relative entropy based measure to calculate
the quantum coherence of the mode. The single mode squeezed thermal state
is studied in the Ohmic, sub-Ohmic and the super-Ohmic limits for different
values of the mean photon number. In all these limits, we find that when
the coupling between the system and the environment is weak, the coherence
decays monotonically and exhibit a Markovian nature. When the system and
the environment are strongly coupled, we observe that the evolution is initially
Markovian and after some time it becomes non-Markovian. The non-Markovian
effect is due to the environmental back action on the system. Finally, we also
present the steady state dynamics of the coherence in the long time limit in both
low and high temperature regime. We find that the qualitative behaviour remains
the same in both the low and high temperature limits. But quantitative values
differ because the coherence in the system is lower due to thermal decoherence.
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1. Introduction

Quantum information has evolved from being a theoretical field to technological one
in the last few decades [1]. In most of the theoretical investigations, the quantum
systems are considered as isolated objects where the effect of the external environment
is not included in the study. However in actual situations, the quantum system is
exposed to an external environment which can cause decoherence in the system [2].
In general, we model the environment as a many body quantum system which is also
referred to as bath. When the quantum system is coupled to the bath, there is a
dynamical change in the quantum properties of the system. Both the qualitative and
quantitative nature of this dynamical change depends on the bath properties as well
as on the coupling between the system and the environment. Qualitatively, there are
two fundamental kinds of dynamics namely the Markovian and the non-Markovian
dynamics [3, 4]. A knowledge of the dynamical change is important from the point of
view of fabrication of quantum devices [5, 6, 7, 8]. When the relaxation time of the
bath is very short compared to the evolution time of the system, the quantumness
of the system falls monotonically which is a Markovian decay [9, 10, 11]. For the
non-Markovian dynamics, the bath relaxation time and the system evolution time are
comparable to each other [12, 4]. Due to this we will observe a revival of quantumness
due to environmental back action [13, 14]. Thus an open quantum system has a very
rich and interesting structure which has formed the basis for several seminal works.

Continuous variable systems can describe the interaction and propagation of
electromagnetic waves and hence are a valuable resource in quantum information
processing [15, 16, 17]. An electromagnetic field with quantized radiation modes
can be denoted by bosonic modes. For n number of bosonic modes, the Hilbert
space is

∏n
k=1Hk. The creation and annihilation operators of the kth bosonic field

is given by a†k and ak respectively. Alternatively, the continuous variable system can
be described using the quadrature operators {xk, pk} and for a n-mode system we
have a 2n-dimensional vector which contains all the quadrature pairs. For a single
mode continuous variable system, the quadrature operators are ξ1 = x = (a+ a†) and
ξ2 = p = −i(a− a†) and the 2D quadrature vector ξ = {ξ1, ξ2}. It is well known that
the quadrature operators satisfy the canonical commutation relation [ξi, ξj ] = 2iΩij ,
with Ωij being the elements of the matrix

Ω =

(
0 1
−1 0

)
. (1)

A continuous variable quantum system which has representation in terms of Gaussian
functions is referred to as a Gaussian state. Theoretically Gaussian states are
easier to investigate and also experimentally they are easier to produce and hence
several discussions on continuous variable states are restricted to Gaussian states.
In particular, a Gaussian state is completely characterized by the first and second
moments of the quadrature field operators. For these operators we can construct a
vector of the first moments ξ = (〈ξ1〉, 〈ξ2〉) and the covariance matrix V

Vij = 〈{∆ξi,∆ξj}〉 = Tr ({∆ξi,∆ξj}ρ) . (2)

Here we consider {∆ξi,∆ξj} = (∆ξi∆ξj + ∆ξj∆ξi)/2, and the fluctuation operator is
∆ξi = ξ − 〈ξi〉. In the present work we consider a quantum system which is a single
mode Gaussian state for which the matrix elements of the covariance matrix are

Vii = 〈ξ2i 〉 − 〈ξi〉2, (3)
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Vij =
1

2
〈ξiξj + ξjξi〉 − 〈ξi〉〈ξj〉. (4)

Due to the positivity of the density matrix the covariance matrix has to satisfy the
uncertainty relation V + iΩ ≥ 0.

