
Configurable sublinear circuits for quantum state preparation

Israel F. Araujoa,∗, Daniel K. Parkb,c, Teresa B. Ludermira, Wilson R. Oliveirad, Francesco Petruccionee,f,
Adenilton J. da Silvaa

aCentro de Informática, Universidade Federal de Pernambuco, 50740-560, Recife, Pernambuco, Brazil
bDepartment of Applied Statistics, Yonsei University, Seoul, Republic of Korea

cDepartment of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea
dDepartamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil

eQuantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
fNational Institute for Theoretical and Computational Sciences (NITheCS), 4001, South Africa

Abstract

The theory of quantum algorithms promises unprecedented benefits of harnessing the laws of quantum
mechanics for solving certain computational problems. A persistent obstacle to using such algorithms for
solving a wide range of real-world problems is the cost of loading classical data to a quantum state. Several
quantum circuit-based methods have been proposed for encoding classical data as probability amplitudes of
a quantum state. However, they require either quantum circuit depth or width to grow linearly with the data
size, even though the other dimension of the quantum circuit grows logarithmically. In this paper, we present
a configurable bidirectional procedure that addresses this problem by tailoring the resource trade-off between
quantum circuit width and depth. In particular, we show a configuration that encodes an N -dimensional
state by a quantum circuit with O(

√
N) width and depth and entangled information in ancillary qubits. We

show a proof-of-principle on five quantum computers.

Keywords: quantum computing, state preparation, bidirectional, circuit optimization

1. Introduction

Quantum algorithms assume an initial quantum state prepared before the computation. The worst case
complexity of preparing an arbitrary quantum state is exponential with the number of qubits [1]. For this
reason, the most significant quantum speed-ups occur when the quantum algorithm [2–7] operates on an
input state that is easy to prepare, such as the uniform superposition of all computational basis states. For
algorithms that rely on loading data into an arbitrary quantum state, an efficient means to prepare input
states is a prerequisite to quantum speed-ups [8–11].

While the quantum state preparation models based on quantum oracles or quantum random access
memory are useful for evaluating the lower bounds of the computational cost and identifying the complex-
ity class, implementations of them must be considered in practice. In particular, the quantum speed-up
can vanish without an efficient implementation of quantum state preparation when quantum algorithms
carry classical data in a non-uniform quantum superposition. Examples of such instances include Quantum
Machine Learning (QML) [8, 9, 12–18], Quantum Memories (QMem) [19–25], and Quantum Linear Alge-
bra (QLA) [9, 10, 26–29]. Quantum machine learning algorithms try to estimate a target function from
a finite set of example points by unveiling correlations between inputs and outputs of the correspondent
function [9, 15, 30]. Quantum memories must store a set of samples from a configuration space as a superpo-
sition state before the information is retrieved using the algorithm [19]. Quantum linear algebra algorithms
operate with a critical assumption that classical data has been efficiently encoded as probability amplitudes

∗Corresponding author.
E-mail address: ifa@cin.ufpe.br

Preprint submitted to an international journal March 4, 2022

ar
X

iv
:2

10
8.

10
18

2v
2

 [
qu

an
t-

ph
]

 2
 M

ar
 2

02
2

https://orcid.org/0000-0002-0308-8701
https://orcid.org/0000-0002-3177-4143
https://orcid.org/0000-0002-8980-6742
https://orcid.org/0000-0002-3261-8265
https://orcid.org/0000-0002-8604-0913
https://orcid.org/0000-0003-0019-7694

η1,3

η1,2

η1,1

x0 x1

η2,1

x2 x3

η2,2

η3,1

x4 x5

η4,1

x6 x7

(a)

α1,3

α1,2

α1,1 α2,1

α2,2

α3,1 α4,1

(b)

Figure 1: Tree representations of quantum state preparation algorithms. (a) State decomposition tree generated by Algorithm 1
with an 8-dimensional input vector x (dashed nodes). The complex argument terms Ωi,k were omitted for readability. (b)
Angle tree generated by Algorithm 2 with an 8-dimensional input vector. The correspondent phase angles λj,v were omitted
for readability.

of a quantum state without which the quantum speed-up vanishes [8–11]. All of the above emphasizes the
importance of developing efficient quantum state preparation algorithms for broad application of quantum
computing techniques on classical data.

Several solutions to the problem of quantum state preparation have been proposed [1, 31–37], but all
produce circuits with width or depth growing at least linearly with the size of the input vector [1]. For
example, the top-down method proposed in Ref. [31] achieves the exponential compression of the quantum
circuit width while requiringO(N) quantum circuit depth forN -dimensional data. On the other extreme end,
the bottom-up method [37] achieves the exponential compression of the quantum circuit depth while requiring
O(N) quantum circuit width and entangled information in ancillary qubits. Since there is an extra resource
overhead in many quantum algorithms due to the quantum measurement postulate [25, 38], such linear cost
can impose restrictions on possible speed-ups, dominating the computational cost of the intended quantum
application. Other approaches have reduced circuit complexity to initialize an approximate quantum state
[32, 39–41], but this paper targets the exact state preparation with entangled ancillary qubits.

This work presents an quantum state preparation method that achieves sublinear scaling on both quan-
tum circuit resources. More specifically, a bidirectional strategy that effectively combines the aforementioned
approaches in a way that the trade-off between computational time and space can be configured. Both tem-
poral and spatial complexities depend on the parameter s ∈ [1..n], which adjusts the trade-off between
computational time and space. Given an N -dimensional input vector, the total time complexity of the bidi-
rectional algorithm is Oc(N) +Od(2

s+ log2
2(N)− s2), where Oc(N) is the time of the classical preprocessing

to create the quantum circuit and Od(2s + log2
2(N)− s2) is the quantum circuit depth. Typically the same

input vector is loaded l� N times, and hence the amortized computational time is Od(2s + log2
2(N)− s2).

Note that classical preprocessing is also common in classical computing and is necessary in other quantum
state preparation methods as well. The spatial complexity (i.e. the width) of the circuit is Ow((s+ 1)N/2s).

Besides the sublinear circuit cost, the ability to customize the exchange between these quantum resources
is advantageous when realistic quantum hardware specifications are considered as one resource can be cheaper
than the other to scale up. For instance, it is a useful feature for future Noisy Intermediate-Scale Quantum
(NISQ) devices with the promise of computers with a large number of physical qubits [42], albeit noise
limits the depth of the circuits [43].

This paper is divided into four sections. Section 2 reviews two strategies for loading classical information
into quantum devices, namely top-down [34] and bottom-up [37] approaches. The former is used by quantum
computing libraries [44, 45] as the method for general quantum amplitude initialization. These methods are
at the two opposite ends of the quantum circuit cost spectrum requiring either the maximal circuit depth
or width to minimize the other resource. Section 3 presents the main result, a bidirectional method that
combines the top-down and bottom-up strategies in a configurable manner. Complexity expressions for
the bidirectional method are established in Section 3.1, which shows that the bottom-up and the top-down

2

strategies are recovered when s = 1 and s = n, respectively, and that sublinear scaling on both depth and
width is possible when s = n/2. Proof-of-principle experiments performed on superconducting and ion-trap
based quantum devices are presented in Section 3.2. Section 5 presents the conclusion and perspectives for
future work.

