Skip to main content
Log in

Optomechanically induced tunable ideal nonreciprocity in optomechanical system with Coulomb interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Here, we propose a multimode optomechanical system for achieving an adjustable quantum coherence effect (the ideal optical nonreciprocity response), where two linearly coupled cavity modes and a charged mechanical mode are coupled to another charged mechanical mode. Two strong pump laser fields (weak probe laser fields) are used to drive two cavity modes, respectively. When the system works under certain conditions, we can obtain the ideal optical nonreciprocity response. The ideal optical nonreciprocity response direction can be controlled by the phase differences. This optical nonreciprocity response results from the constructive or destruction interference between different transmission paths in this multimode optomechanical system. We also show that the optical nonreciprocity response can be adjusted by the cavity decay rate, Coulomb coupling strength, intercavity tunneling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Haldane, F.D.M., Raghu, S.: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008)

    Article  ADS  Google Scholar 

  2. Khanikaev, A.B., Mousavi, S.H., Shvets, G., Kivshar, Y.S.: One-way extraordinary optical transmission and nonreciprocal spoof plasmons. Phys. Rev. Lett. 105, 126804 (2010)

    Article  ADS  Google Scholar 

  3. Bi, L., Hu, J., Jiang, P., Kim, D.H., Dionne, G.F., Kimerling, L.C., Ross, C.A.: On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758 (2011)

    Article  ADS  Google Scholar 

  4. Aplet, L.J., Carson, J.W.: A Faraday effect optical isolator. Appl. Opt. 3, 544–545 (1964)

    Article  ADS  Google Scholar 

  5. Potton, R.J.: Reciprocity in optics. Rep. Prog. Phys. 67, 717 (2004)

    Article  ADS  Google Scholar 

  6. Fang, K., Yu, Z., Fan, S.: Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012)

    Article  ADS  Google Scholar 

  7. Tzuang, L.D., Fang, K., Nussenzveig, P., Fan, S., Lipson, M.: Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701 (2014)

    Article  ADS  Google Scholar 

  8. Wu, J.H., Artoni, M., La Rocca, G.C.: Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices. Phys. Rev. Lett. 113, 123004 (2014)

    Article  ADS  Google Scholar 

  9. Guo, X., Zou, C.L., Jung, H., Tang, H.X.: On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett. 117, 123902 (2016)

    Article  ADS  Google Scholar 

  10. Wang, D.W., Zhou, H.T., Guo, M.J., Zhang, J.X., Evers, J., Zhu, S.Y.: Optical diode made from a moving photonic crystal. Phys. Rev. Lett. 110, 093901 (2013)

    Article  ADS  Google Scholar 

  11. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  12. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520–1523 (2010)

    Article  ADS  Google Scholar 

  13. Yang, Q., Hou, B.P., Lai, D.G.: Local modulation of double optomechanically induced transparency and amplifification. Opt. Express 25, 9697–9711 (2017)

    Article  ADS  Google Scholar 

  14. Jiao, Y., Lü, H., Qian, J., Li, Y., Jing, H.: Nonlinear optomechanics with gain and loss: amplifying higherorder sideband and group delay. New J. Phys. 18, 083034 (2016)

    Article  ADS  Google Scholar 

  15. Liu, Y.M., Bai, C.H., Wang, D.Y., Wang, T., Zhang, M.H., Wang, H.F., Zhu, A.D., Zhang, S.: Ground-state cooling of rotating mirror in double-lagureer-gaussian-cavity with atomic ensemble. Opt. Express 26, 6143–6157 (2018)

    Article  ADS  Google Scholar 

  16. Zhang, S., Zhang, J.Q., Zhang, J., Zhang, J., Wu, C.W., Wu, W., Chen, P.X.: Ground state cooling of an optomechanical resonator assisted by a \(\Lambda \)-type atom. Opt. Express 22, 28118–28131 (2014)

    Article  Google Scholar 

  17. Yan, X.B., Gu, K.H., Fu, C.B., Cui, C.L., Wang, R., Wu, J.H.: Optical switching of optomechanically induced transparency and normal mode splitting in a double-cavity system. Eur. Phys. J. D 68, 126 (2014)

    Article  ADS  Google Scholar 

  18. Yan, X.B., Deng, Z.J., Tian, X.D., Wu, J.H.: Entanglement optimization of filtered output fields in cavity optomechanics. Opt. Express 27, 24393–24402 (2019)

    Article  ADS  Google Scholar 

  19. Wang, J., Tian, X.D., Liu, Y.M., Cui, C.L., Wu, J.H.: Entanglement manipulation via Coulomb interaction in an optomechanical cavity assisted by two-level cold atoms. Laser Phys. 28, 065202 (2018)

    Article  ADS  Google Scholar 

  20. Bai, C.H., Wang, D.Y., Zhang, S., Liu, S., Wang, H.F.: Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving. Phot. Res. 7, 1229 (2019)