Entanglement is one of the fundamental properties of a quantum system and has
been studied in detail for finite dimensional and infinite dimensional systems. But
entanglement is not the only unique property, rather it is one among an hierarchy of
quantum properties. In the hierarchy, quantum coherence occupies the topmost level
which nestles within it the other properties like nonlocality, steering, entanglement
and discord [18]. This means that in a given quantum system, even when these
properties are not present, quantum coherence might be present in the system. A
scheme to estimate quantum coherence was introduced by Baumgratz et al., [19] from
the perspective of quantum information theory. This led to an explosion of interest in
the field of quantum coherence especially in defining new quantum coherence measures
[20], resource theory of quantum coherence [21, 22] and also in some applications
[23, 24, 25]. Initially, most of these works were done on quantum systems with finite
degrees of freedom. The quantum coherence of the finite dimensional system [20] is
measured as the relative entropy distance between two matrices

D(ρ) = min
σ
S(ρ‖σ) = min

σ
Tr(ρ log2 ρ− ρ log2 σ), (5)

where ρ and σ being the given quantum state and the incoherent state respectively. For
a continuous variable system, the quantum coherence was initially investigated using
a density matrix approach [26]. This method did not give a closed form expression
for Gaussian states. Hence in Ref. [27], the authors made use of a covariance matrix
method to quantify coherence in the system since the covariance matrix can completely
characterizes a Gaussian state. The coherence measure based on the covariance matrix
is

C(ρ) = inf
δ
S(ρ‖δ). (6)

Here the minimization runs over all the incoherent Gaussian states. The closest
incoherent state to a Gaussian state is the thermal state of the form

ρd =

∞∑
n=0

µn

(1 + µ)n+1
|n〉〈n|, (7)

with µ = Tr[a†aρ] being the mean photon number associated with the Gaussian state.
The entropy of a single mode Gaussian state is

S(ρ) =
ν + 1

2
log2

ν + 1

2
− ν − 1

2
log2

ν − 1

2
, (8)

where ν =
√

detV . Hence the relative entropy of coherence for the single mode
Gaussian state is

C(ρ) = S(ρ‖ρd) = Tr(ρ log2 ρ− ρ log2 ρd)

=
ν − 1

2
log2

ν − 1

2
− ν + 1

2
log2

ν + 1

2
+ (µ+ 1) log2(µ+ 1)− µ log2 µ. (9)

For our work, we use this relative entropy measure to estimate the coherence in the
single mode quantum system [28]. Investigations on the open system dynamics of
entanglement has been carried out on both qubit (finite dimensional) systems as well
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as on infinite dimensional (continuous variable) systems [29, 30, 31]. The entanglement
dynamics presents unique features like sudden death [32] and revival of entanglement
[33]. In the case of quantum coherence the dynamics has been investigated only for
qubit systems [34, 35, 36]. In this work, we investigate the dynamics of a single mode
Gaussian state which is a displaced squeezed thermal state. In Sec. 2, of the article
we give a description of the system and the environment, and also the procedure to
calculate the time evolved covariance matrix. We consider three different spectral
densities in this manuscript and in Sec. 3, we compute the quantum coherence in
the Ohmic environment. In Sec. 4 and Sec. 5 we describe the dynamical behavior
of coherence in the sub-Ohmic and the super-Ohmic environments. A steady state
analysis of the system is given in Sec. 6 and we give our conclusions in Sec. 7.

2. Formulation of the system-environment model and the dynamics

The quantum coherence dynamics of finite dimensional systems have been studied
from both the theoretical [35, 36] and experimental [37] perspectives. An infinite
dimensional case is considered in the present work where we consider the system to
be a single bosonic mode of frequency ω0. The bath coupled to the system is a non-
Markovian environment at a finite temperature. This non-Markovian environment
is a structured bosonic reservoir [38] with a collection of infinite modes of varying
frequencies. The system-environment combination can be described using the Fano-
Anderson Hamiltonian [39, 40]

H = ~ω0a
†a+ ~

∑
k

ωkb
†
kbk + ~

∑
k

(
Vka†bk + V∗kb

†
ka
)
. (10)

Here, the factor Vk represents the coupling strength between the bath and the system
and a† (a) is the creation (annihilation) operator where ω0 is the frequency of the

system. For the kth mode of the bosonic reservoir with frequency ωk, b†k (bk) is the
corresponding creation (annihilation) operator. This Hamiltonian is used in the study
of several different models in the fields of atomic and condensed matter physics.