2. Quantum state preparation with linear cost

2.1. Tree representation
Quantum state preparation algorithms aim to create a state

∑
p |xp|eiωp |p〉 that encodes a normalized

vector x = (|x0|eiω0 , . . . , |xN−1|eiωN−1) as the probability amplitudes. Several of the existing methods can
be understood as a walk on a binary tree [1, 34, 36, 37, 46]. Each tree node corresponds to a controlled gate
operation and the height increases with the number of qubits (see Fig. 1a and Fig. 1b). Two edges stemming
from each node indicate that each controlled gate operation splits the Hilbert space into two subspaces.
Therefore, after n layers, there can be 2n subspaces with distinct probability amplitudes. Depending on
the choice of the walk direction, different state preparation strategies, such as top-down and bottom-up
approaches, can be constructed.

To explain the procedure, four parameters [34] defined by the target vector x are introduced as

Ωi,k =

2k−1∑
l=0

ω(i−1)2k+l/2
k−1 (1)

ηi,k =

√√√√2k−1∑
l=0

|x(i−1)2k+l|2 (2)

λj,v = Ω2j,v−1 − Ωj,v (3)
βj,v = η2j,v−1/ηj,v (4)

where j = 1, 2, . . . , 2n−v, v = 1, 2, . . . , n, and n = log2(N). These parameters are used to construct the
tree representations of the state preparation algorithms, namely the state tree (Fig. 1a) and the angle
tree (Fig. 1b). Indices k and v indicate a tree level in ascending order from the leaf nodes to the root, i
and j are node indices at a given level. The nodes of these trees are complex values that represent the
amplitudes of the quantum state to be encoded and the rotation angles for the construction of the encoding
quantum circuit. The magnitude and complex argument of the state tree amplitudes are obtained through
ηi,k and Ωi,k, respectively. When k = 0, the parameters point to the input vector x. Equations (3) and
(4) determine rotation values of the angle tree nodes. The phase arguments of the vector |x〉 are encoded
through z-rotations of angles λj,v, and the magnitudes through y-rotations of angles αj,v = 2 asin(βj,v).

Algorithms 1 and 2 describe the construction of a state tree and an angle tree. Respective pseudocodes
1 and 2 are presented in the appendix.

Algorithm 1: State tree construction
1 Initialize the state tree by the leafs, where each node value is a complex amplitude from a 2n length

state vector
2 Set k = 1

3 Create a new level with 2n−k nodes, where each node i value is ηi,keiΩi,k (Eq. (1) and Eq. (2),
i = 1, . . . , 2n−k)

4 If k < n, set k = k + 1 and return to Step 2, otherwise output the state tree

3

Algorithm 2: Angle tree construction
1 Set v = n

2 Create a new level with 2n−v nodes, where each node j value is αj,veiλj,v (Eq. (4) and Eq. (3),
j = 1, . . . , 2n−v) using data from a state tree generated by Alg. 1

3 If v > 1, set v = v − 1 and return to Step 1, otherwise output the angle tree

|0〉0 Ry(α1,3)

|0〉1 Ry(α1,2) Ry(α2,2)

|0〉2 Ry(α1,1) Ry(α2,1) Ry(α3,1) Ry(α4,1)

Figure 2: Quantum circuit to load an 8-dimensional real vector in a quantum device using the top-down amplitude encoding
strategy [1, 34, 46] (Alg. 3). The qubit index indicated by the subscript corresponds to the tree level in Fig. 1b.

2.2. Top-down approach
The top-down amplitude encoding approach to quantum state initialization is a linear transformation

consisting of a sequence of uniformly controlled rotations [34, 46] that takes the initial basis vector |0〉⊗N to
some arbitrary vector |x〉 = (|x0|eiω0 , . . . , |xN−1|eiωN−1)T . This generates a quantum circuit with complexity
of Od(N) and Ow(log2(N)) [1, 34, 46].

The top-down state preparation (TDSP) algorithm begins by preparing the following state at the root
(v = n) of the angle tree (see Fig. 1b for an example)

|ψn〉 = e−i
λ1,n

2

√
1− |β1,n|2 |0〉+ ei

λ1,n
2 β1,n |1〉 . (5)

To load states into the next level (indicated by v in Eq. (6)), the current state (indicated by v + 1 because
v is in reverse order, decreasing from n to 1) is sequentially combined with the values of the next state in
Eq. (6).

|ψv〉 =

2n−v∑
j=1

(
e−i

λj,v
2

√
1− |βj,v|2 |0〉+ ei

λj,v
2 βj,v |1〉

)
|j − 1〉 〈j − 1|ψv+1〉

 (6)

The update of state |ψv〉 is repeated for v = (n− 1), . . . , 1, thereby obtaining the desired state

|ψ1〉 = |x0|eiω0 |0〉+ . . .+ |xN−1|eiωN−1 |N − 1〉 .

The summation in Equation (6) expresses the sequential characteristic of the top-down approach, since the
state of each layer of the tree needs to be loaded on one qubit through a sequence of rotations. Figure 2
presents an example quantum circuit for encoding 8-dimensional vector using the top-down state preparation
method.

The name top-down comes from the way this approach walks through the tree from the root to the leaves
to build a quantum circuit. The combination of states is done with multi-controlled rotations, and it takes
log2(N) qubits to generate the complete state. At each level, it assembles a sequence of rotations targeting
one qubit and is controlled by the qubits of the previous levels. First, y-rotations are applied to set the
magnitudes, followed by z-rotations to set the phases. These steps are presented in Algorithm 3 with its
Pseudocode 3 provided in the appendix.

2.3. Bottom-up approach
The bottom-up state preparation algorithm constructs a quantum circuit with complexity Od(log2

2(N))
and Ow(N) [37]. It starts by preparing N/2 single-qubit states, corresponding to the leaves of the tree

4

Algorithm 3: Top-down state preparation
1 Generate a state tree from the input vector
2 Generate an angle tree from the state tree
3 Create a quantum circuit with n qubits (one qubit for each angle tree level)
4 Perform one y-rotation and one z-rotation on the first qubit (qubits are 0-indexed) using the angle

tree root values α1,n and λ1,v (Eq. (5))
5 Set v = n− 1 (starts at the root)
6 Perform a Uniformly Controlled Rotation controlled by qubits 0, 1, . . . , n− v − 1 (corresponding to

the previous levels) with the current qubit n− v as target, using the current level nodes values αj,v
and λj,v (1 ≤ j ≤ 2n−v) as rotation angles (Eq. (6))

7 If v > 1, set v = v − 1 and return to Step 5, otherwise output the encoding quantum circuit

one-qubit states combining states

|0〉0 Ry(α1,3) Rz(λ1,3)

output

|0〉1 Ry(α1,2) Rz(λ1,2)

|0〉2 Ry(α2,2) Rz(λ2,2) ancilla

|0〉3 Ry(α1,1) Rz(λ1,1) output

|0〉4 Ry(α2,1) Rz(λ2,1)

ancilla|0〉5 Ry(α3,1) Rz(λ3,1)

|0〉6 Ry(α4,1) Rz(λ4,1)

(a)

...
...

...
...

a |0〉+ b |1〉

a |ψ〉 |φ〉+ b |φ〉 |ψ〉

|ψ〉m

|φ〉m

(b)

Figure 3: Divide-and-conquer bottom-up load strategy. (a) Circuit generated by the divide-and-conquer [37] bottom-up strategy
(Alg. 4) to load an 8-dimensional complex vector in a quantum device. The indexes of the qubits correspond to the tree nodes
indexes in Fig. 1b. The circuit starts with the simultaneous preparation of (N − 1) one-qubit states associated with all tree
nodes, followed by the combination of states through CSWAPs. (b) Combining states with controlled-swap operations.

