Skip to main content
Log in

Toward multimode quantum Rabi model in a strong-coupling cavity optomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient method to achieve a multimode quantum Rabi model in a strong-coupling cavity optomechanical system. In the proposed proposal, we show that when the driving bichromatic laser is simultaneously adjusted to red- and blue-sideband excitations, the interaction between the cavity mode and the vibrational modes can be treated as a multimode quantum Rabi model under the single-photon strong-coupling regime. As a typical example, we theoretically analyze the two-mode quantum Rabi model and show that the entangled state of two vibrational modes can be achieved in the two-mode quantum Rabi model. Numerical simulations confirm the validity of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Todorov, Y., Andrews, A.M., Sagnes, I., Colombelli, R., Klang, P., Strasser, G., Sirtori, C.: Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies. Phys. Rev. Lett. 102, 186402 (2019)

    Article  ADS  Google Scholar 

  2. Ballester, D., Romero, G., García-Ripoll, J.J., Deppe, F., Solano, E.: Quantum simulation of the ultrastrong-coupling dynamics in circuit quantum electrodynamics. Phys. Rev. X 2, 021007 (2012)

    Google Scholar 

  3. Pedernales, J.S., Lizuain, I., Felicetti, S., Romero, G., Lamata, L., Solano, E.: Quantum Rabi model with trapped ions. Sci. Rep. 5, 15472 (2015)

    Article  ADS  Google Scholar 

  4. Liao, J.-Q., Huang, J.-F., Tian, L., Kuang, L.-M., Sun, C.-P.: Generalized ultrastrong optomechanical-like coupling. Phys. Rev. A 101, 063802 (2020)

    Article  ADS  Google Scholar 

  5. Beaudoin, F., Gambetta, J.M., Blais, A.: Dissipation and ultrastrong coupling in circuit QED. Phys. Rev. A 84, 043832 (2011)

    Article  ADS  Google Scholar 

  6. Bin, Q., Lü, X.-Y., Yin, T.-S., Li, Y., Wu, Y.: Collective radiance effects in the ultrastrong-coupling regime. Phys. Rev. A 99, 033809 (2019)

    Article  ADS  Google Scholar 

  7. Anappara, A.A., De Liberato, S., Tredicucci, A., Ciuti, C., Biasiol, G., Sorba, L., Beltram, F.: Signatures of the ultrastrong light-matter coupling regime. Phys. Rev. B 79, 201303(R) (2019)

    Article  ADS  Google Scholar 

  8. Crespi, A., Longhi, S., Osellame, R.: Photonic realization of the quantum Rabi model. Phys. Rev. Lett. 108, 163601 (2012)

    Article  ADS  Google Scholar 

  9. Gely, M.F., Rodriguez, A.P., Bothner, D., Blanter, Y.M., Bosman, S.J., Solano, E., Steele, G.A.: Convergence of the multimode quantum Rabi model of circuit quantum electrodynamics. Phys. Rev. B 95, 245115 (2017)

    Article  ADS  Google Scholar 

  10. Garziano, L., Stassi, R., Ridolfo, A., Di Stefano, O., Savasta, S.: Vacuum-induced symmetry breaking in a superconducting quantum circuit. Phys. Rev. A 90, 043817 (2014)

    Article  ADS  Google Scholar 

  11. Casanova, J., Romero, G., Lizuain, I., Garca-Ripoll, J.J., Solano, E.: Deep strong coupling regime of the Jaynes–Cummings model. Phys. Rev. Lett. 105, 263603 (2010)

    Article  ADS  Google Scholar 

  12. Kyaw, T.H., Felicetti, S., Romero, G., Solano, E., Kwek, L.-C.: Scalable quantum memory in the ultrastrong coupling regime. Sci. Rep. 5, 8621 (2015)

    Article  ADS  Google Scholar 

  13. Sundaresan, N.M., Liu, Y., Sadri, D., Underwood, D.L., Malekakhlagh, M., Türeci, H.E., Houck, A.A.: Beyond strong coupling in a multimode cavity. Phys. Rev. X 5, 021035 (2015)