To solve the dynamics, we can use the Heisenberg equation of motion approach.
The time evolved operators corresponding to the system and the environment are
a(t) = e

iHt
~ ae−

iHt
~ and bk(t) = e

iHt
~ bke

− iHt
~ and in the Heisenberg picture they satisfy

d

dt
a(t) = − i

~
[a(t), H] = −iω0a(t)− i

∑
k

Vkbk(t), (11)

d

dt
bk(t) = − i

~
[bk(t), H] = −iωkbk(t)− iV∗ka(t). (12)

To obtain the quantum Langevin equation [41] we solve Eqn. (12) for bk and substitute
the result in Eqn. (11) which gives

ȧ(t) + iω0a(t) +

∫ t

0

dτg(t, τ)a(τ) = −i
∑
k

Vkbk(0)e−iωkt. (13)

The non-Markovian memory effects between the system and the environment is
characterized by the integral kernel g(t, τ) =

∑
k |Vk|2e−iωk(t−τ). In the case of

an environment with a continuous spectrum g(t, τ) =
∫∞
0
dωJ(ω)e−iω(t−τ) with

J(ω) = %(ω)|V(ω)|2 being the spectral density characterizing the non-Markovian
memory of the environment. The factor %(ω) is the density of states of the environment
and ω is the continuously varying bath frequency. Since the quantum Langevin
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equation in Eqn. (13) is linear, one can write a(t) = u(t)a(0) + f(t). Here the time
dependent coefficients u(t) and the noise operator satisfy the two integro-differential
equations given below:

d

dt
u(t) = − iω0u(t)−

∫ t

0

dτg(t, τ)u(τ), (14)

d

dt
f(t) = − iω0f(t)−

∫ t

0

dτg(t, τ)f(τ)

− i
∑
k

Vkbk(0)e−iωkt. (15)

We can find u(t) by numerically solving Eqn. (14) with the initial condition u(0) = 1.
To get f(t) we solve Eq. (15) subject to the initial condition f(0) = 0 which gives

f(t) = −i
∑
k

Vkbk(0)

∫ t

0

dτe−iωkτu(t, τ). (16)

The nonequilibrium thermal fluctuation is characterized by the correlation function
given below

〈f†(t)f(t)〉 = v(t) =

∫ t

0

dτ1

∫ t′

0

dτ2u(t, τ1)g̃(τ1, τ2)u∗(t′, τ2). (17)

Here we consider the initial state of the total system to be an uncorrelated product
state i.e., ρtot(0) = ρS(0) ⊗ ρE(0). For the environment with the Hamiltonian

HE =
∑
k ~ωkb

†
kbk, where β = 1/kBT is the inverse temperature and kB is the

Boltzmann constant, the thermal state ρE(0) = exp(−βHE)/Tr[exp(−βHE)] is its
initial environment state.

Here the time correlation function of the environment with continuous spectrum
is

g̃(τ1, τ2) =

∫ ∞
0

dωJ(ω)n̄(ω)e−iω(τ1−τ2). (18)

Here n̄(ω) = 1/(e~ω/kBT − 1) is the initial particle number distribution. The time
dependent average values of the system are:

〈a(t)〉 = u(t)〈a(0)〉, 〈a†(t)〉 = u∗(t)〈a†(0)〉, (19)

〈a(t)a(t)〉 = (u(t))2〈a(0)a(0)〉, (20)

〈a†(t)a†(t)〉 = (u∗(t))2〈a†(0)a†(0)〉, (21)

〈a†(t)a(t)〉 = |u(t)|2〈a†(0)a(0)〉+ v(t). (22)