(Fig.1a). Equations (3) and (4) are used starting from the lowest level of the tree (v = 1), which corresponds
to starting from the initial state

|ψj,1〉 = e−i
λj,1
2

√
1− |βj,1|2 |0〉+ ei

λj,1
2 βj,1 |1〉 . (7)

Loading the states in the upper levels of the tree is done by recursive updates of

|ψj,v〉 = e−i
λj,v

2

√
1− |βj,v|2 |ψ2j−1,v−1〉 |ψ2j,v−1〉+ ei

λj,v
2 βj,v |ψ2j,v−1〉 |ψ2j−1,v−1〉 , (8)

where v = 2, . . . , n. The desired state, with ancilla |φ〉, is obtained when v = n as

|ψ1,n〉 = |x0|eiω0 |0〉 |φ0〉+ · · ·+ |xN−1|eiωN−1 |N − 1〉 |φN−1〉 . (9)

Updating the states in Equation (8) requires a method that entangles each of the two states |ψ2j−1,v−1〉
and |φ2j,v−1〉 to orthonormal subspaces |0〉 and |1〉, respectively, with designated amplitudes. As demon-
strated by Araujo et al. [37], m controlled-swap (CSWAP) operations can combine two m-qubit states in
the form of Equation (8) (see Fig. 3b) to encode the desired set of amplitudes in the orthonormal subspaces

5

Algorithm 4: Bottom-up state preparation
1 Generate a state tree from the input vector
2 Generate an angle tree from the state tree
3 Create a quantum circuit with 2n − 1 qubits (one qubit for each angle tree node)
4 Perform 2n−1 y-rotations and z-rotations on qubits 2n−1 + j − 2 (1 ≤ j ≤ 2n−1) using the leaf

values αj,1 and λj,1 to prepare 2n−1 initial single-qubit states (Eq. (7), Fig. 3a)
5 Set v = 2 and j = 1 (starts at the bottom)
6 Perform one y-rotation and one z-rotation on qubit 2n−v + j − 2 using the node values αj,v and λj,v

to prepare a single-qubit state to control CSWAPs operations
7 Perform Controlled SWAPs controlled by qubit 2n−v + j − 2 to combine the previous states

prepared with the qubits associated to the sub-tree started by the current node (Eq. (8), Fig. 3b)
8 If j < 2n−v, set j = j + 1 and return to Step 5, otherwise continue
9 If v < n, set v = v + 1 and return to Step 5, otherwise output the encoding quantum circuit

of the first m + 1 qubits. Since each node of the level is represented by one qubit, multiple loading within
a layer can be performed in parallel. Thus, all states in the given layer can be loaded simultaneously. This
is an advantage in comparison to the top-down approach which loads each node state sequentially. Since
the underlying idea of the bottom-up approach is recursive combination of single-qubit states that are easy
to prepare, it was named as divide-and-conquer state preparation (DCSP) when first introduced [37]. An
example quantum circuit for encoding 8-dimensional vector using the DCSP method is depicted in Fig. 3a.
Algorithm 4 describes these steps and Pseudocode 4 is provided in the appendix.

3. Bidirectional quantum state preparation

This section presents a bidirectional state preparation (BDSP) method combining both bottom-up and
top-down strategies as walking on the tree in both directions. This new strategy can interchange depth and
space cost in a configurable manner, thereby allowing for the sublinear cost in both quantum circuit depth
and width. In particular, the equilibrium point between these costs achieves the quadratic reduction in both
space and time. The algorithm is depicted in Fig. 4 and the detailed explanation is provided as follows.

The bidirectional state preparation algorithm starts by informing a level v = s (enumerated from bottom
to top, where 1 ≤ s ≤ n) at which the angle tree is split, followed by two stages. In the first stage, it segments
the tree section below s into 2n−s sub-trees of height s. The 2n−s nodes at level s are the roots of these
sub-trees. The number of sub-trees determines how many initial sub-states should be prepared in the first
stage of the algorithm. The amplitude values of these sub-states aj = (aj,1, . . . , aj,2s) (1 ≤ j ≤ 2n−s) are
loaded concurrently using a sequential algorithm [1, 34, 46] based on the TDSP method as

|ψj,s〉 =

2s∑
k=1

aj,k |k − 1〉 ; j = 1, 2, . . . , 2n−s. (10)

The initial sub-states are the input of the second stage of BDSP. They reproduce the state that would be
created by the bottom-up steps up to the split level s. In the second stage, the sub-states are combined to
generate the complete state by the divide-and-conquer approach (Fig. 4c). The bottom-up algorithm takes
the state prepared in the first stage as the input, and starts walking on the tree from the split level (Eq. (8),
where v = s + 1, . . . , n). In other words, the BDSP follows the bottom-up DCSP algorithm starting from
states |ψj,s〉 (Eq. (10)) instead of starting from the single-qubit leaf states (Eq. (7)). The BDSP algorithm
is described in Algorithm 5 below with Pseudocode 5 provided in the appendix.

6

α0
1,3 s = 3

α1
1,2

α1
1,1 α1

2,1

α2
1,2 s = 2

α2
1,1 α2

2,1 s = 1

(a)

stage 2stage 1

|0〉0

B

|0〉1
A1

|0〉3

|0〉2
A2

|0〉5

output

input

ancilla

(b)

stage 2stage 1

|0〉0 Ry(α0
1,3)

output|0〉1 Ry(α1
1,2)

|0〉3 Ry(α1
1,1) Ry(α1

2,1)

|0〉2 Ry(α2
1,2)

ancilla

|0〉5 Ry(α2
1,1) Ry(α2

2,1)

(c)

Figure 4: Schematics of the bidirectional algorithm. (a) Angle tree example with a split at level s = 2. The blue and red
nodes (α1 and α2) correspond to the bidirectional procedure first stage. In each of the two sub-trees of the first stage, 4 of
the 8 amplitudes expected as input by stage 2 are encoded using a top-down method. The green node (α0) above the tree
split correspond to the second stage single sub-tree, subject to a partial DCSP bottom-up procedure. The first stage red nodes
(j > 1) are no longer associated with an ancilla since they are now encoded through a top-down approach. (b) Block diagram
circuit, corresponding to the tree in (a). In stage 1, the Ak operators (the index k is related to angle vectors αk upper index)
are responsible for encoding the amplitudes that will be used as input by stage 2. In this example, each Ak operator encodes
4 amplitudes from a total of 8. The B operator is the partial DCSP for 8 amplitudes, which is initialized with the expected
state for the split level 2 and continues with the traditional algorithm. (c) Detailed view of (b), generated by the bidirectional
strategy described in Algorithm 5 for a real and positive 8-dimensional input vector.

3.1. Complexity
In general, the BDSP algorithm builds quantum circuits whose depth and width are expressed respectively

by

N

2log2(N)−s︸ ︷︷ ︸
stage 1

+

log2(N)∑
i=s+1

i− 1︸ ︷︷ ︸
stage 2

= 2s +
1

2
(log2

2(N)− log2(N)− s2 + s) (11)

and
s
N

2s︸︷︷︸
stage 1

+
N

2s
− 1︸ ︷︷ ︸

stage 2

= (s+ 1)
N

2s
− 1, (12)

where N is the number of amplitudes (i.e. the dimension of the data vector) and s is a parameter indicating
the tree splitting level (the tree level in reverse order). Stage 1 and 2 indicate the contribution from each
stage of the bidirectional procedure to the circuit complexity stated in Theorem 1.

Theorem 1. Algorithm 5 generates a quantum circuit with depth Od
(
2s + log2

2 (N)− s2
)

and width
Ow
(
(s+ 1) N2s

)
.