    Google Scholar 

  14. Sánchez, C., Nori, F., Liberato, S.D.: Resolution of superluminal signaling in nonperturbative cavity quantum electrodynamics. Nat. Commun. 9, 2745 (2018)

    Google Scholar 

  15. Liberato, S.D.: Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. Phys. Rev. Lett. 112, 016401 (2014)

    Article  ADS  Google Scholar 

  16. Shen, L.T., Yang, J., Shi, Z., Zhong, Z.R., Xu, C.: Ground state of a cross-cavity quantum Rabi model. J. Phys. A Math. Theory 54, 105302 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. Shen, L.T., Yang, J.W., Zhong, Z.R., Yang, Z.B., Zheng, S.B.: Quantum phase transition and quench dynamics in the two-mode Rabi model. Phys. Rev. A 104, 063703 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  18. Chilingaryan, S.A., Rodríguez-Lara, B.M.: Exceptional solutions in two-mode quantum Rabi models. J. Phys. B At. Mol. Opt. Phys. 48, 245501 (2015)

    Article  Google Scholar 

  19. Alderete, C.H., Rodríguez-Lara, B.M.: Cross-cavity quantum Rabi model. J. Phys. A Math. Theor. 49, 414001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, N., Gong, Z.-R., Lu, J., Zhou, L.: Phases transitions in a cross-cavity quantum Rabi model possessing PT symmetric structure. Front. Phys. 7, 127 (2019)

    Article  Google Scholar 

  21. He, S., Wang, C., Ren, X.-Z., Duan, L.-W., Chen, Q.-H.: Quantum Zeno effect in the multimode quantum Rabi model. arXiv:1904.03872v1

  22. Ai, Q., Li, Y., Zheng, H., Sun, C.P.: Quantum anti-Zeno effect without rotating wave approximation. Phys. Rev. A 81, 042116 (2010)

    Article  ADS  Google Scholar 

  23. Xu, D.Z., Ai, Q., Sun, C.P.: Dispersive-coupling-based quantum Zeno effect in a cavity-QED system. Phys. Rev. A 83, 022107 (2011)

    Article  ADS  Google Scholar 

  24. Gely, M.F., Parra-Rodriguez, A., Bothner, D., Blanter, Y.M., Bosman, S.J., Solano, E., Steele, G.A.: Convergence of the multimode quantum Rabi model of circuit quantum electrodynamics. Phys. Rev. B 95, 245115 (2017)

    Article  ADS  Google Scholar 

  25. Roth, M., Hassler, F., DiVincenzo, D.P.: Optimal gauge for the multimode Rabi model in circuit QED. Phys. Rev. Res. 1, 033128 (2019)

    Article  Google Scholar 

  26. Peng, J., Zheng, J., Yu, J., Tang, P., Barrios, G.A., Zhong, J., Solano, E., Arriagada, F.A., Lamata, L.: One-photon solutions to the multiqubit multimode quantum Rabi model for fast W-state generation. Phys. Rev. Lett. 127, 043604 (2021)

    Article  ADS  Google Scholar 

  27. Xie, Q.-T.: Exact solution of the two-mode quantum Rabi model. Commun. Theor. Phys. 72, 065105 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Felicetti, S., Rico, E., Sabin, C., Ockenfels, T., Koch, J., Leder, M., Grossert, C., Weitz, M., Solano, E.: Quantum Rabi model in the Brillouin zone with ultracold atoms. Phys. Rev. A 95, 013827 (2017)

    Article  ADS  Google Scholar 

  29. Ning, W., Huang, X.-J., Han, P.-R., Li, H., Deng, H., Yang, Z.-B., Zhong, Z.-R., Xia, Y., Xu, K., Zheng, D., Zheng, S.-B.: Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett. 123, 060502 (2019)