Initially, the reservoir is in a thermal state and uncorrelated to the system so
〈f(t)〉 = 〈f†(t)〉 = 0 and also 〈f(t)f(t)〉 = 〈f†(t)f†(t)〉 = 0. The time evolved first
and second moments of the quadrature operators viz 〈ξ1(t)〉, 〈ξ2(t)〉, 〈ξ21(t)〉, 〈ξ22(t)〉,
〈ξ1(t)ξ2(t)〉, and 〈ξ2(t)ξ1(t)〉 can be found from the time-dependent average values in
Eq. (19 - 22). From the moments of the quadrature operator one can express the time
evolved covariance matrix as

V11 = 1 + 2v(t) + 2|u(t)|2 Cov(a†(0), a(0))

+ (u(t))2 Var(a(0)) + (u∗(t))2 Var(a†(0)), (23)

V22 = 1 + 2v(t) + 2|u(t)|2 Cov(a†(0), a(0))

− (u(t))2 Var(a(0))− (u∗(t))2 Var(a†(0)), (24)



Quantum coherence dynamics of displaced squeezed thermal state in a Non-Markovian environment6

0 50 100
0

0.05

0.1

0 50 100
0

1

2

3

0 50 100
0

2

4

6

0 50 100

2

4

6

0 50 100

2

4

6

0 50 100

2

4

6

(a) (b) (c)

(d) (e) (f)

 = 0.1

 r = 0.1
 = 0.1

 r = 1.0

 = 0.1

 r = 2.0

 = 4.0

 r = 1.0

 = 4.0

 r = 0.1
 = 4.0

 r = 2.0

Figure 1. The time evolution of quantum coherence of a thermal state in the
low temperature limit Ts = 1, is shown above for a weakly coupled system
(η = 0.01 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use Ohmic
spectral density (s = 1) with the cut-off frequency ωc = 5.0 ω0.

V12 = i(u∗(t))2 Var(a†(0))− i((u(t))2 Var(a(0)). (25)

where Cov(a, b) = 〈ab〉 − 〈a〉〈b〉 and Var(a) = Cov(a, a). Due to the symmetry of the
covariance matrix we also have V12 = V21.

From the knowledge of the initial state and the environmental parameters, we can
find the time evolved covariance matrix elements using the nonequilibrium Green’s
functions u(t) and v(t). The spectral density J(ω) of the environment needs to be
specified to calculate the Green’s function. An Ohmic type spectral density,

J(ω) = η ω

(
ω

ωc

)s−1
e−ω/ωc , (26)

is considered in our work, since this can simulate a large class of thermal baths. In
the above equation, ωc is the cut-off frequency of the environmental spectra and η
is the system-bath coupling strength. At the critical value of the coupling strength
ηc = ω0/(ωcΓ(s)) a localized mode is generated and here Γ(s) is the gamma function.
The environment is classified as Ohmic for s = 1 super-Ohmic for s > 1 and sub-
Ohmic for s < 1. The dynamics of coherence is measured for the displaced squeezed
thermal state over a wide range of parameters. In the present work we consider the
Hamiltonian which is bilinear in the creation and annihilation operators. Hence the
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Figure 2. The time evolution of quantum coherence of a thermal state in the
high temperature limit Ts = 20, is shown above for a weakly coupled system
(η = 0.01 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use Ohmic
spectral density (s = 1) with the cut-off frequency ωc = 5.0 ω0.

Gaussian states preserve their form and remain Gaussian. Throughout our work we
use a scaled temperature Ts = kBT/~ω0, where ω0 is the frequency of the system.

In the present work we investigate the quantum coherence dynamics of a general
Gaussian state of the form [42]

ρ = D(α) S(r) ρth S
†(r) D†(α), (27)

where D(α) and S(r) are the displacement and squeezing operators defined as:

D(α) = exp(αa† − α∗a), (28)

S(r) = exp
[
r(a2 − a†2)/2

]
, (29)

with the thermal state ρth being:

ρth =

∞∑
n=0

n̄n

(1 + n̄)n+1
|n〉〈n|. (30)

The transient dynamics of the single mode Gaussian state described above is
investigated for different values of the displacement α and squeezing parameter r.
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Figure 3. The time evolution of quantum coherence of a thermal state in the
low temperature limit Ts = 1, is shown above for a strongly coupled system
(η = 2.0 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use Ohmic
spectral density (s = 1) with the cut-off frequency ωc = 5.0 ω0.