    Article  Google Scholar 

  21. Yan, X.B.: Optomechanically induced transparency and gain. Phys. Rev. A 101, 043820 (2020)

    Article  ADS  Google Scholar 

  22. Yan, X.B.: Optomechanically induced optical responses with non-rotating wave approximation. J. Phys. B 54, 035401 (2021)

    Article  ADS  Google Scholar 

  23. Bai, C.H., Wang, D.Y., Zhang, S., Liu, S., Wang, H.F.: Modulationbased atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system. Ann. Phys. 531, 1800271 (2019)

    Article  MathSciNet  Google Scholar 

  24. Lü, H., Jiang, Y.J., Wang, Y.Z., Jing, H.: Optomechanically induced transparency in a spinning resonator. Phot. Res. 5, 367 (2017)

    Article  Google Scholar 

  25. Wu, Q.: Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system. Chin. Phys. B 25, 010304 (2016)

    Article  Google Scholar 

  26. Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.M.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 90, 043825 (2014)

    Article  ADS  Google Scholar 

  27. Shahidani, S., Naderi, M.H., Soltanolkotabi, M.: Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Phys. Rev. A 88, 053813 (2013)

    Article  ADS  Google Scholar 

  28. Huang, S.: Double electromagnetically induced transparency and narrowing of probe absorption in a ring cavity with nanomechanical mirrors. J. Phys. B: At. Mol. Opt. Phys. 47, 055504 (2014)

    Article  ADS  Google Scholar 

  29. Lü, X.Y., Jing, H., Ma, J.Y., Wu, Y.: PT-symmetry-breaking chaos in optomechanic. Phys. Rev. Lett. 114, 253601 (2015)

    Article  ADS  Google Scholar 

  30. Yan, X.B.: Optomechanically induced ultraslow and ultrafast light. Physica E 131, 114759 (2021)

    Article  Google Scholar 

  31. Wang, M., Lü, X.Y., Ma, J.Y., Xiong, H., Si, L.G., Wu, Y.: Controllable chaos in hybrid electro-optomechanical systems. Sci. Rep. 6, 22705 (2016)

    Article  ADS  Google Scholar 

  32. Shen, Z., Zhang, Y.L., Chen, Y., Sun, F.W., Zou, X.B., Guo, G.C., Zou, C.L., Dong, C.H.: Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun. 9, 1797 (2018)

    Article  ADS  Google Scholar 

  33. Jiang, C., Song, L.N., Li, Y.: Directional amplififier in an optomechanical system with optical gain. Phys. Rev. A 97, 053812 (2018)

    Article  ADS  Google Scholar 

  34. Jiang, C., Song, L.N., Li, Y.: Directional phase-sensitive amplififier between microwave and optical photons. Phys. Rev. A 99, 023823 (2019)

    Article  ADS  Google Scholar 

  35. Jiang, C., Baowei, J.I., Cui, Y.S., Zuo, F., Shi, J., Chen, G.: Quantum-limited directional amplififier based on a triple-cavity optomechanical system. Opt. Express 26, 15255 (2018)

    Article  ADS  Google Scholar 

  36. Xu, X.W., Li, Y.: Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Phys. Rev. A 91, 053854 (2015)

    Article  ADS  Google Scholar 

  37. Xu, X.W., Song, L.N., Zheng, Q., Wang, Z.H., Li, Y.: Optomechanically induced nonreciprocity in a three-mode optomechanical system. Phys. Rev. A 98, 063845 (2018)

    Article  ADS  Google Scholar 

  38. Xia, C.C., Yan, X.B., Tian, X.D., Gao, F.: Ideal optical isolator with a two-cavity optomechanical system. Opt. Commun. 451, 197–201 (2019)

    Article  ADS  Google Scholar 

  39. Zhang, L.W., Li, X.L., Yang, L.: Optical nonreciprocity with blue-detuned driving in two-cavity optomechanics. Acta Phys. Sin. 68, 170701 (2019)

    Article  Google Scholar 

  40. Zhao, L.H., Li, X.L., Lu, H.L., Tian, X.D.: Perfect optical nonreciprocity with mechanical driving in a three-mode optomechanical system. Commun. Theor. Phys. 71, 1011–1016 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  41. Li, B.J., Huang, R., Xu, X.W., Miranowicz, A., Jing, H.: Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Phot. Res. 7, 630 (2019)

    Article  Google Scholar 

  42. Mirza, I.M., Ge, W.C., Jing, H.: Optical nonreciprocity and slow light in coupled spinning optomechanical resonators. Opt. Express 27, 25515 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J. Optomechanically induced tunable ideal nonreciprocity in optomechanical system with Coulomb interaction. Quantum Inf Process 21, 238 (2022). https://doi.org/10.1007/s11128-022-03587-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03587-6

Keywords

Navigation