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Abstract

The hull of a linear code is the intersection of itself with its dual code with respect to certain inner

product. Both Euclidean and Hermitian hulls are of theorical and practical significance. In this paper,

we construct several new classes of MDS codes via (extended) generalized Reed-Solomon (GRS) codes

and determine their Euclidean or Hermitian hulls. Specifically, four new classes of MDS codes with

Hermitian hulls of flexible dimensions and six new classes of MDS codes with Euclidean hulls of flexible

dimensions are constructed. For the former, we further construct four new classes of entanglement-

assisted quantum error-correcting codes (EAQECCs) and four new classes of MDS EAQECCs of length

n > q+1. For the latter, we also give some examples on Euclidean self-orthogonal and one-dimensional

Euclidean hull MDS codes.

Keywords: hulls, entanglement-assisted quantum error-correcting codes, generalized Reed-Solomon

codes, extended generalized Reed-Solomon codes
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1. Introduction

Let C be a linear code over a finite filed. Denote the dual code of C with respect to certain inner

product by C⊥, such as the usual Euclidean inner product or classical Hermitian inner product. The

hull of C is defined by the linear code C∩C⊥, denoted by Hull(C), which was first introduced by Assmus

et al. [2] to classify finite projective planes. Over the years, numerous studies have shown that the hull

of linear codes plays a very important role in coding theory. On one hand, the hull of linear codes is

closely related to the complexity of algorithms for computing the automorphism group of a linear code

[25] and for checking permutation equivalence of two linear codes [26, 34]. In general, these algorithms

are really efficient when the dimension of the hull is small. Some magnificent results on linear codes

with small hulls were proposed in [6, 21, 28, 29, 33, 37] by using tools such as Gaussian sums, algebraic

function fields, partial difference sets and so on.

On the other hand, the hull of linear codes has important applications in the construction of so-

called entanglement-assisted quantum error-correcting codes (EAQECCs). EAQECCs were introduced
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by Burn et al. [3] and were rapidly developed by other scholars. By all accounts, the introduction of

EAQECCs is regarded as a milestone in the development of coding theory. Customarily, we denote

[[n, k, d; c]]q as an EAQECC, which can encode k logical qubits into n physical qubits with the help

of c pairs of maximally entangled states over Fq and can correct up to ⌊d−1
2 ⌋ qubit-errors. Different

from classical quantum error-correcting codes (QECCs), EAQECCs can be constructed by any linear

code, while QECCs can only be constructed by special linear codes with certain self-orthogonality or

satisfying certain dual containing condition [4, 32]. Similar to classical linear codes, for EAQECCs,

people are also willing to construct MDS EAQECCs, i.e., EAQECCs that reach the quantum Singleton

bound [1].

However, what needs to be emphasized is the difficulty of the computation of the number of

c. Fortunately, in 2018, Guenda et al. [15] described some celebrated relationships between the

number of c and the dimension of the hull of a linear code, where the hull was considered under both

the Euclidean inner product and Hermitian inner product. After this, people worked to determine

dimensions of hulls of different linear codes, and constructed new EAQECCs and MDS EAQECCs

(e.g., see [8, 11, 14, 15, 19, 20, 22, 23, 24, 27, 30, 31, 36] and references therein). We can summarize

some outstanding works on this topic as follows. In [14], Guenda et al. completely determined all

possible q-ary MDS EAQECCs of length n ≤ q + 1 via the ℓ-intersection pair of linear codes, which

implies that the construction of q-ary MDS EAQECCs of length n > q + 1 will be the main theme

of our researches. In [11], (extended) generalized Reed-Solomon (GRS) codes with Euclidean and

Hermitian hulls of arbitrary dimensions were discussed by Fang et al.. As applications, some good

MDS EAQECCs with flexible parameters were obtained. Recently, in [35], Wang et al. constructed

some MDS EAQECCs based on GRS codes with Euclidean hulls of flexible dimensions and these MDS

EAQECCs no longer need to use a fixed c. In [7], Chen proved that if an [n, k]q2 Hermitian self-

orthogonal code exists, then [n, k]q2 linear codes with Hermitian hulls of arbitrary dimensions exist.

Based on this consequence, a large number of MDS EAQECCs can be directly derived.

Inspired and motivated by these works, in this paper, we study (extended) GRS codes and determine

their Euclidean or Hermitian hulls. Moreover, using those MDS codes with Hermitian hulls of flexible

dimensions, we construct four new classes of EAQECCs and four new classes of MDS EAQECCs with

flexible parameters. The lengths of these MDS EAQECCs are all greater than q+1. For reference, we

list the parameters of some known MDS EAQECCs and the new ones in Table 1. Besides, as concrete

examples of the Euclidean case, some Euclidean self-orthogonal and one-dimensional Euclidean hull

MDS codes are given.

The rest of this paper is organized as follows. In Section 2, we review some basic notations and

results on (extended) GRS codes and hulls. In Section 3, we construct several new classes of MDS

codes with Euclidean or Hermitian hulls of flexible dimensions. Section 4 constructs some new families

of EAQECCs and MDS EAQECCs of length n > q + 1. And finally, Section 5 concludes this paper.
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Table 1: Some known constructions of MDS EAQECCs of length n > q + 1

Parameters Constraints Ref.

[[ q
2−1
t

, q2−1
t

− 2d+ t+ 2, d; t]]q q odd, t odd, t ≥ 3, t | q + 1, (t−1)(q−1)
t

+ 2 ≤ d ≤ (t+1)(q−1)
t

− 2 [8]

[[q2 + 1, q2 + 1− q − l, q + 1; q − l]]q q = pm ≥ 3, 0 ≤ l ≤ q [11]

[[trz , trz − k − l, k + 1; k − l]]q q = pm ≥ 3, r = pe, e | m, 1 ≤ t ≤ r, 1 ≤ z ≤ 2m
e
− 1, 1 ≤ k ≤ ⌊n−1+q

q+1 ⌋, 0 ≤ l ≤ k [11]

[[trz + 1, trz + 1− k − l, k + 1; k − l]]q q = pm ≥ 3, r = pe, e | m, 1 ≤ t ≤ r, 1 ≤ z ≤ 2m
e
− 1, 1 ≤ k ≤ ⌊n−1+q

q+1 ⌋, 0 ≤ l ≤ k − 1 [11]

[[tn′, tn′ − k − l, k + 1; k − l]]q q = pm ≥ 3, n′ | (q2 − 1), 1 ≤ t ≤ q−1
n1

, n1 = n′

gcd(n′,q+1) , 1 ≤ k ≤ ⌊n+q
q+1 ⌋, 0 ≤ l ≤ k − 1 [11]

[[tn′ + 1, tn′ + 1− k − l, k + 1; k − l]]q q = pm ≥ 3, n′ | (q2 − 1), 1 ≤ t ≤ q−1
n1

, n1 = n′

gcd(n′,q+1) , 1 ≤ k ≤ ⌊n+q
q+1 ⌋, 0 ≤ l ≤ k [11]

[[ q
2−1
t

, q
2−1
t

− 4qm+ 4m2 + 3, 2m(q − 1); (2m− 1)2]]q q ≥ 3, t | q2 − 1, 1 ≤ m ≤ ⌊ q+1
4t ⌋ [19]

[[ q
2+1
t

, q2+1
t

− 4qm+ 4q + 4m2 − 8m+ 3, 2q(m− 1) + 2; 4(m− 1)2 + 1]]q q ≥ 7, t | q2 + 1, 2 ≤ m ≤ ⌊ q+1
4t ⌋ [19]

[[lh+mr, lh+mr − 2d+ c, d+ 1; c]]q
s | q + 1, t | q − 1, l = q2−1

s
, m = q2−1

t
, 1 ≤ h ≤ s

2 ,

2 ≤ r ≤ t
2 , c = h− 1, 1 ≤ d ≤ min{ s+h

2 · q+1
s

+ 2, q+1
2 + q−1

t
− 1}

[20]

[[1 + (2e+ 1) q
2−1

2s+1 , 1 + (2e+ 1) q
2−1

2s+1 − 2k + c, k + 1; c]]q 0 ≤ e ≤ s− 1, (2s+ 1) | q + 1, c = 2e+ 1, 1 ≤ k ≤ (s+ 1 + e) q+1
2s+1 − 1 [20]