3. Quantum Coherence evolution of displaced squeezed thermal state in a
Ohmic environment

The transient dynamics of a single mode squeezed displaced thermal state in contact
with a ohmic bath with spectral density J(ω) = η ω exp(−ω/ωc) is described in the
present section. The mode is characterized by two parameters viz the displacement
parameter (α) and the squeezing parameter (r) and the dynamics are shown through
the plots Fig. 1 - Fig. 4. From these plots we find that the amount of initial coherence
is higher in systems with lower mean photon number.

In Fig. 1 and 2, the dynamics of quantum coherence of a weakly coupled system
(η = 0.01ηc) is studied in the low temperature (Ts = 1) and high temperature
(Ts = 20) limits respectively. The rate of fall of coherence decreases with increase
in the displacement parameter and the squeezing parameter. Since there is no back
flow of information, the quantum coherence decreases steadily with time. The initial
coherence and the rate of fall also depends on the mean photon number n̄. This is
characteristic of the system that is weakly coupled to the environment. A comparison
between the low and high temperature plots show that the coherence falls faster in the
high temperature limit. This is because, apart from the loss of coherence due to the
dissipative interaction with the environment, the system also suffers from decoherence
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Figure 4. The time evolution of quantum coherence of a thermal state in the
high temperature limit Ts = 20, is shown above for a strongly coupled system
(η = 2.0 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use Ohmic
spectral density (s = 1) with the cut-off frequency ωc = 5.0 ω0.

due to the thermal effects.
The strongly coupled system (η = 2.0ηc) is studied through the plots in Fig. 3 and

Fig. 4, corresponding to the low temperature (Ts = 1) and high temperature (Ts = 20)
limits respectively. We find that the amount of initial coherence is higher at low
temperature and the rate of fall of coherence is lesser for systems with higher value of
displacement and squeezing parameter. The quantum coherence in the system initially
falls faster and reaches a minimum value. Then it increases slightly and exhibits an
oscillatory behavior. These oscillations indicate an information back flow which is a
characteristic feature of a non-Markovian dynamics. Due to thermal decoherence in
the high temperature limit, there is a faster fall of quantum coherence. Thus we find
that the system dynamics is dependent on the strength of its coupling with the bath.

4. Quantum coherence dynamics of displaced squeezed thermal state in a
sub-Ohmic environment

A subohmic spectral density is one in which s < 1. In the present work, we consider
s = 1/2 and the corresponding spectral density reads J(ω) = η

√
ωωc exp(−ω/ωc).

The displacement parameter (‘α’) and the squeezing parameter (‘r’) characterizes
the mode. The transient dynamics of quantum coherence of this system under the
variation of these parameters is shown through the plots in Fig. 5 - 8.

The coherence evolution in the weak coupling limit (η = 0.01 ηc) is analyzed
in Fig. 5 and 6, considering the low temperature and high temperature limits.
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Figure 5. The time evolution of quantum coherence of a thermal state in the
low temperature limit Ts = 1, is shown above for a weakly coupled system
(η = 0.01 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use sub-Ohmic
spectral density (s = 1/2) with the cut-off frequency ωc = 5.0 ω0.

Here we observe that the amount of initial coherence is inversely proportional to
the mean photon number n̄. We observe that the amount of initial coherence is
inversely proportional to the mean photon number. In the weak coupling limit, the
coherence decay exhibits a Markovian nature and decreases steadily with time. When
the displacement parameter and the squeezing parameter increases, the coherence
decay rate increases. Also the coherence falls faster in the high temperature limit.
This is because thermal decoherence also contributes to the fall of coherence.

