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Abstract We study genuine tripartite entanglement and multipartite entanglement of arbitrary
n-partite quantum states by using the representations with generalized Pauli operators of a
density matrices. While the usual Bloch representation of a density matrix uses three types of
generators in the special unitary Lie algebra su(d), the representation with generalized Pauli
operators has one uniformed type of generators and it simplifies computation. In this paper, we
take the advantage of this simplicity to derive useful and operational criteria to detect genuine
tripartite entanglement. We also obtain a sufficient criterion to detect entanglement for multipar-
tite quantum states in arbitrary dimensions. The new method can detect more entangled states

than previous methods as backed by detailed examples.
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1 Introduction

Quantum entanglement is a key resource in quantum information with wide applications in en-
tanglement swapping [1], quantum cryptography [2] and quantum secure communication [3]. The
genuine multipartite entanglement (GME) stands out with significant properties [4l5]. Thus mea-
suring and detection of genuine multipartite entanglement for given states has been an important
task in quantum computation.

A lot of methods have been presented in detecting entanglement and genuine entanglement [6l-
9]. For tripartite quantum states, sufficient conditions to test entanglement of three-qubit states in
the vicinity of the GHZ, the W states and the PPT entangled states were found in [10]. A sufficient
criterion for the entanglement of tripartite systems based on local sum uncertainty relations
was proposed in [IT]. The sufficient conditions for judging genuine tripartite entanglement were
presented by using partial transposition and realignment of density matrices in [12]. Yang et
al [I3] derived a criterion for detecting genuine tripartite entanglement based on quantum Fisher
information. By using the Bloch representation of density matrices and the norms of correlation
tensors, the genuine tripartite entangled criteria were presented in [14L[15]. The authors in [16]
studied the separability criteria in tripartite and four-partite quantum system by the matrix
method. The separability criteria for four-partite quantum system based on the upper bound of
Bloch vectors were discussed in [I7]. For higher dimensional quantum system, Chen et al [18]
presented a generalized partial separability criterion of multipartite quantum systems in arbitrary
dimensions. The separable criteria and k-separable criteria for general n-partite quantum states
were given in [T9H2T].

Many of these methods have used the Bloch representation of the density matrix, which has
become more complex as dimension of the quantum system increases. This is partly due to the
fact that the Bloch representation is relied on the Gell-Mann basis of the special unitary Lie
algebra su(d) which has three kinds of basis elements: upper, diagonal and lower matrices. In
view of this, perhaps using another well-known basis of the Lie algebra su(d): the Weyl basis
to study quantum entanglement will likely simplify some of the criteria, as the latter consists of
uniformed basis elements. In Ref. [22], the authors showed that the principal basis matrix plays
an essential role in the representation theory of the Yangian Y (s[(3)) which has a close relation
with the study of entangled states in quantum information (see also for recent applications [23]).

In this paper, we study entanglement of multipartite quantum systems by using the repre-
sentation with generalized Pauli operators, and we obtain several better criteria in detecting the
GME than previously available tests. The paper is organized as follows. In section 2, after re-
viewing the representation with generalized Pauli operators of the quantum state, we construct
matrices by using the correlation tensors and derive the criteria to detect entanglement and
genuine tripartite entanglement. By detailed example, our results can detect more genuine en-
tangled states. In section 3, we obtain the entanglement theorem for arbitrary n-partite quantum
systems. Conclusions are given in section 4.

2 Genuine entanglement for tripartite quantum state

We first consider the GME for tripartite states. Let E;; be the d x d unit matrix with the only
nonzero entry 1 at the position (¢, j), and let w be a fixed d-th primitive root of unity. By means of
the division with remainder, for certain ds and us € {0,--- ,d% — 1}, there exists unique integers
i and j such that us = dsi+j (0 <4,7 < ds—1), then the generalized Pauli operators of the sth
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ds-dimensional Hilbert space H% are given by

ds—1
AP = AD =N W B, (1)
m=0

where w? = 1. The basis obeys the algebraic relation:

