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Geometric discord for multiqubit systems
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Radhakrishnan et.al [Phys. Rev. Lett. 124, 110401 (2020)] proposed quantum discord to multi-
partite systems and derived explicit formulae for any states. These results are significant in capturing
quantum correlations for multi-qubit systems. In this paper, we evaluate the geometric measure of
multipartite quantum discord and obtain results for a large family of multi-qubit states. Further-
more, we investigated the dynamic behavior of geometric discord for the family of two-, three- and
four-qubit states under phase noise acting on the first qubit. And we discover that sudden change
of multipartite geometric discord can appear when phase noise act only on one part of the two-,
three- and four-qubit states.

I. INTRODUCTION

In the early research of quantum information, entanglement was considered to be an important resource, which
was used to distinguish the quantum world from the classical world. Compared with traditional computing, quantum
computing was considered to have tremendous advantages via exploiting entanglement, otherwise, it would lose
its competitive superiority. For a long time, people focused on the research of quantum information on quantum
entanglement, believing that "entanglement is not only one of many characteristics, but the characteristic of quantum
physics". However, with the development of research, it is found that entanglement is only a subset of quantum
correlations, and many quantum states without entanglement can still exhibit their quantum properties in quantum
information processing. Ollivier and Zurek [1] and Henderson and Vedral [2] introduced a measure called quantum
discord, which captures not only the quantum correlations of entangled states but also the separable states. Over the
next two decades, it has received a lot of attention [3–14].

For bipartite systems, quantum discord is defined as the difference between two natural quantum extensions of
the classical mutual information. In some special cases, the analytical results of bipartite quantum discord are
known[8, 12]. Recently, Radhakrishnan et.al [15] proposed a definition of multipartite quantum discord which is in
consistent with the original bipartite definition [1, 2]. In [16] we considered the following family of N -qubit states,

ρ =
1

2N
(I +

3
∑

j=1

cjσj ⊗ · · · ⊗ σj), (1)

where I is the identity operator, cj are real constants satisfying certain constraints and σj , j = 1, 2, 3, are the Pauli
matrices. We derived analytical formulae for quantum discord of (2v+ 1), (4v− 2) and (4v)-qubit states. In general,
it is difficult to evaluate quantum discord due to the complexity of the optimization. For this reason, Dakić et.al [17]
introduced the following geometric measure of quantum discord for bipartite states:

D
(2)
G (ρ) := min

χ∈Ω
||ρ− χ||2, (2)

where Ω denotes the set of zero-discord states and the geometric quantity ||ρ − χ||2 = Tr(ρ − χ)2 is the square
of Hilbert-Schmidt norm of Hermitian operators. The geometric measure of quantum discord has attracted much
attention, mainly because of its computational simplicity [18–29]. In particular, Luo and Fu [30] evaluated the
geometric measure of quantum discord and obtained explicit tight lower bounds for arbitrary states. However, Piani
[31] argued that the geometric discord may not be a good measure for the quantumness of correlations, since it may
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increase even under trivial local reversible operations. Subsequently, Chang and Luo [32] showed that this geometric
discord problem can be remedied simply by starting from the square root of a density operator, rather than the
density operator itself. Nevertheless, the generalizations of geometric discord to tripartite and multipartite systems
remain open.

On the other hand, Maziero et.al [33] studied the dynamical behavior of quantum discord under decoherence. Later
Jia et.al [34] discovered that even when part of the composite entangled state is exposed to a noisy environment, the
quantum correlation changes suddenly.

In this article, we propose the concept of geometric measure of multipartite quantum discord and evaluate its value
for the family of N -qubit states given in (1). We investigate the dynamics of geometric discord for the family of two-,
three- and four-qubit states with only one qubit being exposed to noise. The article is organized as follows. In Sec.
II, we calculate analytically the multi-qubit geometric discord for a family of quantum states. In Sec. III we show
that sudden change of geometric discord for multipartite system can occur when the phase noise acts only on one
qubit of the family of two-, three- and four-qubit states. Finally, Sec. IV is devoted to conclusion.