[[1 + (2e+ 1) q
2−1
2s , 1 + (2e+ 1) q

2−1
2s − 2k + c, k + 1; c]]q 0 ≤ e ≤ s− 2, 2s | q + 1, c = 2e+ 2, 1 ≤ k ≤ (s+ 1 + e) q+1

2s − 1 [20]

[[1 + (2e+ 1) q
2−1
2s , 1 + (2e+ 1) q

2−1
2s − 2k + c, k + 1; c]]q 0 ≤ e ≤ s− 1, 2s | q + 1, c = 2e+ 1, 1 ≤ k ≤ (s+ e) q+1

2s − 2 [20]

[[n, n− k − h, k + 1; k − h]]q q > 3, m > 1, m | q, 1 < k ≤ ⌊n
2 ⌋, n+ k > m+ 1, 1 ≤ n ≤ m, 1 ≤ h ≤ n−m+ k − 1 [22]

[[n, n− k − h, k + 1; k − h]]q
q > 3, m > 1, m | q, 1 < k ≤ ⌊n

2 ⌋,

2n− k − 1 < m < 2n− 1, 1 ≤ n ≤ m, 1 ≤ h ≤ 2n−m− 1
[22]

[[n, n− k − l, k + 1; k − l]]q q + 1 < n < 2(q − 1), n− q < k < ⌊n
2 ⌋, 1 ≤ l ≤ k + q − n [24]

[[ q+1
7 (q − 1), q+1

7 (q − 1) + 5− 2d, d; 3]]q d ≤ n+2
2 , 5(q+1)

7 ≤ d ≤ 6(q+1)
7 − 2 [27]

[[ q+1
7 (q − 1), q+1

7 (q − 1) + 7− 2d, d; 5]]q d ≤ n+2
2 , 6(q+1)

7 ≤ d ≤ q [27]

[[ q+1
7 (q − 1), q+1

7 (q − 1) + 9− 2d, d; 7]]q q odd, d ≤ n+2
2 , d = 8(q+1)

7 − 1 [27]

[[ q+1
4 (q − 1), q+1

4 (q − 1) + 4− 2d, d; 2]]q q odd, d ≤ n+2
2 , 3(q+1)

4 ≤ d ≤ q [27]

[[ q+1
4 (q − 1), q+1

4 (q − 1) + 6− 2d, d; 4]]q q odd, d ≤ n+2
2 , q + 1 ≤ d ≤ 5(q+1)

4 − 1 [27]

[[ q+1
6 (q − 1), q+1

6 (q − 1) + 4− 2d, d; 2]]q q odd, d ≤ n+2
2 , 4(q+1)

6 ≤ d ≤ 5(q+1)
6 − 1 [27]

[[ q+1
6 (q − 1), q+1

6 (q − 1) + 6− 2d, d; 4]]q q odd, d ≤ n+2
2 , 5q+1

6 ≤ d ≤ q [27]

[[q2 + 1, q2 − 2δ, 2δ+ 2; 2δ + 1]]q q odd, s = n
2 , r | q − 1, r ∤ q + 1, 0 ≤ δ ≤ (r−1)(s−1)

r
[30]

[[q2 + 1, q2 − 2δ − 1, 2δ + 3; 2δ + 2]]q q = 2m (m ≥ 1), µ = n−r
2 , r | q − 1, r ∤ q + 1, 0 ≤ δ ≤ µ−1

r
[30]

[[q2 + 1, q2 − 2δ, 2δ+ 2; 2δ + 1]]q q = 2m (m ≥ 1), r | q − 1, r ∤ q + 1, 0 ≤ δ ≤ (r−1)(n−2)
2r [30]

[[q2 + 1, q2 − 4(m− 1)(q −m− 1), 2(m− 1)q + 2; 4(m− 1)2 + 1]]q q ≥ 5, 2 ≤ m ≤ q−1
2 [31]

[[n, n− k − l, k + 1; k − l]]q q = pm ≥ 3, 1 ≤ k ≤ q − 1, q2 − k ≤ n ≤ q2, 0 ≤ l ≤ n+ k − q2 new

[[n+ 1, n+ 1− k − l, k + 1; k − l]]q q = pm ≥ 3, 1 ≤ k ≤ q − 1, q2 − k + 1 ≤ n ≤ q2, 0 ≤ l ≤ n+ k − q2 − 1 new

[[n+ 1, n− 1− q − l, q + 1; q − l]]q q = pm ≥ 3, q2 − q ≤ n ≤ q2, 0 ≤ l ≤ n+ q − q2 new

[[m(q − 1) + 1,m(q − 1) + 1− k − l, k + 1; k − l]]q q = pm ≥ 3, 2 ≤ m ≤ q, 1 ≤ k ≤ m− 1, 0 ≤ l ≤ k − 1 new
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2. Preliminaries

Let q be a prime power and Fq be the finite field with q elements. For any positive integer n,

Fn
q can be seen as an n-dimensional vector space over Fq. Then a k-dimensional subspace of Fn

q with

minimum distance d is just a linear code C, denoted by [n, k, d]q. A linear code C is called an MDS

code if d = n− k+ 1. Now, we review some basic notations and results on (extended) GRS codes and

hulls.

Firstly, for any two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) of Fn
q , we can define

different inner products between them. Specifically, the Euclidean inner product between x and y is

defined by

〈x,y〉E =

n∑

i=1

xiyi.

If C is a linear code of length n over Fq, then the Euclidean dual code of C, denoted by C⊥E , can be

described as the set

C⊥E = {x ∈ Fn
q : 〈x,y〉E = 0, for all y ∈ C}.

The Hermitian inner product between x and y is defined by

〈x,y〉H =

n∑

i=1

xiy
q
i .

If C is a linear code of length n over Fq2 , then the Hermitian dual code of C, denoted by C⊥H , can be

similarly described as the set

C⊥H = {x ∈ Fn
q2 : 〈x,y〉H = 0, for all y ∈ C}.

Then as said before, we define the Euclidean hull (resp. Hermitian hull) of C as C ∩ C⊥E (resp.

C ∩ C⊥H ), denoted by HullE(C) (resp. HullH(C)). It is well known that C is an Euclidean (resp.

Hermitian) self-orthogonal code if HullE(C) = C (resp. HullH(C) = C). More generally, for a positive

integer l, if dim(HullE(C)) = l (resp. dim(HullH(C)) = l), we call C a l-dimensional Euclidean (resp.

Hermitian) hull code.

Denote F∗
q = Fq\{0}. Choose n distinct elements a1, a2, · · · , an from Fq and n nonzero elements

v1, v2, · · · , vn from F∗
q . As special MDS codes, GRS codes and extended GRS codes can be defined as

follows. Set a = (a1, a2, . . . , an) and v = (v1, v2, . . . , vn). The GRS code of length n associated to a

and v, denoted by GRS(a,v), is defined by

GRS(a,v) = {(v1f(a1), v2f(a2), . . . , vnf(an)) : f(x) ∈ Fq[x] anddeg(f(x)) ≤ k − 1},

where the elements a1, a2, . . . , an are called the code locators of GRS(a,v) and v1, v2, . . . , vn are called

the column multipliers of GRS(a,v).
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With a practical technique, the extended GRS code of length n+1 associated to a and v, denoted

by GRSk(a,v,∞), can be derived. Specifically, the definition of GRSk(a,v,∞) is

GRSk(a,v,∞) = {(v1f(a1), v2f(a2), . . . , vnf(an), fk−1) : f(x) ∈ Fq[x] anddeg(f(x)) ≤ k − 1},

where fk−1 is the coefficient of xk−1 in f(x).

For our purposes, considering both (extended) GRS codes and hulls, some basic results need to be

introduced. To this end, for 0 ≤ i ≤ n, we denote

ui =
∏

1≤j≤n,j 6=i

(ai − aj)
−1, (1)

which will appear frequently in this paper and is critical to our constructions. Then the coming results

can help us calculate the dimension of the hull of a GRS code or an extended GRS code.