(s) () _, ik 4(s)
AgfiviAdgent = W Ag kG

then (At(iss)i-i-j)T = wijAgsS)(dsiiH(dFj), S0 tr(A;ss)iH(Al(ii)kH)T) = §0;ds [24], where t stands for

conjugate transpose. Denote by || - | the norm of a (column) complex vector, i.e. ||v]| = Vvto.
The trace norm (Ky Fan norm) of a retangular matrix A € C™*" is defined as ||All¢r = > 0y =

trv AAT, where o; are the singular values of A and || A4l < y/min{m,n}|A| for any matrix A.
Clearly || Aller = || AT||4-

Lemma 1 Let H% denote the s dy-dimensional Hilbert space. For a quantum state p; € H{ll,
di—1
p1 can be expressed as py = d% > tulAgll), where Aél) =14, tu, = tr(p1 (AS}R)T) are complex

ul =0

coefficients. Let T(Y) be the column vector with entries tu, for ui # 0, we have
ITON2 < dy - 1. 2)
Proof Since tr(p?) < 1, we have
tr(e}) = tr(pnpl) = -(1L+ [TV?) <1,
namely, |TW|2<d;, —1. O
For a state pi2 € Hfll ® H2d2, p12 has the generalized Pauli operators representation:

2 2
d?—1d2-1

1
- E E (1) (2)
p12 - d1d2 tulﬁuzAul ® AU‘Z (3)

Ul =0 u =0

where A((Js) = I4,(s = 1,2), the coefficients t,, , = tr(plg(AS}l))T ® (ASEZ))T) are complex numbers.
Let 7MW, T3 T(2) be the vectors with entries t.,.0, t0.us, tuy.uy fOT U1, uz # 0.

Lemma 2 Let p1s € Hfl ® HgZ be a mizved state, we have ||T(12)||2 < dydy(1— d—12 — d_12) +1.
1 2

Proof For a pure state pi2, we have tr(p?,) = 1, namely
1
tr(ply) = tr(pr2ply) = A 1T + 1T + | T2)?) = 1. (4)

By using tr(p?) = tr(p3), we have (1 + |TW[|?) = L (1 + [T@||?), where p; and py are the

reduced density operators on H fll and H2d2, respectively. Then

1 1 1
—(1 7112 —1 7212y =
FOHITOIR) + S+ 7)) =

—— 2+ |TD)? + |T®?).
142
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Using the above two equations we obtain that

ITOD|? = didy — 1 = | TW)? — [T
_ d2 (1)2 dl
=didy +1 = [=(1+ [T]) +
dy d

2

(L+[T®))).

By ||T(1)H2 >0, HT@)HQ > 0, we have

d d
T2 < dydy +1— (2 -1+ — - 1)
dq da
1 (5)
=dido(1- 5 — =) +1
1 2( d% d§)+ 9

If p is a mixed state, then p = >, p;p; is a convex sum of pure states, Y .p; = 1. Then
1T (p)| < X2 pil T2 (po) || < \/dldz(l - d—lf - d%) +1. 0O

A general tripartite state p € Hfll ® ng ® Hgg can be written in terms of the generalized
Pauli operators:

di—-1d3-1d3-1

1
= E (1) (2) (3)
N dydads Z Z t“11“27u3Au1 ®Auz ®Ausv (6)
u1=0 uz=0 uz=0
where Agf;) stands for that the tensor operator with A,, acting on the space H}if7 Aéf) =1,

bug s s = tr(p(Agll))T ® (ASEZ))T ® (ASES))T) are the complex coefficients.
In the following we will construct some matrices out of the expansion coefficients of the
density matrix p in (@). For f,g,h € {1,2, 3}, set

NI = diag (N NJ", - NI, ™)

where Nzﬂgh = [tiug,up,) 18 @ (d; —1) x (d? — 1) matrix, i = 1,2,--- ,d% — 1. For example, when

f
p€H? @ H2® H3, N213 = diag{ N> NZ'3 N2*} where

o113 t1,4,1 t14,2 - 0 t14,8
N7 = |ta1 taie - toig|,4=1,2,3.
t3,4,1 t3,i,2 * - 13,48

Theorem 1 For a biseparable tripartite pure state p € Hfl ® HgZ ® Hg'“" and f # g # h €
{1,2,3}, we have
(i) if p is separable under bipartite partition f|gh , then