II. GEOMETRIC DISCORD FOR MULTI-QUBIT SYSTEMS

In the definition of bipartite geometric discord (2), only one of the subsystems is measured. This is sufficient
because the correlations are only between two subsystems for bipartite cases. For N -partite systems, N − 1 local
measurements are needed to measure all the quantum correlations [3], where each measurement depends conditionally
on the previous measurement outcomes. The (N − 1)-partite measurement is given by

Π
A1···AN−1

j1···jN−1
= ΠA1

j1
⊗ΠA2

j2|j1 · · · ⊗Π
AN−1

jN−1|j1···jN−2

,

where Ai labels the N subsystems, ΠA1

j1
is a von Neumann projection operator on the subsystem A1, ΠA2

j1|j2 is a

projector on subsystem A2, conditioned on the measurement outcome on A1. The measurements are given in the
following order: A1 → A2 → · · · → AN−1. We define the following geometric discord for multi-qubit systems,

D
(N)
G (ρ) := min

χ∈Ω
||ρ− χ||2, (3)

where the distance ||ρ− χ|| between states ρ and χ is given by

||ρ− χ||2 = ||ρ||2 − 2Trρχ+ ||χ||2. (4)

Consider the family of N -qubit states given in (1), which reduce to the well-known Bell-diagonal states for N = 2.
And the geometric measure of its quantum discord has been shown in [35], which is

D
(2)
G (ρ) =

1

4
(c21 + c22 + c23 −max{c21, c

2
2, c

2
3}). (5)

For the case of N = 3, the states associated with the subsystems A, B, and C are given as

ρ =
1

8
(I +

3
∑

j=1

cjσj ⊗ σj ⊗ σj). (6)

To evaluate the tripartite geometric discord D
(3)
G (ρ) defined in (3), one needs to to calculate ||ρ||2, −2Trρχ and ||χ||2

according to (4). We have

||ρ||2 = Tr(ρ2) =
1

8
(1 + c21 + c22 + c23). (7)

To evaluate −2Trρχ and ||χ||2, we need to measure the subsystem A. Let {Πk = |k〉〈k| : k = 0, 1}, any von

Neumann measurement on subsystem A is given by {Ak = VAΠkV
†
A : k = 0, 1}, where VA = tAI + i~yA~σ is the unitary

operator with tA ∈ R, ~yA = (yA1, yA2, yA3) ∈ R
3 and t2A + y2A1 + y2A2 + y2A3 = 1. After the measurement on Ak, the
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state ρ is going to become the ensemble {ρk, pk}, where ρk = 1
pk

(Ak ⊗ I)ρ(Ak ⊗ I) and pk = Tr(Ak ⊗ I)ρ(Ak ⊗ I).

We obtain p0 = p1 = 1
2 , and

ρ0 =
1

4
VAΠ0V

†
A ⊗ (I + c1d1σ1 ⊗ σ1 + c2d2σ2 ⊗ σ2 + c3d3σ3 ⊗ σ3), (8)

ρ1 =
1

4
VAΠ1V

†
A ⊗ (I − c1d1σ1 ⊗ σ1 − c2d2σ2 ⊗ σ2 − c3d3σ3 ⊗ σ3), (9)

where

d1 = 2(−tAyA2 + yA1yA3),

d2 = 2(tAyA1 + yA2yA3),

d3 = t2A − y2A1 − y2A2 + y2A3.

Next, we consider the subsystem B according to the measurement results from A. With respect to the outcome l

(l = 0, 1) of the measurement on A, we denote {Bl
k = VBlΠkV

†
Bl : k = 0, 1}, l = 0, 1, be the local measurement on

the subsystem B when the outcome of measurement on A is j(j = 0, 1), where the unitary VBl = tBlI + i~yBl~σ with
tBl ∈ R, ~yBl = (yBl1, yBl2, yBl3) ∈ R

3 and t2
Bl + y2

Bl1 + y2
Bl2 + y2

Bl3 = 1.

Note that the subsystems B and C in ρ0 are still in a Bell-diagonal state. Applying the measurement {B0
k : k = 0, 1},

we have

ρ00 =
1

2
VAΠ0V

†
A ⊗ VB0Π0V

†
B0 ⊗ (I + c1d1e1σ1 + c2d2e2σ2 + c3d3e3σ3),

ρ01 =
1

2
VAΠ0V

†
A ⊗ VB0Π1V

†
B0 ⊗ (I − c1d1e1σ1 − c2d2e2σ2 − c3d3e3σ3),

where

e1 = 2(−tB0yB02 + yB01yB03),

e2 = 2(tB0yB01 + yB02yB03),

e3 = t2B0 − y2B01 − y2B02 + y2B03.