7

Algorithm 5: Bidirectional state preparation
1 Generate a state tree from the input vector
2 Generate an angle tree from the state tree
3 Create a quantum circuit with (s+ 1)2n−s − 1 qubits (Eq. (12))
4 Perform Algorithm 3 (top-down approach) starting from step 3 to prepare 2n−s states of s-qubits

(replacing n by s), using the 2n−s sub-trees as input for each state (Eq. (10)). This step is named
Stage 1

5 Perform Algorithm 4 (bottom-up approach) starting from step 5 and v = s+ 1 to combine the 2n−s

states prepared in Stage 1 using the remaining 2n−s − 1 qubits (Eq. (8)). This step is named Stage
2

6 Output the encoding quantum circuit

In Equation (11), first term (stage 1) is the leading-order approximation of the quantum circuit depth
from existing top-down based algorithms [1, 34] for sub-states with s qubits. The exact expression depends
on which of the two algorithms is used. The summation of the second term (stage 2) is the divide-and-
conquer circuit depth from split level s+ 1 to n. Similarly, the first term in Equation (12) is the number of
qubits occupied by all first stage sub-states and the second term is the number of qubits used by the second
stage.

There are three noteworthy configuration values for the parameter s (see Table 1). Setting s = log2(
√
N)

achieves asymptotic sublinearity, and s = 1 or s = log2(N) recovers bottom-up or top-down approaches.

bottom-up
s = 1

top-down
s = n

sublinear
s = n/2

Od n2 2n 2n/2

Ow 2n n 2n/2

Table 1: Bidirectional quantum circuit complexity for different configurations. These expressions were obtained from Eq. (11)
and Eq. (12).

The condition for quadratic reduction in both depth and width is obtained through asymptotic analysis
of the minimum distance between Eq. (11) and Eq. (12). The first (second) equation is a monotonically
increasing (decreasing) function ∀s ∈ {x ∈ R|4 ≤ x ≤ log2(N)} and there is a point s where the distance is
zero when N →∞. Thus the minimum distance point is given by finding s that satisfies

lim
N→∞

Ow −Od = 0. (13)

Figure 5: The solution of the system Ow −Od = 0 approaches k = 1/2 as N increases.

8

The asymptotic analysis starts by rewriting Eq. (11) and Eq. (12) using a more convenient parameteri-
zation,

s = f(k) = k log2(N) where k ∈
[

4

log2(N)
, 1

]
.

Applying the limit of Eq. (13) results in the following simplified expression

N2k−1 = 1.

Solving the above equation for k gives the solution k = 1/2. Therefore, to achieve sublinear circuit complexity
with quadratic reductions in both quantum circuit depth and width, the tree split must occur at s =
1/2 log2(N) = n/2, which leads to Theorem 2.

Theorem 2. Algorithm 5 with s = n/2 and N � 1 generates a quantum circuit with sublinear depth
Od

(√
N
)

and width Ow
(√

N
)
.

When dealing with input vectors of small size, s can be calculated by solving Eq. (13) directly with
N being a constant. If s cannot be calculated exactly, it can be approximated with the asymptotic result
s = dn/2e. The reason for the ceiling function is because s approximates n/2 from upper values (Fig. 5).

Corollary 2.1. When N ≤ 8 a top-down approach (s = log2(N)) should always be used, since space and
depth both decrease as s increases in the interval s ∈ [1..3] (see Table 3 for a numerical example). Circuit
depth increases only when s ≥ 4.

3.2. Experiment
To evaluate the bidirectional method, proof-of-principle experiments were performed on a classical sim-

ulator provided by IBM, four superconducting-qubit based quantum devices provided by IBM, and an
ion-trap based quantum device provided by IonQ. These are named as ibmq_qasm_simulator, ibmq_rome,
ibmq_santiago, ibmq_casablanca, and ibmq_jakarta, and IonQ, respectively. The experiments aim to load
the following 8 and 16-dimensional real input vectors:(√

0.03,
√

0.06,
√

0.15,
√

0.05,
√

0.1,
√

0.3,
√

0.2,
√

0.11
)

and (√
0.01,

√
0.02,

√
0.04,

√
0.02,

√
0.07,

√
0.08,

√
0.04,

√
0.01,

√
0.08,

√
0.02,

√
0.21,

√
0.09,

√
0.12,

√
0.08,

√
0.05,

√
0.06

)
.

(a) 23 complex amplitudes. (b) 26 complex amplitudes. (c) 210 complex amplitudes. (d) 215 complex amplitudes.

Figure 6: Exchange between circuit depth, width (number of qubits), and number of CNOTs to load a 2n-dimensional complex
vector into a quantum computer by adjusting parameter s. The increasing number of CNOTs at lower depths is a consequence
of exchanging computational time for space, given the combination of distant states. It also indicates an increase in concurrent
operations.

Three configurations of the bidirectional method are compared, namely top-down (s = n), bottom-
up (s = 1), and sublinear (s = dn/2e). The first case uses the least number of qubits Ow(log2(N)) and
maximum depth Od(N). In the second configuration, depth is minimum Od(log2

2(N)) and the number of
qubits is maximum Ow(N). The last configuration uses the best trade-off between the quantum circuit

9

device N s runs MAE

ibmq_qasm_simulator
32 qubits

8
1 5 0.0016
2 5 0.0005
3 5 0.0015

16 2 5 0.0010
4 5 0.0010

ibmq_rome
5 qubits

8 2 10 0.0577
3 10 0.0429

16 4 5 0.0409

ibmq_santiago
5 qubits

8 2 10 0.0464
3 10 0.0233

16 4 10 0.0225
ibmq_casablanca

7 qubits 8
1 10 0.0710
2 10 0.0691
3 10 0.0213

ibmq_jakarta
7 qubits 8

1 10 0.0594
2 10 0.0497
3 10 0.0289

IonQ
11 qubits

8
1 5 0.0455
2 5 0.0242
3 5 0.0217

16 2 5 0.0261
4 5 0.0107

Table 2: Results of the BDSP experiments that encode N -dimensional input vectors in the amplitudes of quantum states using
a classical simulator and quantum devices for N = {8, 16}. The acronym MAE stands for mean absolute error. The bold font
indicates the smallest MAE, and hence the best performance, among different configurations of s for each device and input
vector.

depth and width and achieves the sublinear scaling for both. In this case, the quantum circuit depth and
width both grow as O(

√
N).

Table 2 lists the experimental results, presenting the number of runs per device and dimensionality of the
input vector. The ibmq_rome and ibmq_santiago devices have only five qubits, and due to this limitation
they are not suitable to encode the 8-dimensional vector with the bottom-up configuration (i.e. s = 1)
or to perform sublinear (i.e. s = dn/2e) and bottom-up experiments to encode the 16-dimensional vector
(see Corollary 2.1). None of the quantum devices used in this work has the capacity to run the bottom-up
configuration for the 16-dimensional input vector, which requires at least 15 qubits (i.e. N − 1 qubits).

Figure 7 presents the average output of the experiments with 8 and 16-dimensional input vectors. The
height of blue and red bars is an average value obtained from a number of repetitions shown in the runs
column in Table 2, and the error bars represent the standard deviation. The height of the yellow bar is the
experimental result averaged over all quantum devices.