. 1 1
|NToh |, < \/(d§ —1)-min{d2 — 1,d3 — 1}(dy — 1)[dgdn(1 — i ﬁ) +1]
g
it) if p is separable under bipartite partition g|fh , then
p
N9 < (B = 1)(dg — 1)ldgdn(1 — 25 — ) +1]
tr > f g fah d?c d]21

(i41) if p is separable under bipartite partition h|fg , then

1 1
IV, < \/(dic = Dldn = Dldgdy(1 = 77 = ) +1]
!
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Proof (i) If the tripartite pure state p is separable under the bipartition f|gh, then it can be
expressed as

Pflgh = Pf D Pghs (8)
where
Z tu, A, (9)
uf =0
1 d2—1d2 -1
Pgh = d T Z Z tu,, uhA(g) ®A(h) (10)

ug=0up=0

Let T, 70 7 and T(9") be the vectors with entries tuys tuy,05 tou, and ty, v, forup, ug, up #
0. Then

—tl T t11 t12 Ce tl(difl)
t2 tgl t22 . t2(d2—1)
NIt = : | . . " . (11)
L fd?—l_ f(d§,1)1 t(d§71)2 . t(dg—l)(dfb—l)

It follows from Lemma 1 and Lemma 2 that

t1
ta
INF19% |, = || . [l : : ¢

taz—11 - taz—1)(az 1)

ty2
21 |

(@ = DITD| - \fmin{d2 —1,d — 1}| T

1

. 1
< \/(dfc — 1) -min{d2 — 1,d;, — 1}(dy — 1)[dgdn(1 — e g) +1].

g9

(ii) If the tripartite pure state p is separable under the bipartition g|fh, then it can be
expressed as

Pyl fh = Pg @ Prh, (12)
where
d2—1
%(1Zugw (13)
ugfo
d}—142-1
= 5 3 by 0 40 0
ur=0up=0

Then, we have Niflgh =T . (Ti(fh))t7 and

d3—1
h
IV = T DTN < g =TT

=1

g¢@—M%4WMﬂ—%—%Hu

f
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where Ti(fh) is the vector with entries ¢;,,,i =1, ,dfc — 1, t stands for transpose.

(iii) Using similar method, if p is separable under the bipartition h|fg, we have Nif lgh
Y9 (M) i=1,- d%—1and

1 1
|MWMg¢@mawwwg@Hm
f g

O

Now we consider genuine tripartite entanglement. A mixed state is said to be genuine mul-
tipartite entangled if it cannot be written as a convex combination of biseparable states. Let
T(p) = 5UIN"23ler + [N + [NZ12]]¢), we define

R )

Ql = Max{\/(d% — 1) . mzn{d% — 1,d§ — 1}(d1 — 1)[d2d3(1 — E — d2
2 3

VﬁM@wmwééwm

1

) 11
%%—M@ﬂmmm—g—@wu}

Q2 = Max{\/(d§ = 1) -min{d} — 1,d3 — 1}(dz — 1)[d1ds(1 — % - %) +1],
1 d3
\/(d% = 1)(d1 — 1)[d2d3(1 — dig - dig) +1],
1 1
\/(d% —1)(ds — 1)[dad: (1 — & d_%) + 1]}
Q3 = Max{\/(dg —1)-min{d} — 1,d5 — 1}(ds — 1)[d1d2(1 — % - %) +1],
1 1
\/(d§ —1)(d1 —1)[d3d2(1 — Z d_g) +1],
1 1
¢@—n@—nmmu—@—ﬁmﬁu

We have the following theorem.