    Article  ADS  Google Scholar 

  30. Yang, Z.-B., Han, P.-R., Huang, X.-J., Ning, W., Li, H.-K., Xu, K., Zheng, D.N., Fan, H., Zheng, S.B.: Experimental demonstration of entanglement-enabled universal quantum cloning in a circuit. NPJ Quan. Inf. 44, 1 (2021)

    Google Scholar 

  31. Puebla, R., Casanova, J., Plenio, M.B.: A robust scheme for the implementation of the quantum Rabi model in trapped ions. New J. Phys. 18, 113039 (2016)

    Article  ADS  Google Scholar 

  32. Ma, K.K.W., Law, C.K.: Three-photon resonance and adiabatic passage in the large-detuning Rabi model. Phys. Rev. A 92, 023842 (2015)

    Article  ADS  Google Scholar 

  33. Wu, Y.X., Guan, Z.Y., Li, S., Xue, Z.: Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways. Front. Phys. 17, 42507 (2022)

    Article  ADS  Google Scholar 

  34. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  35. Mancini, S., Giovannetti, V., Vitali, D., Tombesi, P.: Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett. 88, 120401 (2002)

    Article  ADS  Google Scholar 

  36. Xu, X.W., Zhao, Y.J., Liu, Y.X.: Entangled-state engineering of vibrational modes in a multimembrane optomechanical system. Phys. Rev. A 88, 022325 (2013)

    Article  ADS  Google Scholar 

  37. Zhong, Z.-R., Wang, X., Qin, W.: Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Front. Phys. 13, 130319 (2018)

    Article  Google Scholar 

  38. Liao, J.Q., Wu, Q.Q., Nori, F.: Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A 89, 014302 (2014)

    Article  ADS  Google Scholar 

  39. Hong, T., Yang, H., Miao, H., Chen, Y.: Open quantum dynamics of single-photon optomechanical devices. Phys. Rev. A 88, 023812 (2013)

    Article  ADS  Google Scholar 

  40. Han, Y., Xue, L., Chen, B.: Generation of two-mode squeezing of mechanical oscillators in the multi-mode optomechanical systems. Quant. Inf. Proce. 19, 135 (2020)

    Article  MathSciNet  Google Scholar 

  41. He, B.: Quantum optomechanics beyond linearization. Phys. Rev. A 85, 063820 (2012)

    Article  ADS  Google Scholar 

  42. Xie, H., Lin, G.W., Chen, X., Chen, Z.H., Lin, X.M.: Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Phys. Rev. A 93, 063860 (2016)

    Article  ADS  Google Scholar 

  43. Xu, X.W., Li, Y.J., Liu, Y.X.: Photon-induced tunneling in optomechanical systems. Phys. Rev. A 87, 025803 (2013)

    Article  ADS  Google Scholar 

  44. Kronwald, A., Ludwig, M., Marquardt, F.: Full photon statistics of a light beam transmitted through an optomechanical system. Phys. Rev. A 87, 013847 (2013)

    Article  ADS  Google Scholar 

  45. Xu, G.F., Law, C.K.: Dark states of a moving mirror in the single-photon strong-coupling regime. Phys. Rev. A 87, 053849 (2013)

    Article  ADS  Google Scholar 

  46. Rabl, P.: Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011)

    Article  ADS  Google Scholar 

  47. Miranowicz, A., Bajer, J., Lambert, N., Liu, Y.X., Nori, F.: Tunable multiphonon blockade in coupled nanomechanical resonators. Phys. Rev. A 93, 013808 (2016)

    Article  ADS  Google Scholar 

  48. Wang, Y., Wu, J.L., Feng, Y.K., Han, J.X., Xia, Y., Jiang, Y.Y., Song, J.: Optimal control for robust photon state transfer in optomechanical systems. Ann. Phys. 533, 2000608 (2021)

