Skip to main content
Log in

Multi-party semi-quantum secure direct communication using Greenberger–Horne–Zeilinger states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Two three-party semi-quantum communication protocols (SQSDC protocol and SQD protocol) based on Greenberger–Horne–Zeilinger (GHZ) states are designed to make one quantum user and two classical ones to communicate. Three-party SQSDC protocol allows two classical senders to transmit their message to one quantum receiver simultaneously, while three-party SQD protocol is that the quantum party exchanges secret message with the classical ones. The security analysis manifests that two proposed protocols are resistant to several common individual eavesdropping attacks. Besides, compared with the existing SQSDC protocols, the proposed SQSDC protocol is more efficiency by adopting a new decoding operation based on the property of GHZ states. As for the proposed SQD protocol, it has the advantage of avoiding joint cheating between Alice and Bob with high efficiency of 40%. Furthermore, three-party QSDC and three-party SQD can be easily generalized into N-party SQSDC protocol and N-party SQD protocol suitable for new application scenarios, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Hermans, S.L.N., Pompili, M., Beukers, H.K.C., Baier, S., Borregaard, J., Hanson, R.: Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022)

    ADS  Google Scholar 

  2. Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Liu, B., Xia, S., Xiao, Di., Huang, W., BingJie, Xu., Li, Y.: Decoy-state method for quantum-key-distribution- based quantum private query. Sci. China: Phys. Mech. Astron. 65(4), 240312 (2022)

    ADS  Google Scholar 

  4. Lv, S.X., Jiao, X.F., Zhou, P.: Multiparty quantum computation for summation and multiplication with mutually unbiased bases. Int. J. Theor. Phys. 58(9), 2872 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Zidan, M.: A novel quantum computing model based on entanglement degree. Mod. Phys. Lett. B 34(35), 2050401 (2020)

    ADS  MathSciNet  Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    ADS  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    ADS  Google Scholar 

  8. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    ADS  Google Scholar 

  9. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 44305 (2005)

    ADS  Google Scholar 

  10. Cao, H.J., Song, H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23(2), 290–292 (2006)

    ADS  Google Scholar 

  11. Cao, W.F., Yang, Y.G., Wen, Q.Y.: Quantum secure direct communication with cluster states. Sci. China: Phys. Mech. Astron. 53(7), 1271–1275 (2010)

    ADS  Google Scholar 

  12. Shi, J., Gong, Y.X., Ping, X., Zhu, S.N., Zhan, Y.B.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56(5), 831–836 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Sun, Z.W., RuiGang, D., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51(6), 1946–1952 (2012)

    MATH  Google Scholar 

  14. ZhiHaoLiu, H.C., Liu, W.J., Juan, X., Wang, D., Li, Z.Q.: Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states. Quant. Inf. Process. 12(1), 587–599 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Meslouhi, A., Hassouni, Y.: A quantum secure direct communication protocol using entangled modified spin coherent states. Quant. Inf. Process. 12(7), 2603–2621 (2013)

    ADS  MATH  Google Scholar 

  16. FangZhou, W., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China: Phys. Mech. Astron. 60(12), 120313 (2017)

    Google Scholar 

  17. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China: Phys. Mech. Astron. 61(9), 90312 (2018)

    ADS  Google Scholar 

  18. Zheng, X.Y., Long, Y.X.: Controlled quantum secure direct communication with authentication protocol based on five-particle cluster state and classical XOR operation. Quant. Inf. Process. 18(5), 129 (2019)

    ADS  MathSciNet  Google Scholar 

  19. Yang, L., JiaWei, W., Lin, Z.S., Yin, L.G., Long, G.L.: Quantum secure direct communication with entanglement source and single-photon measurement. Sci. China: Phys. Mech. Astron. 63(11), 110311 (2020)

    ADS  Google Scholar 

  20. Li, T., Long, G.L.: Quantum secure direct communication based on single-photon bell-state measurement. New J. Phys. 22(6), 063017 (2020)

    ADS  MathSciNet  Google Scholar 

  21. Sun, Z., Song, L.Y., Huang, Q., Yin, L.G., Long, G.L., JianHua, L., Hanzo, L.: Toward practical quantum secure direct communication: a quantum-memory-free Protocol and code design. IEEE Trans. Commun. 68(9), 5778–5792 (2020)

    Google Scholar 

  22. Liu, X., Li, Z.J., Luo, D., Huang, C.F., Ma, D., Geng, M.M., Wang, J.W., Zhang, Z.R., Wei, K.J.: Practical decoy-state quantum secure direct communication. Sci. China: Phys. Mech. Astron. 64(12), 120311 (2021)

    ADS  Google Scholar 

  23. Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66(13), 1267–1269 (2021)

    Google Scholar 

  24. Sun, S.H., Long, G.L.: Deterministic secure quantum communication with practical devices. Quant. Eng. 3(4), e86 (2021)

    Google Scholar 

  25. Gao, C.Y., Guo, P.L., Ren, B.C.: Efficient quantum secure direct communication with complete Bell-state measurement. Quant. Eng. 3(4), e83 (2021)

    Google Scholar 

  26. Wang, C.: Quantum secure direct communication: intersection of communication and cryptography. Fundam. Res. 1(1), 91–92 (2021)

    Google Scholar 

  27. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)

    Google Scholar 

  28. Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.G.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)