Theorem 2 A mized state p € Hfl ® HgZ ® Hg'“" is genwine tripartite entangled if T(p) >
$(Q1+ Q2+ Q3).
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Proof 1If p is a biseparable, one has p = 3=, 0,0; ® p7* + 32, 7ip7 @ pi® + ) skp} @ pj” with
0<o;,rj,sp<land ) 0+ Zj rj + > Sk = 1. By Theorem 1, we have that

T(0) = SN () + IN?13(5) o+ IN*2(0)] )

1
—[I\Nl‘%(zo-pl@pz +Zw§®p] stk @ pi2)ler + NP 0ip} @ p7°

%

+ ZW)J ® pj® + Z sepi @ pk)ller + ||N3'”(Z 0ipy @ p22+ Y 1t @i+ Y skph @ pi?)ler]
i j Kk

.
Sg[E i N2 (o} @ p*)ller + Y i N2 (03 @ o)) ler + D skl NP (0] © pi%) v
' i B

2
+ Z<?i||1V2'13(m1 © ) ler + Y i IN?2 (05 @ o) ler + D s N2 (0} @ o) s
i k

J

+ Z NP2 (o} @ p7) e + Zm\N?"”(pj @ )" )ler + ZSkHNW (0} @ pi2)ler]
Zonl +Zn@1 +Zst1 Zol@ +erc22 +Zst2 O 0iQs+> Qs +;skcz3>
i J
——[(ZOMLZTJ‘ +zk:Sk)Q1 + Qo+ +zk:Sk)Q2+(ZOi+Z7‘j +zk:8k)Q3
4 J i J 4 J
%(Ql + Q2+ Q3)

(15)

Consequently, if T'(p) > %(Ql + Q2 + Q3), p is genuine tripartite entangled. O

Next we consider the permutational invariant state p, i.e. p = pP = ppp' for any permutation
p of the qudits. A biseparable permutational invariant state can be written as p = >, pipy ®
P +22 mp? ®p§3 + >, skpi ® pr?, where 0 < p;, 7, s < 1. Set di = da = d3 = d, we have the
following corollary.

Corollary 1 If a permutational invariant mixzed state is biseparable, then we have
1
T(p) = §(||N1'23Htr + N+ NP2 )g) <

Therefore if T'(p) > J1, p is genuine tripartite entangled. Here

L d=1A-@ D+ 2d —1)vd-1
1 — 3 .

Exzample 1 Consider the mixed three-qubit W state,
1—

p=—LIs+aW)W|, 0<z<1, (16)

where |[W) = \/Lg(|001>+|010>+|100>) and g is the 8 x 8 identity matrix. Let f1(x) = T'(p)—J1 =
52 — (24 +/3), using Corollary 1 we have p is genuine entangled if f(x) > 0, i.e. 0.7464 < < 1.

Theorem 2 in [I5] implies that p is genuine entangled if g;(x) = 3.26x — 6+3—‘/§ >0, 1ie 0.791 <
x < 1. Our corollary can detect more genuine entangled, see the comparison in Fig. [I1
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03
02

01

Il Il Il Il “ ° 7?1

01 0.2 03 0.4 05 0.6 0707464 0.8 0.9

-0.1

-0.2 -

03

Fig. 1 fi(x) from our result (solid straight line), g1 (z) from Theorem 2 in [I5](dash-dot straight line).

3 Entanglement for multipartite quantum state

Now we consider entanglement of n-partite quantum systems. Let {ASfj} (us =0,--+,d*>—1) be
the generalized Pauli operators of the sth d;-dimensional Hilbert space H% . Any quantum state
pE Hfl ® HgQ ® -+ ® Hd" has the generalized Pauli operators representation:

n d2—1

1
- - tus s AD @ AP @ ... AM 17
p dldQ"'drn;uZ:O 1,02, yUn ’IJ,1® ’U.2® ® Up, ( )
where A((JS) =Tg,(s=1, 1), tugus, e un = tr(p(Agll))T ® (A1(L22))T ® - ® (ASZZ))T) are complex
coefficients. Let T(1%) be the vectors with entries bugy oo sy 300 Uty s s ug, 7 0and 1<l <
-+ <l <n. We have
d?—-1
TN = 37 ture ot 00
uy=1
di, -1

k
T2 =3 3 | S

s=1lu;, =1
)
n d2-1

|02 2 = Z Z byt by o, 5

s=1us=1

where * represents the conjugate. Set
Ay = ||TYOP + - 4| T™) 2,

Ay = HT(12)H2 N |‘T((nfl)1n)||27
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)