    Article  MathSciNet  Google Scholar 

  49. Liu, T., Su, Q.-P., Xiong, S.-J., Liu, J.-M., Yang, C.-P., Nori, F.: Generation of a macroscopic entangled coherent state using quantum memories in circuit QED. Sci. Rep. 6, 32004 (2016)

    Article  ADS  Google Scholar 

  50. Yang, C.-P., Zheng, Z.-F.: Deterministic generation of Greenberger–Horne–Zeilinger entangled states of cat-state qubits in circuit QED. Opt. Lett. 43, 5126–5129 (2018)

    Article  ADS  Google Scholar 

  51. Pooser, R.C., Lawrie, B.: Ultrasensitive measurement of microcantilever displacement below the shot-noise limit. Optica 2, 393 (2015)

    Article  ADS  Google Scholar 

  52. Wang, D.-Y., Bai, C.-H., Liu, S., Zhang, S., Wang, H.-F.: Dissipative bosonic squeezing via frequency modulation and its application in optomechanics. Opt. Exp. 28, 28942 (2020)

    Article  Google Scholar 

  53. Amazioug, M., Maroufi, B., Daoud, M.: Enhancement of photon–phonon entanglement transfer in optomechanics. Quantum Inf. Proc. 19, 160 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  54. Kienzler, D., Flhmann, C., Negnevitsky, V., Lo, H.Y., Marinelli, M., Nadlinger, D., Home, J.P.: Observation of quantum interference between separated mechanical oscillator wave packets. Phys. Rev. Lett. 116, 140402 (2016)

    Article  ADS  Google Scholar 

  55. Nunnenkamp, A., Børkje, K., Girvin, S.M.: Single-photon optomechanics. Phys. Rev. Lett. 107, 063602 (2011)

    Article  ADS  Google Scholar 

  56. Zhong, Z.R., Chen, L., Sheng, J.Q., Shen, L.T., Zheng, S.B.: Multiphonon resonance quantum Rabi model and adiabatic passage in a cavity optomechanical system. Front. Phys. 17, 12501 (2022)

    Article  ADS  Google Scholar 

  57. Macrc, V., Ridolfo, A., DiStefano, O., Kockum, A.F., Nori, F., Savasta, S.: Nonperturbative dynamical Casimir effect in optomechanical systems: vacuum Casimir–Rabi splittings. Phys. Rev. X 8, 011031 (2018)

    Google Scholar 

  58. Holz, T., Betzholz, R., Bienert, M.: Suppression of Rabi oscillations in hybrid optomechanical systems. Phys. Rev. A 92, 043822 (2015)

    Article  ADS  Google Scholar 

  59. Solano, E., De Matos Filho, R.L., Zagury, N.: Mesoscopic superpositions of vibronic collective states of n trapped ions. Phys. Rev. Lett. 87, 060402 (2001)

    Article  ADS  Google Scholar 

  60. Haljan, P.C., Brickman, K.A., Deslauriers, L., Monroe, P.J.: Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. Phys. Rev. Lett. 94, 153602 (2005)

    Article  ADS  Google Scholar 

  61. Pirkkalainen, J.-M., Cho, S.U., Massel, F., Tuorila, J., Heikkilä, T.T., Hakonen, P.J., Sillanpää, M.A.: Nat. Commun. 6, 6981 (2015)

  62. Dutra, S.M., Knight, P.L., Moya-Cessa, H.: Discriminating field mixtures from macroscopic superpositions. Phys. Rev. A 48, 3168 (1993)

    Article  ADS  Google Scholar 

  63. Wilkens, M., Meystre, P.: Nonlinear atomic homodyne detection: a technique to detect macroscopic superpositions in a micromaser. Phys. Rev. A 43, 3832 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 12074070 and the Natural Science Foundation of Fujian Province under Grant No. 2020J01471.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Rong Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., An, XW., Deng, TH. et al. Toward multimode quantum Rabi model in a strong-coupling cavity optomechanical system. Quantum Inf Process 21, 232 (2022). https://doi.org/10.1007/s11128-022-03575-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03575-w

Keywords

Navigation