Through the plots Fig. 7 and 8, we study the coherence dynamics in a system
strongly coupled (η = 2.0 ηc) to a sub-ohmic bath. The low temperature limit is
described through the plots in Fig. 7 and the high temperature limit through Fig. 8.
The amount of initial coherence is higher at lower temperature, with the coherence
decay being faster for lower values of displacement and squeezing parameter. Here in
the shorter time scales, the coherence falls faster and reaches a minimum value. Then
it shows an oscillatory nature indicating a non-Markovian behavior for the strongly
coupled system. This non-Markovian dynamics is indicative of information backflow
in the system. Thus we find Markovian evolution for a weakly coupled system and a
non-Markovian evolution for a strongly coupled system.
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Figure 6. The time evolution of quantum coherence of a thermal state in the
high temperature limit Ts = 20, is shown above for a weakly coupled system
(η = 0.01 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use sub-Ohmic
spectral density (s = 1/2) with the cut-off frequency ωc = 5.0 ω0.

5. Non-Markovian dynamics of displaced squeezed thermal state in a
super-Ohmic environment

The time dynamics of a single mode continuous variable state in contact with a super-
Ohmic bath with s > 1 is studied in the present work. Towards this end, we consider
a spectral density of the form J(ω) = η(ω/ωc)

3 exp(−ω/ωc) in our investigations. The
dynamical variation of coherence is studied by varying the displacement operator and
the squeezing parameter. The results are displayed in the plots given through Fig. 9
- 12.

When the system is weakly coupled to the environment (η = 0.01 ηc), it exhibits
a Markovian decay. Hence we observe a characteristic behaviour where the quantum
coherence decreases steadily. The coherence at time t = 0 is dependent on the mean
photon number with quantum coherence being inversely proportional to the mean
photon number of the system. The coherence fall decreases with increase in the
displacement parameter and the squeezing parameter. Again at higher temperatures,
coherence falls faster due to the thermal decoherence effects. In contrast to the Ohmic
and the sub-Ohmic case, the system does not exhibit a non-Markovian behavior in the
strong coupling limit. Rather we observe a steady decay in the low temperature limit.
In the high temperature limit, initially the coherence falls abruptly and then increases
slightly and later saturates at a steady value. The final saturation value depends on
the displacement and the squeezing parameter.
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Figure 7. The time evolution of quantum coherence of a thermal state in the
low temperature limit Ts = 1, is shown above for a strongly coupled system
(η = 2.0 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use sub-Ohmic
spectral density (s = 1/2) with the cut-off frequency ωc = 5.0 ω0.

6. Steady state analysis

An important limit of an open quantum system is the long time limit, which can help
us to understand steady state behaviour of the system. Towards this end we need the
analytic solution of the integro-differential of u(t) which is given in Ref. [12] and reads
as follows:

u(t) = Ze−iωbt+

∫ ∞
0

dω
J(ω)e−iωt

[ω − ω0 −∆(ω)]
2

+ γ2(ω)
, (31)

The first term arises due to the contribution of the localized mode in the Fano model.
The second term is due to the continuous part of the spectra which causes dissipation.
Since the localized mode produces dissipationless dynamics, the system can forever
memorize some of its initial state information. Here

∆(ω) = P
∫ ∞
0

dω′
J(ω′)

ω − ω′
(32)

is a principal value integral and γ(ω) = πJ(ω). They are the real and imaginary parts
of the self-energy correction given by

Σ(ω ± i0+) =

∫ ∞
0

dω′
J(ω′)

ω − ω′ ± i0+
= ∆(ω)∓ iγ(ω). (33)

The conditions for the localized mode frequency is determined by the expression
ωb − ω0 −∆(ωb) = 0 and Z = [1− Σ′(ωb)]

−1
is the amplitude of the localized mode.
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Figure 8. The time evolution of quantum coherence of a thermal state in the
high temperature limit Ts = 20, is shown above for a strongly coupled system
(η = 2.0 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use sub-Ohmic
spectral density (s = 1/2) with the cut-off frequency ωc = 5.0 ω0.

The steady state value of quantum coherence is determined by the steady state value
of the Green’s functions given by

u(ts) = Z exp(−iωbts) (34)

v(ts) =

∫ ∞
0

dω[Dl(ω) +Dc(ω)]n̄(ω, T ) (35)

where Dc(ω) = J(ω)/[(ω − ω0 −∆(ω))
2

+ γ2(ω)] and Dl(ω) = J(ω)Z2/(ω − ωb)
2.