For the state ρ1, after measuring the subsystem B one has

ρ10 =
1

2
VAΠ1V

†
A ⊗ VB1Π0V

†
B1 ⊗ (I − c1d1f1σ1 − c2d2f2σ2 − c3d3f3σ3),

ρ11 =
1

2
VAΠ1V

†
A ⊗ VB1Π1V

†
B1 ⊗ (I + c1d1f1σ1 + c2d2f2σ2 + c3d3f3σ3),

where

f1 = 2(−tB1yB12 + yB11yB13),

f2 = 2(tB1yB11 + yB12yB13),

f3 = t2
B1 − y2

B11 − y2
B12 + y2

B13.

The state χ is given as χ = p00ρ00 + p01ρ01 + p10ρ10 + p11ρ11. Then

−2Tr(ρχ) = −
1

4
[Tr(Iχ) + Tr(

3
∑

j=1

cjσj ⊗ σj ⊗ σjχ)]

= −
1

4
[1 +

1

2
(c21d

2
1e

2
1 + c21d

2
1f

2
1 + c22d

2
2e

2
2 + c22d

2
2f

2
2 + c23d

2
3e

2
3 + c23d

2
3f

2
3 )]. (10)
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Let q be the quantum states of the system C,

q00 = I + c1d1e1σ1 + c2d2e2σ2 + c3d3e3σ3,

q01 = I − c1d1e1σ1 − c2d2e2σ2 − c3d3e3σ3,

q10 = I − c1d1f1σ1 − c2d2f2σ2 − c3d3f3σ3,

q11 = I + c1d1f1σ1 + c2d2f2σ2 + c3d3f3σ3.

One can verify that

Tr(q200) = Tr(q201) = 2(1 + c21d
2
1e

2
1 + c22d

2
2e

2
2 + c23d

2
3e

2
3),

Tr(q210) = Tr(q211) = 2(1 + c21d
2
1f

2
1 + c22d

2
2f

2
2 + c23d

2
3f

2
3 ).

Hence,

Tr(χ2) =
1

82
Tr(VAΠ0V

†
A)

2Tr(VB0Π0V
†
B0)

2Tr(q200)

+
1

82
Tr(VAΠ0V

†
A)

2Tr(VB0Π1V
†
B0)

2Tr(q201)

+
1

82
Tr(VAΠ1V

†
A)

2Tr(VB1Π0V
†
B1)

2Tr(q210)

+
1

82
Tr(VAΠ1V

†
A)

2Tr(VB1Π1V
†
B1)

2Tr(q211)

=
1

16
(2+c21d

2
1e

2
1+c21d

2
1f

2
1 +c22d

2
2e

2
2+c22d

2
2f

2
2 + c23d

2
3e

2
3 + c23d

2
3f

2
3 ). (11)

From (7), (10) and (11), we obtain

||ρ− χ||2 = Tr(ρ2)− 2Tr(ρχ) + Tr(χ2)

=
1

8
{c21 + c22 + c23 −

1

2
[c21d

2
1(e

2
1 + f2

1 ) + c22d
2
2(e

2
2 + f2

2 ) + c23d
2
3(e

2
3 + f2

3 )]}.

It can be directly checked that d21 + d22 + d23 = 1, e21 + e22 + e23 = 1 and f2
1 + f2

2 + f2
3 = 1. Set

c := max{|c1|, |c2|, |c3|}. (12)

Then

1

2
[c21d

2
1(e

2
1 + f2

1 ) + c22d
2
2(e

2
2 + f2

2 ) + c23d
2
3(e

2
3 + f2

3 )]

≤
1

2
|c|2[d21(e

2
1 + f2

1 ) + d22(e
2
2 + f2

2 ) + d23(e
2
3 + f2

3 )] = c2, (13)

in which this equality can be easily obtained by appropriate choice of tA, tB0 , tB1 , yAj , yB0j and yB1j . In particular,
the equality in (13) holds for the following cases: (1) If c = |c1|, then |d1| = |e1| = |f1| = 1, d2 = d3 = e2 = e3 =
f2 = f3 = 0. For example, |tA| = |yA2| = |tB0 | = |yB02| = |tB1 | = |yB12| =

