Skip to main content
Log in

On new PageRank computation methods using quantum computing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper we propose several new quantum computation algorithms as an original contribution to the domain of PageRank algorithm theory, Spectral Graph Theory and Quantum Signal Processing. We first propose an application to PageRank of the HHL quantum algorithm for linear equation systems. We then introduce one of the first Quantum-Based Algorithms to perform a directed Graph Fourier Transform with a low gate complexity. After proposing a generalized PageRank formulation, based on ideas stemming from Spectral Graph Theory, we show how our quantum directed graph Fourier Transform can be applied to compute our generalized version of the PageRank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the repository Generalized PageRank on Gitlab: https://gitlab-research.centralesupelec.fr/theodore.chapuis-chkaiban/generalised_pagerank

References

  1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998). https://doi.org/10.1016/s0169-7552(98)00110-x

    Article  Google Scholar 

  2. University, C.: Networks. https://blogs.cornell.edu/info2040/2014/11/03/more-than-just-a-web-search-algorithm-googles-pagerank-in-non-internet-contexts/

  3. Gleich, D.F.: Pagerank beyond the web. SIAM Rev. 57(3), 321–363 (2015). https://doi.org/10.1137/140976649

    Article  MathSciNet  MATH  Google Scholar 

  4. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013). https://doi.org/10.1109/msp.2012.2235192

    Article  ADS  Google Scholar 

  5. Chung, F.R.K., Graham, F.C., on Recent Advances in Spectral Graph Theory, C.C., (U.S.), N.S.F., Society, A.M., of the Mathematical Sciences, C.B.: Spectral graph theory (1997)

  6. Ricaud, B., Borgnat, P., Tremblay, N., Gonçalves, P., Vandergheynst, P.: Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs. C. R. Phys. 20(5), 474–488 (2019). https://doi.org/10.1016/j.crhy.2019.08.003

    Article  ADS  Google Scholar 

  7. Sevi, H., Rilling, G., Borgnat, P.: Harmonic analysis on directed graphs and applications: from Fourier analysis to wavelets (2019)

  8. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 15 (2009). https://doi.org/10.1103/physrevlett.103.150502

    Article  MathSciNet  Google Scholar 

  9. Garnerone, S., Zanardi, P., Lidar, D.A.: Adiabatic quantum algorithm for search engine ranking. Phys. Rev. Lett. 108, 23 (2012). https://doi.org/10.1103/physrevlett.108.230506

    Article  Google Scholar 

  10. Gilyén, A., Su, Y., Low, G.H., Wiebe, N.: Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019). https://doi.org/10.1145/3313276.3316366

  11. Paparo, G.D., Martin-Delgado, M.A.: Google in a quantum network. Sci. Rep. 2, 1 (2012). https://doi.org/10.1038/srep00444

    Article  Google Scholar 

  12. Choromański, K., Matuszak, M., Jacek, M.: Scale-free graph with preferential attachment and evolving internal vertex structure. J. Stat. Phys. 151(6), 1175–1183 (2013). https://doi.org/10.1007/s10955-013-0749-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002). https://doi.org/10.1103/revmodphys.74.47

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Meyer, C.: Matrix analysis and applied linear algebra (2000). https://doi.org/10.1137/1.9780898719512

  16. Boldi, P., Posenato, R., Santini, M., Vigna, S.: Traps and pitfalls of topic-biased pagerank. Algorithms and Models for the Web-Graph Lecture Notes in Computer Science, pp. 107–116. https://doi.org/10.1007/978-3-540-78808-9_10

  17. Langville, A., Meyer, C.: Deeper inside pagerank. Internet Math. 1(3), 335–380 (2004). https://doi.org/10.1080/15427951.2004.10129091

    Article  MathSciNet  MATH  Google Scholar 

  18. Paparo, G.D., Müller, M., Comellas, F., Martin-Delgado, M.A.: Quantum google algorithm. Eur. Phys. J. Plus 129, 7 (2014). https://doi.org/10.1140/epjp/i2014-14150-y

    Article  Google Scholar 

  19. Paparo, G.D., Müller, M., Comellas, F., Martin-Delgado, M.A.: Quantum google in a complex network. Sci. Rep. 3, 1 (2013). https://doi.org/10.1038/srep02773

    Article  Google Scholar 

  20. Sánchez-Burillo, E., Duch, J., Gómez-Gardeñes, J., Zueco, D.: Quantum navigation and ranking in complex networks. Sci. Rep. 2, 1 (2012). https://doi.org/10.1038/srep00605

    Article  Google Scholar 

  21. Loke, T., Tang, J.W., Rodriguez, J., Small, M., Wang, J.B.: Comparing classical and quantum pageranks. Quantum Inf. Process. 16, 1 (2016). https://doi.org/10.1007/s11128-016-1456-z

    Article  MATH  Google Scholar 

  22. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 50(1), 339–359 (2009). https://doi.org/10.1080/00107510902734722

    Article  ADS  Google Scholar 

  23. Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110, 25 (2013). https://doi.org/10.1103/physrevlett.110.250504

    Article  Google Scholar 

  24. Zhao, Z., Pozas-Kerstjens, A., Rebentrost, P., Wittek, P.: Bayesian deep learning on a quantum computer. Quantum Mach. Intell. 1(1–2), 41–51 (2019). https://doi.org/10.1007/s42484-019-00004-7