Table 3 and Figure 6 show the trade-off between quantum circuit depth, width and the number of CNOT
gates as s is varied for randomly generated target vectors of various sizes. As expected through the analysis
of the number of CNOT gates and the circuit depth in Tab. 3, the experimental results in Table 2 and
Figure 7 show performance favoring the top-down configuration (s = n) for small input sizes (N < 64) due
to the smaller number of CNOT gates and the smaller or approximately equal depth of the circuit. The
number of CNOT gates, circuit depth, and number of qubits all decrease as s progresses to s = 3. The
depth starts to increase when s > 3, as previously implied by Eq. (11). The comparison employs the mean
absolute error (MAE). For each device and input size, the ranking is established where a smaller MAE
indicates better performance (see Table 2).

Data from Table 3 and Figure 6 were obtained using the transpile method in the Quantum Information
Science Kit (Qiskit [44]) version 0.26.2 to decompose the circuits into physical single-qubit gates and the
CNOT gate. These circuits were generated by the bidirectional algorithm with random complex input
vectors. The Python code used in this work for implementing Algorithm 3 employs functions ucry and

10

N = 8 N = 16 N = 32 N = 64
s CNOTs depth qubits CNOTs depth qubits CNOTs depth qubits CNOTs depth qubits
1 28 31 7 77 58 15 182 93 31 399 136 63
2 18 24 5 57 51 11 142 86 23 319 129 47
3 10 20 3 41 48 7 110 83 15 255 126 31
4 26 51 4 80 87 9 195 130 19
5 58 114 5 151 158 11
6 122 241 6

Table 3: Exchange between circuit depth, width (qubits), and number of CNOTs by adjusting the parameter s (split). s can be
interpreted as a hyperparameter to fine-tune the encoding circuit to hardware characteristics such as relaxation time, dephasing
time, and the CNOT gate error.

(a) N = 8 top-down. (b) N = 8 sublinear. (c) N = 8 bottom-up.

(d) N = 16 top-down. (e) N = 16 sublinear.

Figure 7: Experimental results with 8- and 16-dimensional input vectors. Blue and red bars indicate respectively the ideal
results and the ibm_qasm_simulator results. Yellow bars indicate the output average values from the experiments on all
quantum devices. Error bars are the standard deviation.

ucrz from Qiskit. These functions are called uniformly controlled rotations (or multiplexers), and the
corresponding code in Qiskit is based on the work of Shende et al. [1].

Note that algorithms 3 and 4 allocate logical qubits as they are needed without concerning their assign-
ment to physical qubits of the quantum device. For NISQ devices with limited quantum device coupling
map, the logical to physical qubit mapping should be optimized in order to minimize the overhead in the
quantum circuit depth and the number of gates.

4. Sparse bidirectional quantum state preparation

The previous section explained the bidirectional method for encoding data in the amplitudes of a quan-
tum state consisting of n qubits, where 2n = N is the total amount of amplitudes of that state. Like other
approaches for loading data in the amplitudes, the method presented in this paper has a classical prepro-
cessing complexity O(N). Moreover, such algorithms generate circuits whose spatial and depth costs also
depend on N . This dependence on the total number of state amplitudes makes these methods inappropriate
for encoding sparse input vectors, where the number of non-zero amplitudes M is much smaller than 2n.

This section presents a sparse variant of the bidirectional algorithm (Pseudocode 6). This variant reduces
the classical preprocessing complexity to O(M) through a modification in the construction of the state tree
(Pseudocode 7, Fig. 8b). Knowing that such a tree is binary, one can see that the value of each node is a
combination of the pair at the lower level (see Eq. 4). If the zero-valued amplitudes are not present at the

11

η1,3

0

0

0 0

0

0 0

η2,2

η3,1

x4 x5

0

0 0

(a)

η1,3

η2,2

η3,1

x4 x5

(b)

π

0

α3,1

(c)

Figure 8: Sparse state preparation. (a) Dense state decomposition of an 8-dimensional input vector with only data patterns
4 and 5 not equal to zero. Compare with Figure 1a. (b) Sparse state decomposition generated by Pseudocode 7. The
information in this sparse decomposition is equal to that of Figure 8a. (c) Sparse angle tree generated by function angle_tree
(Pseudocode 2) from the sparse state tree shown in Figure 8b. Node α1,3 is always equal to π because η1,3 only has a child on
the right (Pseudocode 7, Line 16, and Pseudocode 2, Line 6). Node α2,2 is always zero because η2,2 only has a child on the
left (Pseudocode 7, Line 25, and Pseudocode 2, Line 2). Node η3,1 has left and right children, so α3,1 value depends on nodes
x4 and x5 (Pseudocode 7, Line 20).

leafs of the state tree (Fig. 8a), the nodes at the levels above, whose children are absent, are not constructed
(Fig. 8b). This eliminates some branches from the tree.

As seen in the previous section (Eq. 10), the size of a top-down sub-state is defined by the parameter s
(split), which indicates the number of qubits of the sub-state and, therefore, the number of amplitudes 2s

that it can encode. The number of sub-states depends on two parameters, s (split) and n (total number of
qubits of the complete state, which also indicates the height of the state tree). With both parameters, the
number of sub-states is 2n/2s = 2n−s. Therefore, each block of 2s amplitudes from the input vector makes
up a sub-state and that for this sparse version if the block is empty (zero amplitudes) the sub-state is not
necessary for the construction of the complete state (Fig. 8b). If a sub-state has all nodes eliminated, it is
no longer needed nor represented in the quantum circuit, reducing the necessary space (qubits). Another
consequence of eliminating a sub-state is that the second stage of the algorithm (bottom-up) will combine a
smaller number of states (Eq. 8), therefore reducing the number of CSWAP operators and the total depth
of the circuit.

The main difference between the dense algorithm (Pseudocode 5) and the sparse one (Pseudocode 6) is
the construction of the state tree. Function initialize_bidirectional differs from function
initialize_sparse_bidirectional only by Line 3, replacing the state_decomposition function call
with sparse_state_decomposition. In the latter function, the main change that enables sparsity is the
introduction of Line 16 if conditional statement. This statement has three possible outcomes. The first one
(Line 20) occurs when two consecutive nodes of even and odd index are present, being identical to the dense
case (Pseudocode. 1). The other two outcomes, first (Line 16) and third (Line 25) conditions, occur when
either of the pair nodes is absent and assumed to have zero amplitude. If the complete pair is absent, none
of the statement outcomes are met, then the pair is ignored, and the respective parent node is not created.
Node indices are guaranteed to be preserved by Line 12 of Pseudocode 7.

5. Conclusion

Existing state preparation methods, such as top-down and bottom-up approaches, require at least one
quantum circuit resource between depth and width to grow linearly with the problem size. The BDSP
algorithm presented in this work provides a general framework for configuring the trade-off between these
resources that can be useful to manage them on NISQ devices. Looking at the state preparation algorithms
as a walk on the state tree (see Section 2.1), the BDSP algorithm constitutes a systematic way to walk in
two opposite directions. Previous methods are based on walking only in one direction. The bidirectional
algorithm comes with a free parameter s ∈ [1, n] that determines the balance between the top-down and

12

the bottom-up approaches. At two extreme cases of setting s = n and s = 1, the top-down and the
bottom-up approaches are respectively recovered. At the equilibrium point s = dn/2e, quadratic reduction
in both quantum circuit depth and width can be achieved. The configuration parameter can be viewed as a
hyperparameter that can tune circuit sizes and the number of CNOT gates according to the compound of
application and hardware properties. The BDSP method is validated and demonstrated through experiments
performed on five real quantum devices. The experiments behaved as expected, according to the asymptotic
and numerical analyses of the circuit complexity.