    Google Scholar 

  29. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China: Phys. Mech. Astron. 63(3), 230362 (2020)

    ADS  Google Scholar 

  30. Zou, Z.K., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photon. Europhys. Lett. 131(4), 40005 (2020)

    ADS  Google Scholar 

  31. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020)

    Google Scholar 

  32. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China: Phys. Mech. Astron. 65(5), 250311 (2022)

    ADS  MathSciNet  Google Scholar 

  33. JianYong, H., Bo, Y., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)

    Google Scholar 

  34. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    ADS  Google Scholar 

  35. Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)

    Google Scholar 

  36. Pan, D., Lin, Z.S., JiaWei, W., Yin, L.G., Long, G.L.: Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 8(9), 1522–1531 (2020)

    Google Scholar 

  37. Qi, Z.T., Li, Y.H., Huang, Y.W., Feng, J., Zheng, Y.L., Chen, X.F.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021)

    ADS  Google Scholar 

  38. Qi, R.Y., Sun, Z., Lin, Z.S., Niu, P.H., Hao, W.T., Song, L.Y., Huang, Q., Gao, J.C., Yin, L.G., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 22 (2019)

    ADS  Google Scholar 

  39. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China: Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    ADS  Google Scholar 

  41. Luo, Y.P., Hwang, T.L.: Authenticated semi-quantum direct communication protocols using Bell states. Quant. Inf. Process. 15(2), 947–958 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Zhang, M.H., Li, H.F., Xia, Z.Q., Feng, X.Y., Peng, J.Y.: Semiquantum secure direct communication using EPR pairs. Quant. Inf. Process. 16(5), 117 (2017)

    ADS  MATH  Google Scholar 

  43. Yang, C.W., Tsai, C.W.: Intercept-and-resend attack and improvement of semiquantum secure direct communication using EPR pairs. Quant. Inf. Process. 18(10), 306 (2019)

    ADS  Google Scholar 

  44. Yan, L.L., Sun, Y.H., Chang, Y., Zhang, S.B., Wan, G.G., Sheng, Z.W.: Semi-quantum protocol for deterministic secure quantum communication using Bell states. Quant. Inf. Process. 17(11), 315 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  45. ChenXie, L.L., Situ, H.Z., He, J.H.: Semi-quantum secure direct communication scheme based on Bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Tao, Z., Chang, Y., Zhang, S.B., Dai, J.Q., Li, X.Y.: Two semi-quantum direct communication protocols with mutual authentication based on Bell states. Int. J. Theor. Phys. 58(9), 2986–2993 (2019)

    MATH  Google Scholar 

  47. Sun, Y.H., Yan, L.L., Chang, Y., Zhang, S.B., Shao, T.T., Zhang, Y.: Two semi-quantum communication protocols based on Bell states. Mod. Phys. Lett. A 34, 1950004 (2019)

    ADS  Google Scholar 

  48. Rong, Z.B., Qiu, D.W., Zou, X.F.: Semi-quantum secure direct communication using entanglement. Int. J. Theor. Phys. 59(6), 1807–1819 (2020)

    MathSciNet  MATH  Google Scholar 

  49. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quant. Inf. Process. 16(12), 295 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Ye, T.Y., Ye, C.Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Pan, H.M.: Semi-quantum dialogue with Bell entangled states. Int. J. Theor. Phys. 59(5), 1364–1371 (2020)

    MathSciNet  MATH  Google Scholar 

  52. RiGuiZhou, X.Z.: Controlled deterministic secure semi-quantum communication. Int. J. Theor. Phys. 60(5), 1767–1782 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Rong, Z.B., Qiu, D.W., Mateus, P., Zou, X.F.: Mediated semi-quantum secure direct communication. Quant. Inf. Process. 20(2), 58 (2021)

    ADS  MathSciNet  Google Scholar 

  54. LiangChao, X., Chen, H.Y., Zhou, N.R., Gong, L.H.: Multi-party semi-quantum secure direct communication protocol with cluster states. Int. J. Theor. Phys. 59(7), 2175–2186 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Zhou, R.G., Zhang, X.X., Li, F.X.: Three-party semi-quantum protocol for deterministic secure quantum dialogue based on GHZ states. Quant. Inf. Process. 20(4), 153 (2021)

    ADS  MathSciNet  Google Scholar 

  56. Chen, X.B., Wang, Y.L., Gang, X., Yang, Y.X.: Quantum network communication with a novel discrete-time quantum walk. IEEE Access 7, 13634–13642 (2019)

    Google Scholar 

  57. Jun, G., Lin, P.H., Hwang, T.L.: Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol.’ Quant. Inf. Process. 17(7), 182 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Rev. A 351(1–2), 23–25 (2006)

    MATH  Google Scholar 

  59. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    ADS  Google Scholar 

  60. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    ADS  Google Scholar 

  61. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  62. Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quant. Inf. Process. 12(6), 2191–2205 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Li, Y.B., Wang, T.Y., Chen, H.Y., Li, M.D., Yang, Y.T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52(8), 2818–2825 (2013)

    MathSciNet  MATH  Google Scholar 

  64. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61871205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ying Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YF., Duan, LZ., Qiu, TR. et al. Multi-party semi-quantum secure direct communication using Greenberger–Horne–Zeilinger states. Quantum Inf Process 21, 324 (2022). https://doi.org/10.1007/s11128-022-03671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03671-x

Keywords

Navigation