An = ||ITH 2,

Lemma 3 Let p € Hfl ® HgZ ® -+ @ Hin (n > 2) be a n-partite pure quantum state. Then

n

di-dp(n—1=3 %) +1

722 < = — 18
[ I* < — (18)

Proof 1t’s enough to show the lemma for a pure state p, where we have tr(p?) = 1 and tr(p},) =
tr(plimln) for any distinct indices l1,...,1l, € {1,2,--- ,n}. Here p;, and py,...;, are the reduced

states for the subsystem chi“ and Hld;z X ® Hld;". Therefore, we have

1
2 = —— DY =
tr(p)—dldQ...dn(HAﬁ +4n) =1, (19)
and
1
— (L TP = ———— A+ TP P+ + | TP o T2, (20)
dl1 dl2 "'dln
Since 112:21 itr(pi) = 112:21 itr(pimln), we get that
"1 ()12 1
S FAHITW)P) = ——[n+ (n—1)A1 + (n—2) Ay + -+ + An_1].
=1 dll dy - dn
Therefore,
dy-dp = 1 n n—2 n—3 1
A= ——2N " — (14|72 - - Ay — Ag— - — Ap_ 21
! n—1 ;d§(+|‘ 1) n—1 n-1 n—1" n—1 - (21

Substituting (1)) into ([I9), we get

1 "1 1
A, =dy-dy —1— <d1---dn2—2(1+ ||T(s)|2)—n> -

n—1 d
s=1
2 n—2
_ Ao — - .. A,
T8 1 1 (22)
dq dn(n 1—2(112)4—1
< s=1 °
- n—1

O
Let p be a n-partite state p € Hfll ® ng ®---® Hd represented as (7)), for real number a,
B and distinct indices Iy, ...,l, € {1,2,--- ,n}, set
Nll”'lkflllk“‘ln — aS(l)l“‘lkflllk +/BSl1lk71‘lkln’ (23)
for k—1=1,2,---,[n/2], the smallest integer less or equal to n/2. Let T1""%) be the (df, —
1)---(df —1)-dimensional column vector with entries t,,, oy, -0 associated with the generalized

Pauli operators representation of p, and define S(l)l"'lk’lllk to be the block matrix ‘S'(l)l"'l’“l“’c =
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k—1
Lyl U Lo ale : 2 2 .
[Shbe1lle Oy ], where Sh -1tk = ([tur, -+, -0]) is the [ (df —1) x (dj, — 1) matrix
s=1
k—1 n
and Oy, ...;, , is the ? —1)x d?2 — 1) — (d2 — 1)] zero matrix, and Sl te—1lleln —
1 lk—1 ls ls Uy ’
s=1 s=k
k—1 n
[tuy - u,] to bea [] (df —1) x [] (df. —1) matrix. For example, when p € HY ® Hy ® H3 ® H3,
s=1 s=k
13]2
N4 = o8, 2 4 8513124 where
t1,1,1,0 ti2,1,0 t1,3,1,0 t1,1,1,0 11,12 00 ti1,1,8 0 t1,3,1,8
t1,1,20 t1,2,2,0 t1,3,2,0 t1,1,2,1 t1,1,22 - t1,1,2,8 - 0 t1.3,2,8
S112 = | tiiso tizzo tizso| ) g18124 = |tiasa tiazecc o e
t3,1,3,0 13230 13330 t3,1,3,1 31,32 "

Theorem 3 Fix o, as above. If the n-partite state p € H{ll ® ng ® -~ ® Hl is separable
under the bipartition ly - lg_1|lk - - - 1, then we have that
(i) ||NFsltrtn |y < My, ;

ii) [Nttty < My, (k> 03);
1 k—1 )
where
diy - di, (n—2— 3 ) +1
My, = /i, =1 | laly/di, =1+ 18] S :
k—1 9 oo
diy -dy (k—2— Z:ldls Y+1 dlk...dln(n—k—sgkdls )+1
My .y, = P — laly/di, — 1+ B — —

Proof (i) If the n-partite mixed state is separable under the bipartition l1|ls---l,, it can be
expressed as