Lemma 1. ([5]) Considering the Euclidean inner product over Fq, the following statements hold.

(1) A codeword c = (v1f(a1), v2f(a2), . . . , vnf(an)) of GRSk(a,v) is contained in GRSk(a,v)
⊥E if

and only if there exists a polynomial g(x) ∈ Fq[x] with deg(g(x)) ≤ n− k − 1 such that

(v21f(a1), v
2
2f(a2), . . . , v

2
nf(an)) = (u1g(a1), u2g(a2), . . . , ung(an)).

(2) A codeword c = (v1f(a1), v2f(a2), . . . , vnf(an), fk−1) of GRSk(a,v,∞) is contained in GRSk(a,v,

∞)⊥E if and only if there exists a polynomial g(x) ∈ Fq[x] with deg(g(x)) ≤ n− k such that

(v21f(a1), v
2
2f(a2), . . . , v

2
nf(an), fk−1) = (u1g(a1), u2g(a2), . . . , ung(an),−gn−k),

where gn−k is the coefficient of xn−k in g(x).

Lemma 2. ([9]) Considering the Hermitian inner product over Fq2 , the following statements hold.

(1) A codeword c = (v1f(a1), v2f(a2), . . . , vnf(an)) of GRSk(a,v) is contained in GRSk(a,v)
⊥H if

and only if there exists a polynomial g(x) ∈ Fq2 [x] with deg(g(x)) ≤ n− k − 1 such that

(vq+1
1 f q(a1), v

q+1
2 f q(a2), . . . , v

q+1
n f q(an)) = (u1g(a1), u2g(a2), . . . , ung(an)).

(2) A codeword c = (v1f(a1), v2f(a2), . . . , vnf(an), fk−1) of GRSk(a,v,∞) is contained in GRSk(a,v,

∞)⊥H if and only if there exists a polynomial g(x) ∈ Fq2 [x] with deg(g(x)) ≤ n− k such that

(vq+1
1 f q(a1), v

q+1
2 f q(a2), . . . , v

q+1
n f q(an), f

q
k−1) = (u1g(a1), u2g(a2), . . . , ung(an),−gn−k),

where gn−k is the coefficient of xn−k in g(x).

For a given l-dimensional Hermitian hull linear code, by Corollary 2.2 of [7], linear codes with Her-

mitian hulls of flexible dimensions can be obtained in an explicit way. For convenience, we equivalently

write it in the following form.

Lemma 3. ([7]) Let C be an [n, k]q2 linear code with l-dimensional Hermitian hull. Then there exists

an [n, k]q2 linear code with l′-dimensional Hermitian hull for nonnegative integer l′ satisfying 0 ≤ l′ ≤ l.
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In particular, according to the proof of Lemma 3 in [7], for the MDS case and l = k − 1, we can

precisely derive the following corollary.

Corollary 4. Let C be an [n, k]q2 MDS code with (k − 1)-dimensional Hermitian hull. Then there

exists an [n, k]q2 MDS code with l′-dimensional Hermitian hull for nonnegative integer l′ satisfying

0 ≤ l′ ≤ k − 1.

Finally, we make some conventions. As readers may have noticed, throughout this paper,

• when we talk about Euclidean inner product or Euclidean hull, the finite field that matches is

always Fq;

• when we talk about Hermitian inner product or Hermitian hull, the finite field that matches is

always Fq2 .

For the multiplication sign ”
∏b

i=a ·” over Fq, we make the following agreement:

• if a ≤ b, then the operation is performed according to the standard multiplication over Fq;

• if a > b, then the result of this operation is always 1, where 1 is the unit element of Fq.

In addition, we need to emphasize the following notations:

• ⌊x⌋ denotes the largest integer less than or equal to x;

• ⌈x⌉ denotes the smallest integer greater than or equal to x;

• [a, b] denotes a set of x satisfying a ≤ x ≤ b, where a ≤ b.

3. Constructions

In this section, we present several new classes of MDS codes via (extended) GRS codes, whose

Euclidean hulls or Hermitian hulls are entirely determined. We also introduce a new method to

construct [n, k]q2 MDS codes with (k − 1)-dimensional Hermitian hull. For Euclidean cases, some

Euclidean self-orthogonal and one-dimensional Euclidean hull MDS codes are given as examples.

3.1. Construction A for MDS codes with Hermitian hulls of flexible dimensions

Denote Fq2 = {a1, a2, · · · , an, an+1, · · · , aq2}. It is clear that ai 6= aj for any 1 ≤ i 6= j ≤ q2. Note

that

∏

1≤j≤q2,j 6=i

(ai − aj)
−1 =

∏

x∈F
∗

q2

x = −1,

then ui defined as Eq. (1) can be further denoted by

ui =
∏

1≤j≤n,j 6=i

(ai − aj)
−1 = −

q2∏

j=n+1

(ai − aj). (2)

Based on the basic fact above, three new classes of MDS codes with Hermitian hulls of flexible

dimensions can be constructed as follows.
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Theorem 5. Let q = pm ≥ 3, for 1 ≤ k ≤ q− 1, if q2 − k ≤ n ≤ q2, then there exists an [n, k]q2 MDS

code with l-dimensional Hermitian hull, where 0 ≤ l ≤ n+ k − q2.

Proof. Let notations be the same as before. Denote s = n+ k − q2 − l. Take a = (a1, a2, . . . , an) and

v = (v1, v2, . . . , vs, 1, . . . , 1), where vq+1
i 6= 1 for all 1 ≤ i ≤ s. Note that (q2 − 1) ∤ (q + 1) for any q

satisfying q ≥ 3, then such v does exist. We now consider the Hermitian hull of the q2-ary [n, k] MDS

code C = GRSk(a,v).

For any codeword

c = (v1f(a1), . . . , vsf(as), f(as+1), . . . , f(an)) ∈ HullH(C),

by the result (1) of Lemma 2, there exists a polynomial g(x) ∈ Fq2 [x] with deg(g(x)) ≤ n− k− 1 such

that

(vq+1
1 f q(a1), . . . , v

q+1
s f q(as), f

q(as+1), . . . , f
q(an))

=(u1g(a1), . . . , usg(as), us+1g(as+1), . . . , ung(an)).
(3)

On one hand, from the last n− s coordinates of Eq. (3) and Eq. (2), we have

f q(ai) = uig(ai) = −

q2∏

j=n+1

(ai − aj)g(ai), s+ 1 ≤ i ≤ n.

It follows that f q(x) = −
∏q2

j=n+1(x − aj)g(x) has at least n − s distinct roots. Recall that s =

n+ k − q2 − l and 1 ≤ k ≤ q − 1, then

deg(f q(x)) ≤ q(k − 1) ≤ q2 − k − 1 = n− s− l− 1 ≤ n− s− 1,

deg(

q2∏

j=n+1

(x− aj)g(x)) ≤ (q2 − n) + (n− k − 1) = q2 − k − 1 ≤ n− s− 1.

Hence, we can conclude that f q(x) = −
∏q2

j=n+1(x−aj)g(x) from the fact n−s−1 < n−s. Moreover,
∏q2

j=n+1(x− aj) | f
q(x).

On the other hand, from the first s coordinates of Eq. (3), we have

vq+1
i f q(ai) = uig(ai) = f q(ai), 1 ≤ i ≤ s.

For any 1 ≤ i ≤ s, since vq+1
i 6= 1, we have f(ai) = 0. Therefore, f(x) can be written as

f(x) = h(x)

q2∏

j=n+1

(x− aj)

s∏

i=1

(x− ai),

where h(x) ∈ Fq2 [x] with deg(h(x)) ≤ n+k−q2−s−1. It deduces that dim(HullH(C)) ≤ n+k−q2−s.