1√
2 and yA1 = yA3 = yB01 = yB03 =

yB11 = yB13 = 0. (2) If c = |c2|, then |d2| = |e2| = |f2| = 1, d1 = d3 = e1 = e3 = f1 = f3 = 0. For instance,
|tA| = |yA1| = |tB0 | = |yB01| = |tB1 | = |yB11| =

1√
2 and yA2 = yA3 = yB02 = yB03 = yB12 = yB13 = 0. (3) If c = |c3|,

then |d3| = |e3| = |f3| = 1, d1 = d2 = e1 = e2 = f1 = f2 = 0, e.g., yA1 = yA2 = yB01 = yB02 = yB11 = yB12 = 0.
Therefore, we have

D
(3)
G (ρ) =

1

8
(c21 + c22 + c23 − c2). (14)

Now we consider the family of four-qubit states, associated with systems A, B, C, and D,

ρ =
1

16
(I +

3
∑

j=1

cjσj ⊗ σj ⊗ σj ⊗ σj). (15)

One has Tr(ρ2) = 1
16 (1 + c21 + c22 + c23).
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With respect to the local measurement on the subsystem A, we obtain

ρ0=
1

8
VAΠ0V

†
A⊗(I⊗I⊗I+c1g1σ1⊗σ1⊗σ1+c2g2σ2⊗σ2⊗σ2+c3g3σ3⊗σ3⊗σ3),

ρ1=
1

8
VAΠ1V

†
A⊗(I⊗I⊗I−c1g1σ1⊗σ1⊗σ1−c2g2σ2⊗σ2⊗σ2−c3g3σ3⊗σ3⊗σ3),

where

g1 = 2(−tAyA2 + yA1yA3),

g2 = 2(tAyA1 + yA2yA3),

g3 = t2A − y2A1 − y2A2 + y2A3.

After the subsequent measurement on B, we get

ρ00=
1

4
VAΠ0V

†
A⊗VB0Π0V

†
B0⊗(I⊗I+c1g1h1σ1⊗σ1+c2g2h2σ2⊗σ2+c3g3h3σ3⊗σ3),

ρ01=
1

4
VAΠ0V

†
A⊗VB0Π1V

†
B0⊗(I⊗I−c1g1h1σ1⊗σ1−c2g2h2σ2⊗σ2−c3g3h3σ3⊗σ3),

ρ10=
1

4
VAΠ1V

†
A⊗VB1Π0V

†
B1⊗(I⊗I−c1g1m1σ1⊗σ1−c2g2m2σ2⊗σ2−c3g3m3σ3⊗σ3),

ρ11=
1

4
VAΠ1V

†
A⊗VB1Π1V

†
B1⊗(I⊗I+c1g1m1σ1⊗σ1+c2g2m2σ2⊗σ2+c3g3m3σ3⊗σ3),

where

h1 = 2(−tB0yB02 + yB01yB03),

h2 = 2(tB0yB01 + yB02yB03),

h3 = t2
B0 − y2

B01 − y2
B02 + y2

B03,

and

m1 = 2(−tB1yB12 + yB11yB13),

m2 = 2(tB1yB11 + yB12yB13),

m3 = t2B1 − y2B11 − y2B12 + y2B13.

Based on the measurement outcomes from A and B, the measurement on the subsystem C give rise to