Using these results we analyze the quantum coherence steady state values of the
system in the strong coupling limit. We do not investigate the weak coupling limit
since the coherence vanishes in the long time limit for this case.
Ohmic case: The steady state of quantum coherence for a Ohmic bath with spectral
density J(ω) = ηω exp(−ω/ωc) is shown in Fig. 13, where we show the variation of
coherence with the displacement parameter (α) and the squeezing parameter (r). The
plots 13 (a) and 13(b) show the coherence change for the mean photon numbers of
n̄ = 0.1 and n̄ = 2.0 in the low temperature limit of the environment. In the long
time limit, when both the displacement parameter (α) and the squeezing parameter
(r) are zero, there is no coherence in the system. But if any one of them is finite, there
is a finite amount of coherence. Also we find that the coherence varies faster with the
decrease in the displacement parameter (α) when compared to the squeezing parameter
(r). From a comparison between the plots 13 (a) and 13(b) we find that for low
mean photon number n̄ = 0.1 the coherence decreases with increase in the squeezing
parameter whereas for the high mean photon number n̄ = 2.0 the coherence increases
with the squeezing parameter. From the results in 13(c) and 13(d) we find that the
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Figure 9. The time evolution of quantum coherence of a thermal state in the
low temperature limit Ts = 1, is shown above for a weakly coupled system
(η = 0.01 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use super-Ohmic
spectral density (s = 3) with the cut-off frequency ωc = 5.0 ω0.

long time coherence exhibits the same qualitative behavior. But quantitatively, the
amount of coherence is lower at high temperatures due to the thermal decoherence
effects.
sub-Ohmic case: The coherence variation with the displacement parameter (α) and
the squeezing parameter (r) in the long time limit is described for the sub-Ohmic
bath with spectral density J(ω) = η

√
ωωc exp(−ω/ωc) through the plots in Fig. 14.

The low temperature limit of the coherence variation is analyzed through the plots
in 14 (a) and 14(b) where we consider the mean photon number to be n̄ = 0.1 and
n̄ = 2.0 respectively. Here we find that when both the displacement and squeezing
parameters are zero the coherence vanishes since in this limit the state is an incoherent
state. Comparatively the coherence falls faster with the displacement parameter when
compared with the squeezing parameter. The high temperature regime is studied
through the results in plots 14(c) and 14(d) for n̄ = 0.1 and n̄ = 2.0 respectively.
The long time coherence in the high temperature limit exhibits the same qualitative
behavior as the one in the low temperature limit.
super-Ohmic case: The super-Ohmic case with spectral density J(ω) =
η(ω/ωc)

3 exp(−ω/ωc) is studied for the displacement parameter (α) and squeezing
parameter (r) in the long time limit and the results are shown through the plots
in 15. For the mean photon numbers n̄ = 0.1 and n̄ = 2.0 the low temperature
plots are shown through the figures in 15 (c) and 15 (d) respectively. As expected
the coherence is zero when the state is incoherent, i.e., when both the displacement
and the squeezing parameters are zero. On increasing the parameters the coherence
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Figure 10. The time evolution of quantum coherence of a thermal state in
the high temperature limit Ts = 20, is shown above for a weakly coupled system
(η = 0.01 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use super-Ohmic
spectral density (s = 3) with the cut-off frequency ωc = 5.0 ω0.

increases and the rate of increase is higher for the displacement parameter than the
squeezing parameter. The results in the low temperature limit maps similarly to
the high temperature limit as well. This can be observed from the study of the
results in the plots 15(c) and 15(d) respectively. The long time coherence in the
high temperature limit exhibits the same qualitative behavior as the one in the low
temperature limit. But quantitatively the coherence is lower for high temperature
values than that of low temperature values. This is because the system exhibits a
thermal decoherence at higher values of temperature.