Conversely, let f(x) be a polynomial of form h(x)
∏q2

j=n+1(x−aj)
∏s

i=1(x−ai), where h(x) ∈ Fq2 [x]

with deg(h(x)) ≤ n+ k− q2− s− 1. Take g(x) = −
∏q2

j=n+1(x− aj)
−1f q(x), then g(x) is a polynomial

in Fq2 [x] with deg(g(x)) ≤ q(k − 1)− (q2 − n) ≤ n− k − 1. Moreover, by Eq. (2), we have

(vq+1
1 f q(a1), . . . , v

q+1
s f q(as), f

q(as+1), . . . , f
q(an))

=(u1g(a1), . . . , usg(as), us+1g(as+1), . . . , ung(an)).
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According to the result (1) of Lemma 2, the vector

(v1f(a1), . . . , vsf(as), f(as+1), . . . , f(an)) ∈ HullH(C).

It deduces that dim(HullH(C)) ≥ n+ k − q2 − s.

In summary, dim(HullH(C)) = n+ k − q2 − s = l. This completes the proof.

Theorem 6. Let q = pm ≥ 3, for 1 ≤ k ≤ q−1, if q2−k+1 ≤ n ≤ q2, then there exists an [n+1, k]q2

MDS code with l-dimensional Hermitian hull, where 0 ≤ l ≤ n+ k − q2 − 1.

Proof. Denote s = n + k − q2 − l − 1 and let other notations be the same as Theorem 5. We now

consider the Hermitian hull of the q2-ary [n+ 1, k] MDS code C = GRSk(a,v,∞).

For any codeword

c = (v1f(a1), . . . , vsf(as), f(as+1), . . . , f(an), fk−1) ∈ HullH(C),

by the result (2) of Lemma 2, there exists a polynomial g(x) ∈ Fq2 [x] with deg(g(x)) ≤ n−k such that

(vq+1
1 f q(a1), . . . , v

q+1
s f q(as), f

q(as+1), . . . , f
q(an), f

q
k−1)

=(u1g(a1), . . . , usg(as), us+1g(as+1), . . . , ung(an),−gn−k).
(4)

On one hand, from the last n− s+ 1 coordinates of Eq. (4) and Eq. (2), we have

f q(ai) = uig(ai) = −

q2∏

j=n+1

(ai − aj)g(ai), s+ 1 ≤ i ≤ n and f q
k−1 = −gn−k.

It follows that f q(x) = −
∏q2

j=n+1(x − aj)g(x) has at least n − s distinct roots. Recall that s =

n+ k − q2 − l − 1 and 1 ≤ k ≤ q − 1, then

deg(f q(x)) ≤ q(k − 1) ≤ q2 − k = n− s− l− 1 ≤ n− s− 1,

deg(

q2∏

j=n+1

(x− aj)g(x)) ≤ (q2 − n) + (n− k) = q2 − k ≤ n− s− 1.

Hence, we can conclude that f q(x) = −
∏q2

j=n+1(x−aj)g(x) from the fact n−s−1 < n−s. Moreover,
∏q2

j=n+1(x−aj) | f
q(x). Now, we determine the value of fk−1. If fk−1 6= 0, since f q(x) = −

∏q2

j=n+1(x−

aj)g(x) and f q
k−1 = −gn−k, we have q(k− 1) = (q2 −n) + (n− k), which contradicts to 1 ≤ k ≤ q− 1.

Hence, fk−1 = 0 and deg(f(x)) ≤ k − 2.

On the other hand, similar to the proof of Theorem 5, it follows that f(ai) = 0 for any 1 ≤ i ≤ s

from the first s coordinates of Eq. (4). Therefore, f(x) can be written as

f(x) = h(x)

q2∏

j=n+1

(x− aj)

s∏

i=1

(x− ai),

where h(x) ∈ Fq2 [x] with deg(h(x)) ≤ n+k−q2−s−2. It deduces that dim(HullH(C)) ≤ n+k−q2−s−1.
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Conversely, let f(x) be a polynomial of form h(x)
∏q2

j=n+1(x−aj)
∏s

i=1(x−ai), where h(x) ∈ Fq2 [x]

with deg(h(x)) ≤ n+ k − q2 − s − 2. Take g(x) = −
∏q2

j=n+1(x − aj)
−1f q(x) ∈ Fq2 [x], then g(x) is a

polynomial in Fq2 [x] with deg(g(x)) ≤ q(k − 2)− (q2 − n) ≤ n− k− 1. Moreover, by Eq. (2), we have

(vq+1
1 f q(a1), . . . , v

q+1
s f q(as), f

q(as+1), . . . , f
q(an), 0)

=(u1g(a1), . . . , usg(as), us+1g(as+1), . . . , ung(an), 0).

According to the result (2) of Lemma 2, the vector

(v1f(a1), . . . , vsf(as), f(as+1), . . . , f(an), 0) ∈ HullH(C).

It deduces that dim(HullH(C)) ≥ n+ k − q2 − s− 1.

In summary, dim(HullH(C)) = n+ k − q2 − s− 1 = l. This completes the proof.

In particular, considering k = q, one more new classes of MDS codes with Hermitian hulls of more

flexible dimensions can be obtained from the following way.

Theorem 7. Let q = pm ≥ 3, for any q2 − q ≤ n ≤ q2, there exists an [n + 1, q]q2 MDS code with

l-dimensional Hermitian hull, where 0 ≤ l ≤ n+ q − q2.

Proof. Denote s = n+ q − q2 − l and let other notations be the same as before. We now consider the

Hermitian hull of the q2-ary [n+ 1, q] MDS code C = GRSk(a,v,∞).

For any codeword

c = (v1f(a1), . . . , vsf(as), f(as+1), . . . , f(an), fq−1) ∈ HullH(C),

by the result (2) of Lemma 2, there exists a polynomial g(x) ∈ Fq2 [x] with deg(g(x)) ≤ n− q such that

(vq+1
1 f q(a1), . . . , v

q+1
s f q(as), f

q(as+1), . . . , f
q(an), f

q
q−1)

=(u1g(a1), . . . , usg(as), us+1g(as+1), . . . , ung(an),−gn−q).
(5)

On one hand, from the last n− s+ 1 coordinates of Eq. (5) and Eq. (2), we have

f q(ai) = uig(ai) = −

q2∏

j=n+1

(ai − aj)g(ai), s+ 1 ≤ i ≤ n, and f q
q−1 = −gn−q.

Note that

deg(f q(x)) ≤ q(q − 1) = q2 − q,

deg(

q2∏

j=n+1

(x− aj)g(x)) ≤ (q2 − n) + (n− q) = q2 − q.

Since f q
q−1 = −gn−q, then deg(f q(x)) = q2−q, i.e., fq−1 6= 0 is equivalent to deg(

∏q2

j=n+1(x−aj)g(x)) =

q2 − q, i.e., gn−q 6= 0. It follows that

deg(f q(x) +

q2∏

j=n+1

(x− aj)g(x)) ≤ q2 − q − 1 ≤ n− s− l − 1 ≤ n− s− 1

9



for any possible f(x). Hence, we can conclude that f q(x) = −
∏q2

j=n+1(x − aj)g(x) from the fact

n− s− 1 < n− s. Moreover,
∏q2

j=n+1(x− aj) | f
q(x).

On the other hand, taking a similar manner to Theorem 6, f(x) can be written as

f(x) = h(x)

q2∏

j=n+1

(x− aj)

s∏

i=1

(x− ai),

where h(x) ∈ Fq2 [x] with deg(h(x)) ≤ n+q−q2−s−1. It deduces that dim(HullH(C)) ≤ n+q−q2−s.

Conversely, let f(x) be a polynomial of form h(x)
∏q2

j=n+1(x−aj)
∏s

i=1(x−ai), where h(x) ∈ Fq2 [x]

with deg(h(x)) ≤ n + q − q2 − s − 1. Take g(x) = −
∏q2

i=n+1(x − ai)
−1f q(x) ∈ Fq2 [x], then g(x) is a

polynomial in Fq2 [x] with deg(g(x)) ≤ q(q − 1)− (q2 − n) = n− q. Moreover, by Eq. (2), we have

(vq+1
1 f q(a1), . . . , v

q+1
s f q(as), f

q(as+1), . . . , f
q(an), f

q
q−1)

=(u1g(a1), . . . , usg(as), us+1g(as+1), . . . , ung(an),−gn−q).

According to the result (2) of Lemma 2, the vector

(v1f(a1), . . . , vsf(as), f(as+1), . . . , f(an), fq−1) ∈ HullH(C).