ρ000 =
1

2
VAΠ0V

†
A ⊗ VB0Π0V

†
B0 ⊗ VC00Π0V

†
C00 ⊗ (I + c1g1h1n1σ1 + c2g2h2n2σ2 + c3g3h3n3σ3),

ρ001 =
1

2
VAΠ0V

†
A ⊗ VB0Π0V

†
B0 ⊗ VC00Π1V

†
C00 ⊗ (I − c1g1h1n1σ1 − c2g2h2n2σ2 − c3g3h3n3σ3),

ρ010 =
1

2
VAΠ0V

†
A ⊗ VB0Π1V

†
B0 ⊗ VC01Π0V

†
C01 ⊗ (I − c1g1h1o1σ1 − c2g2h2o2σ2 − c3g3h3o3σ3),

ρ011 =
1

2
VAΠ0V

†
A ⊗ VB0Π1V

†
B0 ⊗ VC01Π1V

†
C01 ⊗ (I + c1g1h1o1σ1 + c2g2h2o2σ2 + c3g3h3o3σ3),

ρ100 =
1

2
VAΠ1V

†
A ⊗ VB1Π0V

†
B1 ⊗ VC10Π0V

†
C10 ⊗ (I − c1g1m1r1σ1 − c2g2m2r2σ2 − c3g3m3r3σ3),

ρ101 =
1

2
VAΠ1V

†
A ⊗ VB1Π0V

†
B1 ⊗ VC10Π1V

†
C10 ⊗ (I + c1g1m1r1σ1 + c2g2m2r2σ2 + c3g3m3r3σ3),

ρ110 =
1

2
VAΠ1V

†
A ⊗ VB1Π1V

†
B1 ⊗ VC11Π0V

†
C11 ⊗ (I + c1g1m1s1σ1 + c2g2m2s2σ2 + c3g3m3s3σ3),

ρ111 =
1

2
VAΠ1V

†
A ⊗ VB1Π1V

†
B1 ⊗ VC11Π1V

†
C11 ⊗ (I − c1g1m1s1σ1 − c2g2m2s2σ2 − c3g3m3s3σ3),

where the index u (v) in the unitary {VCuv : u = 0, 1; v = 0, 1} corresponds to the outcome of the measurement on
A (B).
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The post measurement state is given as χ = p000ρ000+p001ρ001+p010ρ010+p011ρ011+p100ρ100+p101ρ101+p110ρ110+
p111ρ111. Therefore, we have

−2Tr(ρχ) = −
1

8
[Tr(Iχ) + Tr(

3
∑

j=1

cjσj ⊗ σj ⊗ σj ⊗ σjχ)]

= −
1

8
[1+

1

4
(c21g

2
1h

2
1n

2
1+c21g

2
1h

2
1o

2
1+c21g

2
1m

2
1r

2
1+c21g

2
1m

2
1s

2
1+c22g

2
2h

2
2n

2
2+c22g

2
2h

2
2o

2
2

+c22g
2
2m

2
2r

2
2 + c22g

2
2m

2
2s

2
2 + c23g

2
3h

2
3n

2
3 + c23g

2
3h

2
3o

2
3 + c23g

2
3m

2
3r

2
3 + c23g

2
3m

2
3s

2
3)],

Tr(χ2) = 1
64 (4 + c21g

2
1h

2
1n

2
1 + c21g

2
1h

2
1o

2
1 + c21g

2
1m

2
1r

2
1 + c21g

2
1m

2
1s

2
1 + c22g

2
2h

2
2n

2
2 + c22g

2
2h

2
2o

2
2

+c22g
2
2m

2
2r

2
2 + c22g

2
2m

2
2s

2
2 + c23g

2
3h

2
3n

2
3 + c23g

2
3h

2
3o

2
3 + c23g

2
3m

2
3r

2
3 + c23g

2
3m

2
3s

2
3)

and

||ρ− χ||2 = Tr(ρ2)− 2Tr(ρχ) + Tr(χ2)

=
1

16
[c21 + c22 + c23 −

1

4
(c21g

2
1h

2
1n

2
1 + c21g

2
1h

2
1o

2
1 + c21g

2
1m

2
1r

2
1

+c21g
2
1m

2
1s

2
1 + c22g

2
2h

2
2n

2
2 + c22g

2
2h

2
2o

2
2 + c22g

2
2m

2
2r

2
2 + c22g

2
2m

2
2s

2
2

+c23g
2
3h

2
3n

2
3 + c23g

2
3h

2
3o

2
3 + c23g

2
3m

2
3r

2
3 + c23g

2
3m

2
3s

2
3)].