A possible future work is to investigate whether the quantum circuit cost of the DCSP part can be
futher reduced. Note that the structure of CSWAP operations in the DCSP step only depends on the
dimensionality of the dataset N . Hence, the CSWAP operations can be interpreted as a single layer of fixed
operation. Decomposing this fixed operation more efficiently than the naive application of CSWAP gates
would achieve further reduction in the quantum circuit depth.

Acknowledgments

This work is based upon research supported by CNPq (Grant No. 308730/2018-6, No. 306727/2017-
0, No. 409415/2018-9 and No. 421849/2016-9), CAPES – Finance Code 001, FACEPE (Grant No.
IBPG-0834-1.03/19), National Research Foundation of Korea (Grant No. 2019R1I1A1A01050161 and No.
2021M3H3A1038085), the South African Research Chair Initiative, Grant No. 64812, of the Department
of Science and Innovation and the National Research Foundation (NRF). Support of the NICIS (National
Integrated Cyberinfrastructure System) e-research grant QICSA is kindly acknowledged. We acknowledge
the use of IBM Quantum services for this work. The views expressed are those of the authors, and do not
reflect the official policy or position of IBM or the IBM Quantum team.

Competing interests

The authors declare no competing interests.

Data availability

The site https://www.cin.ufpe.br/~ajsilva/qclib contains all the data and software generated dur-
ing the current study.

References

[1] V. Shende, S. Bullock, I. Markov, Synthesis of quantum-logic circuits, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 25 (6) (2006) 1000–1010.

[2] D. Deutsch, R. Jozsa, Rapid solution of problems by quantum computation, Proceedings of the Royal Society of London.
Series A: Mathematical and Physical Sciences 439 (1907) (1992) 553–558.

[3] T. Hogg, B. A. Huberman, C. P. Williams, Phase transitions and the search problem, Artificial Intelligence 81 (1) (1996)
1–15, frontiers in Problem Solving: Phase Transitions and Complexity.

[4] L. K. Grover, A fast quantum mechanical algorithm for database search, in: Proceedings of the twenty-eighth annual ACM
symposium on Theory of Computing, STOC ’96, Association for Computing Machinery, Philadelphia, Pennsylvania, USA,
1996, pp. 212–219.

[5] D. R. Simon, On the Power of Quantum Computation, SIAM Journal on Computing 26 (5) (1997) 1474–1483.
[6] B. M. Terhal, J. A. Smolin, Single quantum querying of a database, Physical Review A 58 (3) (1998) 1822–1826.
[7] P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,

SIAM Review 41 (2) (1999) 303–332.
[8] S. Aaronson, Read the fine print, Nature Physics 11 (4) (2015) 291–293.
[9] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum machine learning, Nature 549 (7671)

(2017) 195–202.
[10] A. W. Harrow, A. Hassidim, S. Lloyd, Quantum Algorithm for Linear Systems of Equations, Phys. Rev. Lett. 103 (2009)

150502.
[11] E. Tang, Quantum Principal Component Analysis Only Achieves an Exponential Speedup Because of Its State Preparation

Assumptions, Phys. Rev. Lett. 127 (2021) 060503.

13

https://www.cin.ufpe.br/~ajsilva/qclib
https://doi.org/10.1109/TCAD.2005.855930
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1016/0004-3702(95)00044-5
https://doi.org/10.1145/237814.237866
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1103/PhysRevA.58.1822
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1038/nphys3272
https://doi.org/10.1038/nature23474
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.127.060503
https://doi.org/10.1103/PhysRevLett.127.060503

[12] S. Lloyd, M. Mohseni, P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning,
arXiv:1307.0411 [quant-ph] (2013).

[13] E. Stoudenmire, D. J. Schwab, Supervised Learning with Tensor Networks, in: D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
R. Garnett (Eds.), Advances in Neural Information Processing Systems, Vol. 29, Curran Associates, Inc., 2016, p. 9.

[14] M. Schuld, M. Fingerhuth, F. Petruccione, Implementing a distance-based classifier with a quantum interference circuit,
EPL (Europhysics Letters) 119 (6) (2017) 60002.

[15] M. Schuld, F. Petruccione, Supervised Learning with Quantum Computers, 1st Edition, Quantum Science and Technology,
Springer International Publishing : Imprint: Springer, Cham, 2018.

[16] M. Benedetti, E. Lloyd, S. Sack, M. Fiorentini, Parameterized quantum circuits as machine learning models, Quantum
Science and Technology (2019).

[17] Y. Levine, O. Sharir, N. Cohen, A. Shashua, Quantum Entanglement in Deep Learning Architectures, Physical Review
Letters 122 (6) (2019) 065301.

[18] C. Blank, D. K. Park, J.-K. K. Rhee, F. Petruccione, Quantum classifier with tailored quantum kernel, npj Quantum
Information 6 (1) (2020) 1–7.

[19] C. A. Trugenberger, Probabilistic Quantum Memories, Physical Review Letters 87 (6) (2001).
[20] D. Ventura, T. Martinez, Quantum associative memory, Information Sciences 124 (1) (2000) 273–296.
[21] C. A. Trugenberger, Quantum Pattern Recognition, Quantum Information Processing 1 (6) (2002) 471–493.
[22] V. Giovannetti, S. Lloyd, L. Maccone, Quantum Random Access Memory, Phys. Rev. Lett. 100 (2008) 160501.
[23] A. Silva, W. d. Oliveira, T. Ludermir, A Weightless Neural Node Based on a Probabilistic Quantum Memory, in: 2010

Eleventh Brazilian Symposium on Neural Networks, 2010, pp. 259–264.
[24] F. M. de Paula Neto, A. J. da Silva, W. R. de Oliveira, T. B. Ludermir, Quantum probabilistic associative memory

architecture, Neurocomputing 351 (2019) 101–110.
[25] D. K. Park, F. Petruccione, J.-K. K. Rhee, Circuit-Based Quantum Random Access Memory for Classical Data, Scientific

Reports 9 (1) (2019) 3949.
[26] S. Lloyd, M. Mohseni, P. Rebentrost, Quantum principal component analysis, Nature Physics 10 (9) (2014) 631–633.
[27] A. M. Childs, R. Kothari, R. D. Somma, Quantum Algorithm for Systems of Linear Equations with Exponentially Improved

Dependence on Precision, SIAM Journal on Computing 46 (6) (2017) 1920–1950.
[28] L. Wossnig, Z. Zhao, A. Prakash, Quantum Linear System Algorithm for Dense Matrices, Phys. Rev. Lett. 120 (2018)

050502.
[29] P. Rebentrost, A. Steffens, I. Marvian, S. Lloyd, Quantum singular-value decomposition of nonsparse low-rank matrices,

Physical Review A 97 (1) (2018).
[30] T. M. Mitchell, Machine learning, nachdr. Edition, McGraw-Hill series in Computer Science, McGraw-Hill, New York,

2013.
[31] D. Ventura, T. Martinez, Initializing the Amplitude Distribution of a Quantum State, Foundations of Physics Letters

12 (6) (1999) 547–559.
[32] L. K. Grover, Synthesis of Quantum Superpositions by Quantum Computation, Physical Review Letters 85 (6) (2000)

1334–1337.
[33] G.-L. Long, Y. Sun, Efficient scheme for initializing a quantum register with an arbitrary superposed state, Physical

Review A 64 (1) (2001) 014303.
[34] M. Mottonen, J. J. Vartiainen, V. Bergholm, M. M. Salomaa, Transformation of Quantum States Using Uniformly Con-

trolled Rotations, Quantum Info. Comput. 5 (6) (2005) 467–473.
[35] M. Plesch, C. Brukner, Quantum-state preparation with universal gate decompositions, Physical Review A 83 (3) (2011)