It deduces that dim(HullH(C)) ≥ n+ q − q2 − s.

In summary, dim(HullH(C)) = n+ q − q2 − s = l. This completes the proof.

Remark 1. (1) Discuss the range of lengths in Theorems 5, 6 and 7 as follows:

• For Theorem 5: It follows from 1 ≤ k ≤ q − 1 that n ≥ q2 − k ≥ q2 − q + 1. Since q ≥ 3,

we have n > q + 1;

• For Theorem 6: It follows from 1 ≤ k ≤ q− 1 that n ≥ q2 − k+1 ≥ q2 − q+2. Since q ≥ 3,

we have n > q + 1;

• For Theorem 7: It follows from q ≥ 3 that n ≥ q2 − q > q + 1.

Hence, lengths in Theorems 5, 6 and 7 are at least q2 − q + 1 and must be greater than q + 1.

(2) Note that the following facts:

• the dimension l of the Hermitian hull can take n+ k − q2 in Theorem 5;

• the length n+ 1 of the MDS codes can take q2 + 1 in Theorem 6;

• the dimension k of the MDS codes can and only can take q in Theorem 7.

Hence, MDS codes constructed by Theorems 5, 6 and 7 will not be exactly the same as each other.

3.2. Construction B for MDS codes with Hermitian hulls of arbitrary dimensions

In this subsection, we construct a new classes of MDS codes with Hermitian hulls of arbitrary

dimensions. To this end, we need the following Lemma.
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Lemma 8. Let GRSk(a,v,∞) be an extended GRS code associated to a and v over Fq2 . Let ai and

vi be the i-th elements of a and v, respectively, where 1 ≤ i ≤ n. Assume that there exists a monic

polynomial h(x) ∈ Fq2 [x] with deg(h(x)) ≤ q + n− (q + 1)k such that

λuih(ai) = vq+1
i , 1 ≤ i ≤ n, (6)

where λ ∈ F∗
q2 . If deg(h(x)) = q + n − (q + 1)k and λ = −1 do not hold at the same time, then

GRSk(a,v,∞) is a (k − 1)-dimensional Hermitian hull MDS code of length n.

Proof. Multiplying both sides of Eq. (6) by f q(ai), we have

λuih(ai)f
q(ai) = vq+1

i f q(ai), 1 ≤ i ≤ n, (7)

where λ ∈ F∗
q2
.

Let g(x) = λh(x)f q(x) and substitute g(ai) into Eq. (7), then

deg(g(x)) ≤ q + n− (q + 1)k + q(k − 1) = n− k

and

uig(ai) = vq+1
i f q(ai), 1 ≤ i ≤ n.

We discuss the relationship between fk−1 and gn−k in two ways.

• Case 1: When deg(f(x)) < k − 1, we have deg(f(x)) ≤ k − 2 and fk−1 = 0. Note that, in this

case,

deg(g(x)) ≤ q + n− (q + 1)k + q(k − 2) = n− k − q < n− k,

which implies gn−k = 0. Hence, f q
k−1 = 0 = −gn−k and the fact has nothing to do with λ.

• Case 2: When deg(f(x)) = k − 1, we have fk−1 6= 0 and

deg(g(x)) ≤ q + n− (q + 1)k + q(k − 1) = n− k.

Note that deg(g(x)) = n− k if and only if deg(h(x)) = q + n− (q + 1)k.

• Subcase 2.1: When deg(h(x)) < q+n− (q+1)k, we still have deg(g(x)) < n−k and gn−k = 0.

Then f q
k−1 6= −gn−k for the fact fk−1 6= 0.

• Subcase 2.2: When deg(h(x)) = q + n− (q + 1)k, i.e., deg(g(x)) = n− k and gn−k 6= 0. Note

that h(x) is a monic polynomial over Fq2 , then the coefficients of the highest degree of g(x) and

λh(x)f q(x) are gn−k and λf q
k−1, respectively. Since g(x) = λh(x)f q(x), we have f q

k−1 = λgn−k.

Therefore, it is easy to see that f q
k−1 = −gn−k if and only if λ = −1.

In summary, when deg(h(x)) = q + n − (q + 1)k and λ = −1 do not hold at the same time,

f q
k−1 = −gn−k follows if and only if deg(f(x)) < k − 1, if and only if fk−1 = −gn−k = 0. Hence, by

the result (2) of Lemma 2, for any polynomial f(x) ∈ Fq2 [x], we have

c = (v1f(a1), v2f(a2), . . . , vnf(an), 0) ∈ HullH(GRSk(a,v,∞)), where deg(f(x)) ≤ k − 2
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and

c = (v1f(a1), v2f(a2), . . . , vnf(an), fk−1) /∈ HullH(GRSk(a,v,∞)), where deg(f(x)) = k − 1.

Clearly, we can conclude that dim(HullH(GRSk(a,v,∞))) = k − 1. The desired result follows.

Moreover, a criterion for an extended GRS code being Hermitian self-orthogonal can be derived.

We write it in the following corollary and one can finish the proof in a similar manner to Lemma 8.

Corollary 9. Let GRSk(a,v,∞) be an extended GRS code associated to a and v over Fq2 . Let ai and

vi be the i-th elements of a and v, respectively, where 1 ≤ i ≤ n. If there exists a monic polynomial

h(x) ∈ Fq2 [x] with deg(h(x)) = q + n− (q + 1)k such that

−uih(ai) = vq+1
i , 1 ≤ i ≤ n, (8)

then GRSk(a,v,∞) is a Hermitian self-orthogonal MDS code of length n.

As we all know, if HullH(C) = C, i.e., dim(C) = dim(HullH(C)) = k, then C is called a Hermitian

self-orthogonal code. For a unified description, we introduce the definition of Hermitian almost self-

orthogonal codes as follows.

Definition 10. For a linear code C of dimension k, if dim(HullH(C)) = k − 1, then we call C a

Hermitian almost self-orthogonal code. In particular, if C is Hermitian almost self-orthogonal and

MDS, then we call C a Hermitian almost self-orthogonal MDS code.

Now, we consider a kind of decompositions of Fq2 , which was first introduced in [13]. Assume

n = m(q − 1), 1 ≤ m ≤ q. Set

It = {x · ωt−1 : x ∈ F∗
q}

= {ωt−1, ωq+1+t−1, · · · , ω(q+1)i+t−1, · · · , ω(q+1)(q−2)+t−1},
(9)

where 1 ≤ t ≤ q. Denote

I =

m⋃

t=1

It = {a1, a2, · · · , an},

where ai = ω(q+1)i+t−1 for 1 ≤ i ≤ n. From [13], ui can be written as certain concrete form for

different q. We rephrase the result in Lemma 11.

Lemma 11. ([13]) Let notations be the same as before.

(1) If q is even, then

ui =(q − 1)−1a2−q
i ω(t−1)(m−2)+

m(m+1)
2 −(q+1)i0

=(q − 1)−1ω(t−1)(m−q)+m(m+1)
2 −(q+1)[(q−2)i+i0 ]

(10)

for some integer i0.
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(2) If q is odd, then

ui =(q − 1)−1a2−q
i ω(t−1)(m−2)+ (m−q−1)(m−1)

2 −(q+1)i0

=(q − 1)−1ω(t−1)(m−q)+ (m−q−1)(m−1)
2 −(q+1)[(q−2)i+i0 ]

(11)

for some integer i0.

Theorem 12. Let q be a prime power and 2 ≤ m ≤ q. Then there exists an [m(q − 1) + 1, k]q2

Hermitian almost self-orthogonal MDS code, where 1 ≤ k ≤ m− 1.

Proof. Let notations be the same as before. We continue our proof in the following two cases.

Case 1: When q is even, set λ = (q − 1)ω−m(m+1)
2 . By Eq. (10), ui can be written as

ui =(q − 1)−1ω(t−1)(m−q)+m(m+1)
2 −(q+1)[(q−2)i+i0 ]

=λ−1ω(t−1)(m−q)−(q+1)[(q−2)i+i0 ]

for some integer i0. Let h(x) = xq−m, then according to the form of ai, we have

λuih(ai) =ω(t−1)(m−q)−(q+1)[(q−2)i+i0] · ω(t−1)(q−m)+(q+1)(q−m)i

=ω−(q+1)[(m−2)i+i0].