Plalts ot = D PsPhy @ Plpec,s 0<ps <1, Y py=1, (24)
where
. 7, —1
s s l
P, = E Z tUL1A1(1111)’ (25)
by, =0
n di -1
1 q
Photn = T D D g, AN © @ ALY (26)
l2 In q=2u;, =0
Then,
glills — ZpsTs(ll)(Ts(zz))t7 Ghillztn _ ZpsTs(ll)(Ts(zzwzn))t_ (27)

S S
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By Lemma 1 and Lemma 3, we have

IVt < S pa (1T TS |+ BT TS

dlz"'dln(n_Q_Z dé )+ 1

s=2 ls
< Vdiy =1 | |aly/di, =1+ (B S :

= My,

where we have used ||A+ B||¢ < || Al + || B||¢ for matrices A and B and |||a) (]| = |||a)||]||6)l
for vectors |a) and |b).
(%) If p is separable under the bipartition Iy - - - lx—1|lg - - - I, it can be expressed as

Ply-li_q|lgln = ZpSplsl“‘lk—l ® plsk“‘ln’o <ps < 1,21’5 =1 (28)
S S
where
k-1, ~
l L
pfl---lk,l = ﬁ Z Z tull UL, Av(”ll) & - Agliill)v (29)
le—1 p=1u;,=0
n d; 71
o, = Z Z £ e, AL @ - @ Al (30)
ln q= kulq—O
Then,

Ghvle—alle — ZPST(ll”'lk—l)(T(lk))t’ Shle—alleln — ZpST(ll”‘l"*l)(T(l"ml”))t. (31)

Similarly, we get
||Nl1"'lk—1‘lk"'ln Htr
<Y pe(al| T DT 4 I T e T )

dll---dlkfl(k—Q—kilé)—i—l dlk~~~dln(nfk7ii)+1
< 5 llalVdi, ~1+1] —= ]
=M.y,
O
Ezample 2 Consider the quantum state p € H} ® H3 ® HZ,
p= =L +alo)el, (32)

where |¢) = %[(HO) +21))|0) 4+ (]00) + |11) + |22))[1)], 0 < z < 1, I;5 is the 18 x 18 identity
matrix. By Theorem 3 (i), we can determine the range of & where p is surely entangled. TabldIl
shows that when o = 0, 8 = 1, our criterion detects the entanglement for 0.3405 < x < 1, which
is better than the result 0.35 < z < lgiven in [25].
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Table 1 The entanglement regions of p as given by Theorem 3.

[IN2113||,,.  The range of entanglement

a=1,8=1 105292z 0.4852 <z <1
a=1p3=2 184650z 0.3909 < z < 1
a=0,8=1 9.1321z 0.3405 <z < 1

Ezample 8 Consider the four-qubit state p € HZ ® H ® H2 ® H3,
1—x
16
where |[¢) = \/Lg(|0000> +|1111)), 0 < x < 1, I is the 16 x 16 identity matrix. Using Theorem
3(i) with a = 1,8 = 1, we setfo() = | N4y — (14 /1) = (44 VD)o — (14 /), pis
not separable under the bipartition l1]lal3ly for fa(z) > 0, i.e. 0.6179 < = < 1, while according

to Theorem 3 in [I7], p is not separable under the bipartition l;|l2l3l4 for go(z) = 922 — 4 > 0,
i.e. 0.6667 < z < 1. Fig. 2 shows that our method detects more entanglement.

p=zl) (| + Lig, (33)

0‘46179

! I I |

0.1 0.2 0.3 0.4 0.5 0.6 066670.7 0.8 0.9

Fig. 2 fo(z) from our result (solid straight line), g2(z) from Theorem 3 in [I7] (dashed curve line).

4 Conclusions

By adopting the representation with generalized Pauli operators of density matrices, we have
come up with several general tests to judge genuine entanglement for tripartite quantum systems.
Our approach starts with some finer upper bounds for the norms of correlation tensors by using
the generalized Pauli operators presentation, then we have obtained the entanglement criteria
for genuine tripartite quantum states based on certain matrices constructed by the correlation
tensor of the density matrices. We also conducted conclusion to detect entanglement in arbitrary
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dimensional multipartite quantum states. Compared with previously available criteria, ours can
detect more situations, and these are explained in details with several examples.
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