032302.
[36] J. A. Cortese, T. M. Braje, Loading Classical Data into a Quantum Computer (2018).
[37] I. F. Araujo, D. K. Park, F. Petruccione, A. J. da Silva, A divide-and-conquer algorithm for quantum state preparation,

Scientific Reports 11 (1) (2021) 6329.
[38] D. K. Park, I. Sinayskiy, M. Fingerhuth, F. Petruccione, J.-K. K. Rhee, Parallel quantum trajectories via forking for

sampling without redundancy, New Journal of Physics 21 (8) (2019) 083024.
[39] G. H. Low, V. Kliuchnikov, L. Schaeffer, Trading T-gates for dirty qubits in state preparation and unitary synthesis (2018).

arXiv:1812.00954.
[40] C. Zoufal, A. Lucchi, S. Woerner, Quantum generative adversarial networks for learning and loading random distributions,

npj Quantum Information 5 (1) (2019) 1–9.
[41] V. V. Kuzmin, P. Silvi, Variational quantum state preparation via quantum data buses, Quantum 4 (2020) 290. doi:

10.22331/q-2020-07-06-290.
[42] IBM, IBM’s Roadmap For Scaling Quantum Technology (2020).
[43] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2 (2018) 79.
[44] G. Aleksandrowicz, et al., Qiskit: An Open-source Framework for Quantum Computing (2019).
[45] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed, J. M. Arrazola, C. Blank, A. Delgado, S. Jahangiri,

K. McKiernan, J. J. Meyer, Z. Niu, A. Száva, N. Killoran, PennyLane: Automatic differentiation of hybrid quantum-
classical computations (2020). arXiv:1811.04968.

[46] V. Bergholm, J. J. Vartiainen, M. Möttönen, M. M. Salomaa, Quantum circuits with uniformly controlled one-qubit gates,
Physical Review A 71 (5) (2005) 052330.

14

http://arxiv.org/abs/1307.0411
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://doi.org/10.1209/0295-5075/119/60002
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1103/PhysRevLett.122.065301
https://doi.org/10.1038/s41534-020-0272-6
https://doi.org/10.1103/PhysRevLett.87.067901
https://doi.org/10.1016/S0020-0255(99)00101-2
https://doi.org/10.1023/A:1024022632303
https://doi.org/10.1103/PhysRevLett.100.160501
https://ieeexplore.ieee.org/document/5715247
https://doi.org/10.1016/j.neucom.2019.03.078
https://doi.org/10.1016/j.neucom.2019.03.078
https://doi.org/10.1038/s41598-019-40439-3
https://doi.org/10.1038/nphys3029
https://doi.org/10.1137/16m1087072
https://doi.org/10.1137/16m1087072
https://doi.org/10.1103/PhysRevLett.120.050502
https://doi.org/10.1103/physreva.97.012327
https://doi.org/10.1023/A:1021695125245
https://doi.org/10.1103/PhysRevLett.85.1334
https://doi.org/10.1103/PhysRevA.64.014303
http://dl.acm.org/citation.cfm?id=2011670.2011675
http://dl.acm.org/citation.cfm?id=2011670.2011675
https://doi.org/10.1103/PhysRevA.83.032302
https://arxiv.org/abs/1803.01958
https://doi.org/10.1038/s41598-021-85474-1
https://doi.org/10.1088/1367-2630/ab35fb
https://doi.org/10.1088/1367-2630/ab35fb
https://arxiv.org/abs/1812.00954
http://arxiv.org/abs/1812.00954
https://doi.org/10.22331/q-2020-07-06-290
https://doi.org/10.22331/q-2020-07-06-290
https://doi.org/10.22331/q-2020-07-06-290
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.5281/zenodo.2562111
http://arxiv.org/abs/1811.04968
http://arxiv.org/abs/1811.04968
http://arxiv.org/abs/1811.04968
https://doi.org/10.1103/PhysRevA.71.052330

Appendix A. Pseudocode

Pseudocodes 1 to 5 expresses algorithms 1 to 5. Pseudocodes 1 and 2 construct the tree representations
of the state preparation algorithms, namely the state tree and the angle tree, as described in Section 2.1.
Pseudocodes 3 and 4, which algorithms are explained in sections 2.2 and 2.3, build quantum circuits using
top-down and bottom-up approaches for encoding a complex input vector into the amplitudes of a quantum
state. Pseudocode 5 employs pseudocodes 1 to 4 and expresses the bidirectional state preparation algorithm
(Sec. 3, Alg. 5).

Lines 5 and 6 of Pseudocode 5 indicate the two stages of the BDSP algorithm. Line 5 at function
top_down_tree_walk performs the first stage preparing the sub-states expected by the next stage, equivalent
to what would be generated by bottom-up DCSP up to the tree split, but with the absence of ancilla due
to the top-down approach. Line 6 at function bottom_up_tree_walk performs the second stage, starting
at level s+ 1 with the sub-states initialized by the previous stage. Line 3 at function top_down_tree_walk
configures the recurrence so that at split level s it divides the angle tree into 2n−s (number of nodes at split
level s) sub-trees of height s, loading all these sub-trees concurrently using the top-down strategy. Lines
11 and 12 of function bottom_up_tree_walk initialize 2n−s − 1 qubits exclusive to the second stage with
values Ry(αj,v) and Rz(λj,v). Then function cswaps combine the states through CSWAP gates controlled
by the nodes above level s. With the tree described in Fig. 4a and s = 2, the bidirectional procedure
(Pseudocode 5) generates the circuit present in Fig. 4c.

Pseudocode 1: Generate a state tree by the decomposition of an amplitude input vector
1 state_decomposition(nqubits, data):

input : Number of qubits (nqubits) required to generate a state with the same length as the
data vector (2nqubits).

input : A list (data) representing the state to be decomposed, with exactly 2nqubits pairs
(index, amplitude).

output: Root of the state tree.
// Initialize an auxiliary vector new_nodes with data vector amplitudes

2 new_nodes = []
3 for k ← 0 to length(data)− 1 do
4 node.index = data[k].index
5 node.level = nqubits
6 node.amplitude = data[k].amplitude
7 new_nodes[k] = node

// Build the state tree
8 for level← nqubits to 1 step −1 do
9 nodes = new_nodes

10 new_nodes = []
11 for k ← 0 to length(nodes)− 1 step 2 do

12 mag =
√
|nodes[k].amplitude|2 + |nodes[k+1].amplitude|2

13 arg = (∠nodes[k].amplitude + ∠nodes[k+1].amplitude)/2
14 node.index = nodes[k].index // 2
15 node.level = level
16 node.amplitude = mag× exp(1j× arg)
17 node.left = nodes[k]
18 node.right = nodes[k+1]
19 new_nodes[k//2] = node

20 return new_nodes[0] ; // return tree root

15

Pseudocode 2: Generate a angle tree that will be used to perform the state preparation
1 angle_tree(state_tree):

input : An output of state_decomposition function (state_tree).
output: Tree with angles that will be used to perform the state preparation.