It is obviously that λuih(ai) ∈ F∗
q and there exists vi ∈ F∗

q2 such that vq+1
i = λuih(ai) for each

1 ≤ i ≤ n. Set v = (v1, v2, . . . , vn).

Note that ⌊n+m
q+1 ⌋ = ⌊m(q+1)−m

q+1 ⌋ = m−1 ≥ 1 for 2 ≤ m ≤ q. Therefore, for 1 ≤ k ≤ ⌊n+m
q+1 ⌋ = m−1,

we can consider the extended GRS code GRSk(a,v,∞) associated to a and v, where a and v are defined

as above. Furthermore, it is easy to see that

deg(h(x)) = q −m ≤ q + n− (q + 1)k

and the equation holds if and only if k = m− m
q+1 , which contradicts to the fact that k is an integer. It

follows that deg(h(x)) < q+n−(q+1)k, thus, according to Lemma 8 and Definition 10, GRSk(a,v,∞)

is an [m(q − 1) + 1, k]q2 Hermitian almost self-orthogonal MDS code.

Case 2: When q is odd, set λ = (q − 1)ω
(q−m+1)(m−1)

2 . Taking a similar manner to Case 1 above,

let h(x) = xq−m again, then we can also obtain an [m(q− 1)+1, k]q2 Hermitian almost self-orthogonal

MDS code, where 1 ≤ k ≤ m− 1.

Combining Case 1 and Case 2, the desired result follows.

Remark 2. One of the most critical steps in the proof of Theorem 12 is to show that deg(h(x)) <

q+n− (q+1)k. In fact, by Lemma 8, we can also prove λ 6= −1. And a simple calculation shows that

q ≥ 3 is required if we finish the proof of Theorem 12 in this way. Therefore, this specifical example

shows us that the new method introduced in Lemma 8 is flexible for using and that it may produce a

small difference when we use it from different views.

Applying Corollary 4, we can draw the following result.
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Corollary 13. Let q be a prime power and 2 ≤ m ≤ q. Then for 1 ≤ k ≤ m − 1, there exists an

[m(q − 1) + 1, k]q2 MDS code with l-dimensional Hermitian hull, where 0 ≤ l ≤ k − 1.

Note that all MDS codes in Corollary 13 have type [m(q − 1) + 1, k]q2 . As far as we know, for

a similar form of length, there are some constructions of Hermitian self-orthogonal MDS codes in

previous studies. We list them in Table 2. According to Lemma 3, MDS codes with l-dimensional

Hermitian hull for each 0 ≤ l ≤ k can be derived from these Hermitian self-orthogonal MDS codes.

Therefore, it is necessary to compare these results with our construction. In Remark 3, we discuss

their differences in detail.

Table 2: Some known Hermitian self-orthogonal MDS codes

Class q n k Ref.

1 q ≥ 3
n = r q

2
−1

2s+1
+ 1,

(2s+ 1) | (q + 1), 1 ≤ r ≤ 2s+ 1
1 ≤ k ≤ (s+ 1) q+1

2s+1
− 1 [10]

2 q ≥ 3
n = r q

2
−1
2s

+1,

2s | (q + 1), 2 ≤ r ≤ 2s
1 ≤ k ≤ (s+ 1) q+1

2s
− 1 [10]

3 q ≥ 3
n = tn′ + 1, 1 ≤ t ≤ q−1

n1
,

n1 = n
′

gcd(n′,q+1)
, n′ | (q2 − 1)

1 ≤ k ≤ ⌊n+q

q+1
⌋ [11]

4
0 ≤ r ≤ q,

q + 1 ≡ r(mod 2r)
n = r(q − 1) + 1 k ≤ q−1+r

2
[18]

5 t ≥ 1, q ≡ −1(mod 2t+ 1)
n = 1 + r(q2−1)

2t+1
,

0 ≤ r ≤ 2t+ 1, gcd(r, q) = 1
k ≤ t+1

2t+1
· q − t

2t+1
[17]

6 Arbitrary
n = q

2
−1
t

+ 1,

t = 2w + 1, t | (q + 1)
2 ≤ k ≤ t+1

2t
(q − 1) [16]

Remark 3. From the perspective of length and dimension, we can easily illustrate that the MDS codes

with Hermitian hulls of arbitrary dimensions constructed by Theorem 12 are new in general. Recall

that our MDS codes have type [m(q − 1) + 1, k]q2 , where 2 ≤ m ≤ q and 1 ≤ k ≤ m− 1.

(1) Comparisons of lengths:

• For Class 3:

Taking n′ = q − 1, if q is even, then gcd(q − 1, q + 1) = 1 and n1 = q − 1; if q is odd,

then gcd(q − 1, q + 1) = 2 and n1 = q−1
2 . Hence, Class 3 can generate [t(q − 1) + 1, k]q2

Hermitian self-orthogonal MDS codes, where q is even and t = 1; [t(q−1)+1, k]q2 Hermitian

self-orthogonal MDS codes, where q is odd and 1 ≤ t ≤ 2. However, 2 ≤ m ≤ q, thus, most

lengths in our construction are new.

• For Classes 4 and 5:

Note that more conditions are required for q or r, which confirms our assertion.

• For Class 6:

Rewrite n = q+1
t

· (q− 1)+ 1, where t = 2w+1 is odd and t | (q+1). Clearly, the value set
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of q+1
t

is narrow relative to the value set of m in our construction. In fact, all even t and

t ∤ (q + 1) are not suitable to Class 6.

(2) Comparisons of dimensions:

• For Classes 1 and 2:

Take m = r(q+1)
2s+1 and r(q+1)

2s in Class 1 and Class 2, respectively. Then the corresponding

ranges of the dimension in our construction should be 1 ≤ k ≤ r(q+1)
2s+1 − 1 and r(q+1)

2s − 1.

Considering the ranges of r, almost half of our MDS codes can take larger dimensions in

general.

Of course, the restrictions of 2(s + 1) | (q + 1) and 2s | (q + 1) may also limit the lengths of

Classes 1 and 2 in some cases. For example, MDS codes of lengths 25, 41, 57 and 73 over F34

can not be constructed from Class 1 and all possible MDS codes over Fq with even q can not be

constructed from Class 2.

Remark 4. The length of MDS codes in Corollary 4 has form m(q − 1) + 1. On one hand, since

2 ≤ m ≤ q, then the length of MDS codes are always m(q − 1) + 1 ≥ 2(q − 1) + 1 ≥ q + 1. And only

when q = 2, the equation holds. On the other hand, m(q− 1)+1 ≤ q(q− 1)+1 = q2− q+1. According

to Remark 1, the length of MDS codes from Theorems 5, 6 and 7 is at least q2 − q + 1. Hence, almost

all MDS codes from Corollary 4 are new with respect to MDS codes from Theorems 5, 6 and 7.

Example 14. For some different q, we give some concrete examples of Hermitian almost self-orthogonal

MDS codes from Theorem 12. For clarity, we list them in Table 3.

Table 3: Some examples of new Hermitian almost self-orthogonal MDS codes from Theorem 12

q m n k q m n k

4 3 10 [1,2] 4 4 13 [1,3]

8 5 36 [1,4] 8 6 43 [1,5]

8 7 50 [1,6] 8 8 57 [1,7]

25 17 409 [1,16] 25 18 433 [1,17]

25 21 505 [1,20] 25 22 529 [1,21]

27 11 287 [1,10] 27 12 313 [1,11]

27 23 599 [1,22] 27 24 625 [1,23]

3.3. Construction C for MDS codes with Euclidean hulls of flexible dimensions

In this construction, we consider the Euclidean inner product over Fq. Note that (q − 1) ∤ 2 for

any q > 3, then there exists vi ∈ F∗
q such that v2i 6= 1. By similar ways to Theorems 5, 6 and 7, the

dimension of the Euclidean hull of corresponding MDS codes can be determined. We present these

results in Theorem 15 and omit the proof.
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Theorem 15. Let q = pm > 3. The following statements hold.