7. Conclusion

The quantum coherence dynamics of a single mode squeezed displaced thermal state is
analyzed in the present work. We adopt an open quantum system approach where we
consider the environment to be a collection of infinite number of bosonic modes with
varying frequencies. The coherence dynamics is studied in the finite temperature limit
and considering different values for the system-bath coupling strength. The coherence
is measured using the relative entropy measure where the distance to the closest
thermal state is used. The number operator of the continuous variable state and the
determinant of the covariance matrix completely characterizes the quantum coherence.
The time evolved covariance matrix elements is obtained by solving the quantum
Langevin equation for the bosonic mode operators. The two basic nonequilibrium
Green’s functions namely u(t) and v(t) are determined by the time evolution of the
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Figure 11. The time evolution of quantum coherence of a thermal state in the
low temperature limit Ts = 1, is shown above for a strongly coupled system
(η = 2.0 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use super-Ohmic
spectral density (s = 3) with the cut-off frequency ωc = 5.0 ω0.

field operators. The entire analysis is carried out under three different environmental
spectral densities viz Ohmic, sub-Ohmic and super-Ohmic densities. In the weak
interaction limit, when the bath and the system are weakly coupled with each other,
the quantum coherence decreases monotonically with time. Meanwhile in the strong
interaction limit, we observe that the coherence initially decreases but then it increases
mildly and shows an oscillatory behavior. This oscillatory nature, signals the presence
of non-Markovian behavior and is a characteristic feature of a strongly coupled system.
From our analysis we find that the system with lower mean photon number has higher
amount of initial coherence which falls faster. Apart from investigating the dynamics
in a finite time interval, we also look at the coherence evolution in the long time
(t→∞) limit. In this steady state limit, we show the dynamical variation of quantum
coherence of the system when it is strongly coupled to the environment. We find
that the qualitative behavior of the quantum coherence evolution in the steady state
limit is same both in the low and high temperature limits. But quantitatively it is
different because of thermal decoherence. In the present work we have been able to
characterize a mixed Gaussian state completely. A extension of the study of coherence
dynamics to non-Gaussian will be the focus of our future works. Such investigations
will require methods beyond the covariance matrix approach which works only for
Gaussian systems.
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Figure 12. The time evolution of quantum coherence of a thermal state in the
high temperature limit Ts = 20, is shown above for a strongly coupled system
(η = 2.0 ηc) for various values of the displacement parameter (‘α’) and squeezing
parameters (‘r’). The different lines correspond to the different values of n̄ as
follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use super-Ohmic
spectral density (s = 3) with the cut-off frequency ωc = 5.0 ω0.

(a) (b)

(c) (d)

Figure 13. The steady state value of coherence in the long time limit (t → ∞)
for a strongly coupled system (η = 2.0ηc) in contact with a Ohmic bath. Here the
low temperature limit (Ts = 0.1) for mean photon number n̄ = 0.1 and n̄ = 2.0 is
given through the plots in (a) and (b) respectively. The high temperature limit
(Ts = 20.0) for mean photon number n̄ = 0.1 and n̄ = 2.0 is given through the
plots in (c) and (d) respectively. The cut-off frequency used is ω = 5.0ω0.



Quantum coherence dynamics of displaced squeezed thermal state in a Non-Markovian environment18

(a) (b)
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Figure 14. In the long time limit (t → ∞) for a strongly coupled system
(η = 2.0ηc) we investigate the steady state value of coherence in contact with
a sub-Ohmic bath in this Figure. The low temperature limit (Ts = 0.1) for mean
photon number n̄ = 0.1 and n̄ = 2.0 is given through the plots (a) and (b)
respectively. In plots (c) and (d) the high temperature limit (Ts = 20.0) for mean
photon number n̄ = 0.1 and n̄ = 2.0 respectively. We use a cut-off frequency of
ω = 5.0ω0.
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Figure 15. For a strongly coupled system, the steady state coherence in contact
with a super-Ohmic bath is given through the Figure above. The low temperature
limit (Ts = 0.1) for mean photon number n̄ = 0.1 and n̄ = 2.0 is given through
the plots (a) and (b) respectively. The high temperature limit (Ts = 20.0) of the
system for the mean photon number n̄ = 0.1 and n̄ = 2.0 is given in (c) and (d)
repectively. Here the cut-off frequency used is ω = 5.0ω0.
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