2 angle_y, angle_z = 0
3 if state_tree.right 6= null then
4 amp = 0
5 if state_tree.amplitude 6= 0 then
6 amp = state_tree.right.amplitude / state_tree.amplitude

7 angle_y = 2 arcsin(|amp|)
8 angle_z = 2∠amp

9 node.index = state_tree.index
10 node.level = state_tree.level
11 node.angle_y = angle_y
12 node.angle_z = angle_z
13 if state_tree.left 6= null & !is_leaf(state_tree.left) then
14 node.left = angle_tree(state_tree.left)

15 if state_tree.right 6= null & !is_leaf(state_tree.right) then
16 node.right = angle_tree(state_tree.right)

17 return node

16

Pseudocode 3: Construct a circuit that perform a top-down state preparation for the input vector
state. The intended quantum state is encoded on the output_qubits.
1 top_down_tree_walk(angle_tree, circuit, start_level, control_nodes=null, target_nodes=null):

input : An output of angle_tree function (angle_tree).
input : A quantum circuit to apply the top-down encoding (circuit).
input : The tree level to start the walk (start_level).
input : Used in the recursive calls (control_nodes).
input : Used in the recursive calls (target_nodes).
output: circuit after the application of the top-down encoding.

2 if angle_tree 6= null then
3 if angle_tree.level < start_level then
4 top_down_tree_walk(angle_tree.left, circuit, start_level)
5 top_down_tree_walk(angle_tree.right, circuit, start_level)
6 else
7 angle_tree.qubit = add_qubit(circuit)
8 if target_nodes == null then
9 control_nodes = [] ; // initialize the controls list

10 target_nodes[0] = angle_tree ; // start by the sub-tree root

11 uniformly_controlled_rotation(circuit, control_nodes, target_nodes)
12 append(control_nodes, angle_tree) ; // add curr. node to the controls list
13 target_nodes = children(target_nodes) ; // all the nodes in the next level
14 if angle_tree.left 6= null then
15 top_down_tree_walk(angle_tree.left, circuit, start_level, control_nodes,

target_nodes)
16 else
17 top_down_tree_walk(angle_tree.left, circuit, start_level, control_nodes,

target_nodes)

18 initialize_top_down(circuit, state):
19 nqubits = log2(length(state))
20 state_tree = state_decomposition(nqubits, state)
21 angle_tree = angle_tree(state_tree)

22 top_down_tree_walk(angle_tree, circuit, 0)

23 output_nodes = left_view(angle_tree)
24 for k ← 0 to nqubits− 1 do
25 output_qubits[k] = output_nodes[k].qubit

26 return output_qubits

17

Pseudocode 4: Construct a circuit that perform a bottom-up state preparation for the input
vector state. The intended quantum state is encoded on the output_qubits.
1 cswaps(angle_tree, circuit):

input : An output of angle_tree function (angle_tree).
input : A quantum circuit to apply the cswaps (circuit).
output: circuit after the application of the cswaps.

2 left = angle_tree.left
3 right = angle_tree.right
4 while left 6= null & right 6= null do
5 circuit.cswap(angle_tree.qubit, left.qubit, right.qubit)
6 left = left.left
7 right = right.left

8 bottom_up_tree_walk(state_tree, circuit, start_level):
input : An output of state_decomposition function (state_tree).
input : A quantum circuit to apply the bottom-up encoding (circuit).
input : The tree level to start the bottom-up walk (start_level).
output: circuit after the application of the bottom-up encoding.

9 if angle_tree 6= null & angle_tree.level < start_level then
10 angle_tree.qubit = add_qubit(circuit)
11 circuit.ry(angle_tree.angle_y, angle_tree.qubit)
12 circuit.rz(angle_tree.angle_z, angle_tree.qubit)
13 bottom_up_tree_walk(angle_tree.left, circuit, start_level)
14 bottom_up_tree_walk(angle_tree.right, circuit, start_level)
15 cswaps(angle_tree, circuit)

16 initialize_bottom_up(circuit, state):
17 nqubits = log2(length(state))
18 state_tree = state_decomposition(nqubits, state)
19 angle_tree = angle_tree(state_tree)

20 bottom_up_tree_walk(angle_tree, circuit, nqubits)

21 output_nodes = left_view(angle_tree)
22 for k ← 0 to nqubits− 1 do
23 output_qubits[k] = output_nodes[k].qubit

24 return output_qubits

18

Pseudocode 5: Construct a circuit that perform a bidirectional state preparation for the input
vector state. The intended quantum state is encoded on the output_qubits.
1 initialize_bidirectional(circuit, state, split):
2 nqubits = log2(length(state))
3 state_tree = state_decomposition(nqubits, state)
4 angle_tree = angle_tree(state_tree)

5 top_down_tree_walk(angle_tree, circuit, nqubits−split) ; // stage 1
6 bottom_up_tree_walk(angle_tree, circuit, nqubits−split) ; // stage 2

7 output_nodes = left_view(angle_tree)
8 for k ← 0 to nqubits− 1 do
9 output_qubits[k] = output_nodes[k].qubit

10 return output_qubits

Pseudocode 6: Construct a circuit that perform a bidirectional state preparation for the sparse
input vector state. The intended quantum state is encoded on the output_qubits.
1 initialize_sparse_bidirectional(circuit, state, split):
2 nqubits = log2(length(state))
3 state_tree = sparse_state_decomposition(nqubits, state)
4 angle_tree = angle_tree(state_tree)

5 top_down_tree_walk(angle_tree, circuit, nqubits−split) ; // stage 1
6 bottom_up_tree_walk(angle_tree, circuit, nqubits−split) ; // stage 2

7 output_nodes = left_view(angle_tree)
8 for k ← 0 to nqubits− 1 do
9 output_qubits[k] = output_nodes[k].qubit

10 return output_qubits

19

Pseudocode 7: Generate a sparse state tree by the decomposition of an sparse amplitude input
vector
1 sparse_state_decomposition(nqubits, data):

input : Number of qubits (nqubits) required to generate a state with the same length as the
data vector (2nqubits).

input : A list (data) representing the state to be decomposed, with exactly 2nqubits pairs
(index, amplitude).

output: Root of the state tree.
// Initialize an auxiliary vector new_nodes with data vector amplitudes

2 new_nodes = []
3 for k ← 0 to length(data)− 1 do
4 node.index = data[k].index
5 node.level = nqubits
6 node.amplitude = data[k].amplitude
7 new_nodes[k] = node

// Build the state tree
8 for level← nqubits to 1 step −1 do
9 nodes = new_nodes

10 new_nodes = []
11 for k ← 0 to length(nodes)− 1 step 2 do
12 node.index = nodes[k].index // 2
13 node.level = level

14 mag = |nodes[k].amplitude|
15 arg = (∠nodes[k].amplitude)/2
16 if nodes[k].index%2 == 1 then
17 node.left = null
18 node.right = nodes[k]
19 k = k - 1
20 else if (k + 1) < length(nodes) & nodes[k + 1].index == nodes[k].index+ 1 then

21 mag =
√
|nodes[k].amplitude|2 + |nodes[k+1].amplitude|2

22 arg = (∠nodes[k].amplitude + ∠nodes[k+1].amplitude)/2
23 node.left = nodes[k]
24 node.right = nodes[k+1]
25 else
26 node.left = nodes[k]
27 node.right = null
28 k = k - 1

29 node.amplitude = mag× exp(1j× arg)

30 new_nodes.append(node)

31 return new_nodes[0] ; // return tree root

20

	1 Introduction
	2 Quantum state preparation with linear cost
	2.1 Tree representation
	2.2 Top-down approach
	2.3 Bottom-up approach

	3 Bidirectional quantum state preparation
	3.1 Complexity
	3.2 Experiment

	4 Sparse bidirectional quantum state preparation
	5 Conclusion
	Appendix A Pseudocode