(1) For 1 ≤ k ≤ ⌊ q
2⌋, if q − k ≤ n ≤ q, then there exists an [n, k]q MDS code with l-dimensional

Euclidean hull, where 0 ≤ l ≤ n+ k − q.

(2) For 1 ≤ k ≤ ⌊ q
2⌋, if q−k+1 ≤ n ≤ q, then there exists an [n+1, k]q MDS code with l-dimensional

Euclidean hull, where 0 ≤ l ≤ n+ k − q − 1.

(3) For odd q and any q−1
2 ≤ n ≤ q, then there exists an [n+ 1, q+1

2 ]q MDS code with l-dimensional

Euclidean hull, where 0 ≤ l ≤ n− q−1
2 .

Besides, another two classes of MDS codes with Euclidean hulls of flexible dimensions can be exactly

construted. To this end, we need to introduce a fact. Denote Fq = {a1, a2, · · · , an, an+1, · · · , aq}.

Clearly, these q elements are distinct. With similar reasoning as Eq. (2), we can further express ui as

ui =
∏

1≤j≤n,j 6=i

= (ai − aj)
−1 = −

q∏

j=n+1

(ai − aj) (12)

over Fq.

Theorem 16. Let q = pm be a prime power. The following statements hold.

(1) For 1 ≤ k ≤ ⌊ q
2⌋, if ⌈

q
2⌉ ≤ n ≤ min{q − k, ⌈ q

2⌉ + k}, then there exists an [n, k] MDS code with

l-dimensional Euclidean hull, where 0 ≤ l ≤ n− ⌈ q
2⌉.

(2) For 1 ≤ k ≤ ⌊ q+1
2 ⌋, if ⌈ q+1

2 ⌉ ≤ n ≤ min{q − k + 1, ⌈ q+1
2 ⌉+ k − 1}, then there exists an [n+ 1, k]

MDS code with l-dimensional Euclidean hull, where 0 ≤ l ≤ n− ⌈ q+1
2 ⌉ and l 6= n− q+1

2 .

(3) If q is odd, for 1 ≤ k ≤ q+1
2 , if q+1

2 ≤ n ≤ min{q − k + 1, q+1
2 + k − 1}, then there exists an

[n+ 1, k] MDS code with (n− q+1
2 + 1)-dimensional Euclidean hull.

Proof. (1) Let notations be the same as before. Denote s = q − n − k + l. Take a = (a1, a2, . . . , an)

and v = (v1, v2, . . . , vs, vs+1, . . . , vn), where vi =
∏n+s

j=n+1(ai − aj) for any 1 ≤ i ≤ n. We now consider

the Euclidean hull of the q-ary [n, k] MDS code C = GRSk(a,v).

For any codeword

c = (v1f(a1), v2f(a2), . . . , vnf(an)) ∈ HullE(C),

by the result (1) of Lemma 1, there exists a polynomial g(x) ∈ Fq[x] with deg(g(x)) ≤ n− k − 1 such

that

(v21f(a1), v
2
2f(a2), . . . , v

2
nf(an)) = (u1g(a1), u2g(a2), . . . , ung(an)),

which implies that v2i f(ai) = uig(ai) for 1 ≤ i ≤ n. Since

v2i f(ai) =

n+s∏

j=n+1

(ai − aj)
2f(ai)

and by Eq. (12),

uig(ai) = −

q∏

j=n+1

(ai − aj)g(ai),
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it follows that

n+s∏

j=n+1

(ai − aj)f(ai) = −

q∏

j=n+s+1

(ai − aj)g(ai),

for 1 ≤ i ≤ n. Note that

deg(

n+s∏

j=n+1

(x− aj)f(x)) ≤ s+ k − 1 = q − n+ l − 1 ≤ n− 1,

deg(−

q∏

j=n+s+1

(x− aj)g(x)) ≤ (q − n− s) + (n− k − 1) = q − s− k − 1 = n− l− 1 ≤ n− 1.

Hence, we can derive that

n+s∏

j=n+1

(x− aj)f(x) = −

q∏

j=n+s+1

(x− aj)g(x)

from the fact n− 1 < n. Moreover, since (
∏n+s

j=n+1(x− aj),
∏q

j=n+s+1(x− aj)) = 1, we have

q∏

j=n+s+1

(x − aj) | f(x).

Therefore, f(x) can be written as

f(x) = h(x)

q∏

j=n+s+1

(x− aj),

where deg(h(x)) ≤ k−1− (q−n−s) = n−q+k+s−1. It deduces that dim(HullE(C)) ≤ n−q+k+s.

Conversely, let f(x) be a polynomial of form h(x)
∏q

j=n+s+1(x − aj), where h(x) ∈ Fq[x] and

deg(h(x)) ≤ n− q + k + s− 1. Take

g(x) = −

q∏

j=n+s+1

(x− aj)
−1

n+s∏

j=n+1

(x− aj)f(x) = −h(x)

n+s∏

j=n+1

(x− aj),

then g(x) is a polynomial in Fq[x] with deg(g(x)) ≤ (n− q+ k + s− 1) + s ≤ n− k− 1. Moreover, by

Eq. (12), we have

(v21f(a1), v
2
2f(a2), . . . , v

2
nf(an)) = (u1g(a1), u2g(a2), . . . , ung(an)).

According to the result (1) of Lemma 1, the vector

(v1f(a1), v2f(a2), . . . , vnf(an)) ∈ HullE(C).

It deduces that dim(HullE(C)) ≥ n− q + k + s.

In summary, we have dim(HullE(C)) = n− q + k + s = l. This completes the proof.

(2) Denote s = q − n− k + l + 1 and let other notations be the same as before. We now consider

the Euclidean hull of the q-ary [n+ 1, k] MDS code C = GRSk(a,v,∞).

For any codeword

c = (v1f(a1), v2f(a2), . . . , vnf(an), fk−1) ∈ HullE(C),
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by the result (2) of Lemma 1, there exists a polynomial g(x) ∈ Fq[x] with deg(g(x)) ≤ n− k such that

(v21f(a1), v
2
1f(a2), . . . , v

2
nf(an), fk−1) = (u1g(a1), u2g(a2), . . . , ung(an),−gn−k),

Similar to the proof of (1) above, we have

n+s∏

j=n+1

(ai − aj)f(ai) = −

q∏

j=n+s+1

(ai − aj)g(ai)

for 1 ≤ i ≤ n. Note that

deg(

n+s∏

j=n+1

(x− aj)f(x)) ≤ s+ k − 1 = q − n+ l ≤ n− 1,

deg(−

q∏

j=n+s+1

(x− aj)g(x)) ≤ (q − n− s) + (n− k) = q − s− k = n− l − 1 ≤ n− 1.

Hence, we can derive that

n+s∏

j=n+1

(x− aj)f(x) = −

q∏

j=n+s+1

(x− aj)g(x)

and
∏q

j=n+s+1(x − aj) | f(x) for the same reasoning as (1) above. Now, we determine the value of

fk−1. If fk−1 6= 0, then s + k − 1 = (q − n − s) + (n − k), which contradicts to l 6= n − q+1
2 . Thus

fk−1 = 0 and deg(f(x)) ≤ k − 2. Therefore, f(x) can be written as

f(x) = h(x)

q∏

j=n+s+1

(x− aj),

where deg(h(x)) ≤ k−2−(q−n−s) = n−q+k+s−2. It deduces that dim(HullE(C)) ≤ n−q+k+s−1.

Conversely, let f(x) be a polynomial of form h(x)
∏q

j=n+s+1(x − aj), where h(x) ∈ Fq[x] and

deg(h(x)) ≤ n− q + k + s− 2. Take

g(x) = −

q∏

j=n+s+1

(x− aj)
−1

n+s∏

j=n+1

(x− aj)f(x) = −h(x)
n+s∏

j=n+1

(x− aj),

then g(x) is a polynomial in Fq[x] with deg(g(x)) ≤ (n− q+ k + s− 2) + s ≤ n− k− 1. Moreover, by

Eq. (12), we have

(v21f(a1), v
2
2f(a2), . . . , v

2
nf(an), 0) = (u1g(a1), u2g(a2), . . . , ung(an), 0).