It can be directly verified that g21+g22+g23 = 1, h2
1+h2

2+h2
3 = 1, m2

1+m2
2+m2

3 = 1, n2
1+n2

2+n2
3 = 1, o21+o22+o23 = 1,

r21 + r22 + r23 = 1 and s21 + s22 + s23 = 1. Then 1
4 (c

2
1g

2
1h

2
1n

2
1 + c21g

2
1h

2
1o

2
1 + c21g

2
1m

2
1r

2
1 + c21g

2
1m

2
1s

2
1 + c22g

2
2h

2
2n

2
2 + c22g

2
2h

2
2o

2
2 +

+c22g
2
2m

2
2r

2
2 + c22g

2
2m

2
2s

2
2 + c23g

2
3h

2
3n

2
3 + c23g

2
3h

2
3o

2
3 + c23g

2
3m

2
3r

2
3 + c23g

2
3m

2
3s

2
3)] ≤ c2. Finally, the geometric discord for the

four-qubit state is give by

D
(4)
G (ρ) =

1

16
(c21 + c22 + c23 − c2). (16)

For the case of general multi-qubit state, we have

Theorem 1 For the family of N -qubit (N ≥ 2) states (1), the geometric discord is given by

D
(N)
G (ρ) =

1

2N
(c21 + c22 + c23 − c2), (17)

where c = max{|c1|, |c2|, |c3|}.

[Proof] For the (1), one has Tr(ρ2) = 1
2N (1 + c21 + c22 + c23). After N − 1 measurements, we obtain

p1ρ1 = 1
2N VA1

Π0V
†
A1

⊗ · · · ⊗ VAN−1
Π0V

†
AN−1

⊗ q1,

p2ρ2 = 1
2N VA1

Π0V
†
A1

⊗ · · · ⊗ VAN−1
Π1V

†
AN−1

⊗ q2,

· · ·

p2N−1ρ2N−1 = 1
2N

VA1
Π1V

†
A1

⊗ · · · ⊗ VAN−1
Π1V

†
AN−1

⊗ q2N−1 ,

where qk are the quantum states in AN . The state χ is given as χ = p1ρ1 + p2ρ2 + · · ·+ p2N−1ρ2N−1 . Therefore,

−2Tr(ρχ) = − 1
2N−1 [Tr(Iχ) + Tr(

3
∑

j=1

cjσj ⊗ ...⊗ σjχ)],

Tr(χ2) = 1
22N (Trq21 +Trq22 + ...+Trq22N−1).

By (12) we can easily evaluate that

min(−2Tr(ρχ)) = −
1

2N−1
(1 + c2),

min(2Tr(χ2)) =
1

2N
(1 + c2).
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FIG. 1: Level surfaces of constant geometric discord. N = 3 for figures (F11), (F12) and (F13) with DG(ρ) = 0.01, 0.03 and
0.1, respectively. N = 4 for figures (F21), (F22) and (F23) with DG(ρ) = 0.01, 0.03 and 0.1, respectively.

Hence, the geometric discord for (1) is given by D
(N)
G (ρ) = 1

2N (c21 + c22 + c23 − c2). �

Yao et.al. [35] has already compared discord to geometric discord when N = 2. They obtained that the level
surfaces of geometric discord are consisted of three identical intersecting "cylinders" rather than irregular "tubes".
Figure 1 shows the level surfaces of geometric discord for N = 3 and 4. For small discord, the level surfaces are
centrally symmetric, consisting of three intersecting "cylinders" along the three coordinate axes. For larger discord,
these intersecting tubes keep expanding. And as shown in (F23), it finally expands until only a few vertices remained.
Compared with level surfaces of quantum discord depicted in [16], all of these phenomena are very similar to discord.
Since we have discovered in [16] that the quantum discord of this family of states can be classified into three categories,
and it is found that only the coefficient of geometric discord will change for states with different number of qubits
in this article. We obtain that for this family of states, when N is fixed, geometric discord can reflect the change in
discord to some extent.

III. GEOMETRIC DISCORD UNDER SINGLE QUBIT NOISE

As is well known, the geometric discord for some states may change suddenly under some decoherence channels
[33–38]. It would be interesting to know if such phenomena exist when only one of the qubits subjects to a noisy
environment. We first consider the Bell-diagonal states under the phase flip channel ε(·), with the Kraus operators

Γ0 = diag(1, γ)⊗ I, Γ1 = diag(0,
√

1− γ2)⊗ I, where γ = e−
τt

2 and τ denotes transversal decay rate. One gets

ε(ρ) = Γ0ρΓ
†
0 + Γ1ρΓ

†
1 =

1

4
(I + γc1σ1 ⊗ σ1 + γc2σ2 ⊗ σ2 + c3σ3 ⊗ σ3).