    Article  Google Scholar 

  25. Pan, J., Cao, Y., Yao, X., Li, Z., Ju, C., Chen, H., Peng, X., Kais, S., Du, J.: Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A 89, 2 (2014). https://doi.org/10.1103/physreva.89.022313

    Article  Google Scholar 

  26. Team, T.Q.: Solving Linear Systems of Equations using HHL. Data 100 at UC Berkeley (2021). https://qiskit.org/textbook/ch-applications/hhl_tutorial.html

  27. Grinko, D., Gacon, J., Zoufal, C., Woerner, S.: Iterative quantum amplitude estimation. NPJ Quantum Inf. 7, 1 (2021). https://doi.org/10.1038/s41534-021-00379-1

    Article  Google Scholar 

  28. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. Quantum Comput. Inf. 305, 53–74 (2002). https://doi.org/10.1090/conm/305/05215

    Article  MathSciNet  MATH  Google Scholar 

  29. Sandryhaila, A., Moura, J.M.F.: Discrete signal processing on graphs: Frequency analysis. IEEE Trans. Signal Process. 62(12), 3042–3054 (2014). https://doi.org/10.1109/tsp.2014.2321121

    Article  MathSciNet  MATH  Google Scholar 

  30. Sardellitti, S., Barbarossa, S., Lorenzo, P.D.: Graph fourier transform for directed graphs based on lovász extension of min-cut. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2017). https://doi.org/10.1109/icassp.2017.7952886

  31. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011). https://doi.org/10.1137/090745854

    Article  MathSciNet  MATH  Google Scholar 

  32. Childs, A.M., Jeffery, S., Kothari, R., Magniez, F.: A time-efficient quantum walk for 3-distinctness using nested updates (2013). https://doi.org/10.48550/ARXIV.1302.7316

  33. Lin, J., Bao, W.-S., Zhang, S., Li, T., Wang, X.: An improved quantum principal component analysis algorithm based on the quantum singular threshold method. Phys. Lett. A 383(24), 2862–2868 (2019). https://doi.org/10.1016/j.physleta.2019.06.026

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Duan, B., Yuan, J., Liu, Y., Li, D.: Efficient quantum circuit for singular-value thresholding. Phys. Rev. A 98, 1 (2018). https://doi.org/10.1103/physreva.98.012308

    Article  Google Scholar 

  35. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Phys. Rev. A 78, 5 (2008). https://doi.org/10.1103/physreva.78.052310

    Article  MATH  Google Scholar 

  36. Arunachalam, S., Gheorghiu, V., Jochym-O’Connor, T., Mosca, M., Srinivasan, P.V.: On the robustness of bucket brigade quantum ram. New J. Phys. 17(12), 123010 (2015). https://doi.org/10.1088/1367-2630/17/12/123010

    Article  ADS  MATH  Google Scholar 

  37. Park, D.K., Petruccione, F., Rhee, J.-K.K.: Circuit-based quantum random access memory for classical data. Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-40439-3

    Article  Google Scholar 

  38. Szegedy, M.: Quantum speed-up of markov chain based algorithms. In: 45th Annual IEEE Symposium on Foundations of Computer Science. https://doi.org/10.1109/focs.2004.53

  39. Ortega, A., Frossard, P., Kovacevic, J., Moura, J.M.F., Vandergheynst, P.: Graph signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–828 (2018). https://doi.org/10.1109/jproc.2018.2820126

    Article  Google Scholar 

  40. Yang, H., King, I., Lyu, M.R.: Diffusionrank. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 07 (2007). https://doi.org/10.1145/1277741.1277815

  41. Baeza-Yates, R., Boldi, P., Castillo, C.: Generalizing pagerank. Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 06 (2006). https://doi.org/10.1145/1148170.1148225

Download references

Author information

Authors and Affiliations

Authors

Contributions

T. Chapuis-Chkaiban, as the main author, produced most of the results presented in this paper and wrote the first version of the manuscript. Z.Toffano and B.Valiron, as co-authors, have made several research suggestions—both of them contributed equally to the scientific content. Besides, Z.Toffano and B.Valiron corrected and contributed to the writing and clarification of the manuscript and made several structural improvements for the final submitted version of this paper.

Corresponding author

Correspondence to Théodore Chapuis-Chkaiban.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Generalized PageRank using various Kernels

Appendix A Generalized PageRank using various Kernels

See Figs. 9, 10, 11, 12, 13 and Tables 4, 5.

Fig. 9
figure 9

Generalized PageRank Simulation Using different heat Kernels for the Reversibilized version of the ADSM of a simple graph

Fig. 10
figure 10

Generalized PageRank Simulation Using different heat Kernels for the reversibilized version of the ADSM of a complex graph

Fig. 11
figure 11

Generalized PageRank Cosine Kernel comparison with the Classical PageRank. Parameter: exponent = 5

Fig. 12
figure 12

Generalized PageRank Inverse Kernel comparison with the Classical PageRank. Parameter: exponent = 5

Fig. 13
figure 13

Generalized PageRank monomial Kernel comparison with the Classical PageRank. Parameter: exponent = 5

Table 4 Ranking comparison between the classical Pagerank and the generalized pagerank using the Heat Kernels of parameters 5, 7 and 9
Table 5 Ranking comparison between the classical Pagerank and the generalized pagerank using the Heat Kernel of parameter \(t=5\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapuis-Chkaiban, T., Toffano, Z. & Valiron, B. On new PageRank computation methods using quantum computing. Quantum Inf Process 22, 138 (2023). https://doi.org/10.1007/s11128-023-03856-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03856-y

Keywords

Navigation