D
(2)
G (ε(ρ)) =

1

4
[γ2(c21 + c22) + c23 −max{(γc1)

2, (γc2)
2, c23}]. (18)

If |c3| ≥ max{|c1|, |c2|}, the geometric discord D
(2)
G (ε(ρ)) equals to γ2

4 (c21 + c22), which decays monotonically. If

max{|c1|, |c2|} ≥ |c3| and |c3| 6= 0, the geometric discord D
(2)
G (ε(ρ)) has a sudden change at t0 = − 2

τ
ln

max{|c1|,|c2|}
|c3| .

The dynamic behavior of the geometric discord for Bell-diagonal states with different {ci} is depicted in Figure 2(a).
It is shown that sudden change of geometric discord also occurs when the phase noise acts only on one of the qubits.
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Compared with Jia et.al.’s conclusions [34], we discover that geometric discord can reflect quantum discord changes
in the case of local phase inversion.
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FIG. 2: Geometric discord of two-qubit, three-qubit and four-qubit states under local phase flip channels. (a) Geometric discord
of two-qubit states under local phase flip channels. (a1) c1 = 4

5
, c2 = c1

2
, c3 = 1

2
(red line); (a2) c1 = 3

7
, c2 = c1

2
c3 = 4

5
(purple

line); (a3) c1 = 4
5
, c2 = c1

2
, c3 = 0 (blue line). (b) The multipartite geometric discord when c1 = 4

5
, c2 = c1

2
, c3 = 1

2
. (b1)

D
(2)
G

(ε(ρ))(red line); (b2) D
(3)
G

(ε(ρ)) (orange line); (b3) D
(4)
G

(ε(ρ)) (green line).

Now we consider three-qubit states (6) under the phase flip channel for single qubit, with the Kraus operators Γ0 =

diag(1, γ)⊗ I ⊗ I and Γ1 = diag(0,
√

1− γ2)⊗ I ⊗ I. We have

ε(ρ) =
1

8
(I + γc1σ1 ⊗ σ1 ⊗ σ1 + γc2σ2 ⊗ σ2 ⊗ σ2 + c3σ3 ⊗ σ3 ⊗ σ3),

D
(3)
G (ε(ρ)) =

1

8
[γ2(c21 + c22) + c23 −max{(γc1)

2, (γc2)
2, c23}]. (19)

Similarly, for the four-qubit states (15) under the operators of phase noise acting on the first qubit, wiht Γ0 =

diag(1, γ)⊗ I ⊗ I ⊗ I and Γ1 = diag(0,
√

1− γ2)⊗ I ⊗ I ⊗ I, we obtain

ε(ρ) =
1

16
(I + γc1σ1 ⊗ σ1 ⊗ σ1 + γc2σ2 ⊗ σ2 ⊗ σ2 + c3σ3 ⊗ σ3 ⊗ σ3),

D
(4)
G (ε(ρ)) =

1

16
[γ2(c21 + c22) + c23 −max{(γc1)

2, (γc2)
2, c23}]. (20)

Fig. 2(b) shows the dynamical behavior of the multipartite geometric discord D
(2)
G (ε(ρ)), D

(3)
G (ε(ρ)), and D

(4)
G (ε(ρ))

where the sudden change exists when max{|c1|, |c2|} ≥ |c3| and |c3| 6= 0. Moreover, the sudden change occurs at

t0 = − 2
τ
ln

max{|c1|,|c2|}
|c3| . Therefore, for the same {ci}, they make sudden changes at the same time.

IV. CONCLUSION

The bipartite quantum discord had been introduced by Ollivier and Zurek [1] in 2001. Recently, Radhakrishnan
et. al provide the multipartite quantum discord [15]. According to bipartite geometric discord and multipartite
quantum discord, we have introduced the geometric discord for multipartite states, with each measurement depends
conditionally on the previous measurement outcomes. We have explicitly derived the geometric discord for N -qubit
states (1). Furthermore, we have shown that the sudden change of the multi-qubit geometric discord also appears
when the phase noise acts only on one of the qubits. Our results may highlight further investigations on multipartite
geometric discord and the applications in quantum information processing.
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