According to the result (2) of Lemma 1, the vector

(v1f(a1), v2f(a2), . . . , vnf(an), 0) ∈ HullE(C).

It deduces that dim(HullE(C)) ≥ n− q + k + s− 1.

In summary, we have dim(HullE(C)) = n− q + k + s− 1 = l. This completes the proof.

(3) Let notations be the same as before. We now consider the q-ary [l + q+1
2 + 1, k] MDS code

C = GRSk(a,v,∞), where q is odd. From the proof of (2) above, we can easily conclude that the

dimension of the Euclidean hull of C is l+1. In other words, there exists an [n+1, k]q MDS code with

(n− q+1
2 + 1)-dimensional Euclidean hull. This completes the proof.
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Taking l = k and l = 1 in Theorems 15 and 16, we can obtain some Euclidean self-orthogonal and

one-dimensional Euclidean hull MDS codes. In particular, for MDS codes C with dimension k = 1, it

is easy to see that C is Euclidean self-orthogonal if and only if dim(HullE(C)) = 1. Hence, we only

consider the MDS codes with dimension k ≥ 2 in the following examples.

Example 17. Taking l = k in Theorem 15, we have the following Euclidean self-orthogonal MDS

codes, which can also be obtained from [23].

(1) [q, k]q MDS codes, where 1 ≤ k ≤ ⌊ q
2⌋ and q > 3;

(2) [q + 1, q+1
2 ]q MDS codes, where q > 3 is odd.

Taking l = k in Theorem 16, we have the following Euclidean self-orthogonal MDS codes. As far as

we know, they are new.

(3) [⌈ q
2⌉+ k, k]q MDS codes, where 1 ≤ k ≤ ⌊ q

4⌋ and q ≥ 4;

(4) [k + q+1
2 , k]q MDS codes, where 1 ≤ k ≤ ⌊ q+3

4 ⌋ and q ≥ 3 is odd.

Example 18. Let q = pm be a prime power, then the dimension of Euclidean hulls of the following

MDS codes is at most 1.

(1) [q + 1− k, k]q MDS codes, where 2 ≤ k ≤ ⌊ q
2⌋ and q ≥ 4;

(2) [q + 3− k, k]q MDS codes, where 2 ≤ k ≤ ⌊ q
2⌋ and q ≥ 4;

(3) [⌈ q
2⌉+ 1, k]q MDS codes, where 2 ≤ k ≤ ⌊ q

2⌋ − 1 and q ≥ 6;

(4) [⌈ q+1
2 ⌉+ 2, k]q MDS codes, where 2 ≤ k ≤ ⌊ q+1

2 ⌋ − 1 and q ≥ 6 is even;

(5) [ q+3
2 , k]q MDS codes, where 2 ≤ k ≤ q+1

2 and q ≥ 3 is odd;

Moreover, since dim(HullE(C)) = dim(HullE(C
⊥E )), we can deduce that all Euclidean dual codes of

MDS codes listed in (1)− (5) are also one-dimensional Euclidean hull MDS codes.

4. Application to EAQECCs

4.1. Quantum codes

In this subsection, we introduce some basic notions about quantum codes. Let C be the complex

field and Cq be the q-dimensional Hilbert space over C. A qubit is actually a non-zero vector of Cq.

Denote a basis of Cq by {|a〉 : a ∈ Fq}, then a qubit |v〉 can be written as

|v〉 =
∑

a∈Fq

va|a〉,

where va ∈ C.
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Let (C)⊗n(∼= Cqn) be the qn-dimensional Hilbert space over C. Similar to classical linear codes, a q-

ary quantum codeQ of length n is a subspace of Cqn . Let {|a〉 = |a1〉⊗· · ·⊗|an〉 : (a1, a2, . . . , an) ∈ Fn
q }

be a basis of Cqn . Similarly, an n-qubit is a joint state of n qubits in Cqn and can be written as

|v〉 =
∑

a∈Fq

va|a〉,

where va ∈ C. The Hermitian inner product of any two n-qubits |u〉 =
∑

a∈Fq
ua|a〉 and |v〉 =

∑
a∈Fq

va|a〉 is defined by

〈u|v〉 =
∑

a∈Fn
q

uav̄a ∈ C,

where v̄a is the complex conjugate of va. |u〉 and |v〉 are said to be orthogonal if 〈u|v〉 = 0.

Let ζp be a complex primitive p-th root of unity. The actions (rules) of X(a) and Z(b) on |v〉 ∈

Cqn(v ∈ Fn
q ) are depicted as

X(a)|v〉 = |v + a〉 and Z(b)|v〉 = ζtr(〈v,b〉E)
p |v,

respectively, where tr(·) is the trace function from Fq to Fp. In a quantum system, the quantum errors

are some unitary operators. Denote the error group by Gn, then

Gn = {ζtpX(a)Z(b) : a,b ∈ Fn
q , t ∈ Fp}.

For any error E = ζtpX(a)Z(b) ∈ Gn, we define the quantum weight of E as

wtQ(E) = ♯{i : (ai, bi) 6= (0, 0)},

where ♯ denotes the number of elements in the set. A quantum code Q with dimension K ≥ 2 is said

to detect d−1 quantum errors (d ≥ 1), if for any pair |u〉 and |v〉 in Q with 〈u|v〉 = 0 and any E ∈ Gn

with wtQ(E) ≤ d− 1, we have 〈u|E|v〉 = 0. For a q-ary quantum code of length n, dimension K and

minimum distance d, we usually denote it by ((n,K, d))q or [[n, k, d]]q, where k = logq K.

Let S be an abelian subgroup of Gn. Then the quantum stabilizer codes C(S) can be defined by

C(S) = {|φ〉 : E|φ〉 = |φ〉, ∀E ∈ S},

which are analogues of classical additive codes. As we mentioned before, from classical linear codes

satisfying certain orthogonality, by the method (namely, CSS construction) introduced by Calderbank

et al. [4] and Steane [32], one can obtain quantum stabilizer codes. However, this method fails when S is

a non-abelian. By extending S to be a new abelian subgroup in a larger error group and assuming that

both sender and receiver shared the pre-existing entangled bits, Burn et al. [3] introduced EAQECCs.

In this case, EAQECCs can be derived from any classical linear codes.

4.2. New EAQECCs and MDS EAQECCs of length n > q + 1

Based on the known method of constructing EAQECCs, we use MDS codes with Hermitian hulls

of flexible dimensions obtained in Section 3 to obtain new EAQECCs and MDS EAQECCs. Like

classical linear codes, there exists a trade-off between the parameters n, k, d and c of an EAQECC,

called quantum Singleton bound.
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Lemma 19. (Quantum Singleton bound [1]) Let Q be an [[n, k, d; c]]q EAQECC. If 2d ≤ n+ 2, then

k ≤ n+ c− 2(d− 1).

Remark 5. (1) An EAQECC for which equality holds in this bound, i.e., 2d ≤ n + 2 and k =

n+ c− 2(d− 1), is called an MDS EAQECC.

(2) It is well known that if a classical linear code C is MDS and d ≤ n+2
2 , then the EAQECC

constructed by it is an MDS EAQECC.

For a matrix M = (mij) over Fq2 , we denote the conjugate transpose of M by M † = (mq
ji). In

practice, the explict method of constructing EAQECCs from a linear code with certain dimensional

Hermitian hull was established by Galindo et al. in [12]. We rephrase the important result in the

following.

Lemma 20. ([12]) Let H be a parity check matrix of a q2-ary [n, k, d] linear code. Then there exists

an [[n, 2k − n + c, d; c]]q EAQECC Q, where c = rank(HH†) is the required number of maximally

entangled states.

Generally speaking, the determination of the number of c is difficult. Guenda et al. [15] proposed

a relationship between c and dim(HullH(C)) as follows, which simplifies the problem of calculating the

number of c.

Lemma 21. ([15])Let C be a q2-ary [n, k, d] linear code and H be a parity check matrix of C. Then

rank(HH†) =n− k − dim(HullH(C))

=n− k − dim(HullH(C⊥H ))

Since the Hermitian dual code of an [n, k, n− k+1]q2 MDS code is an [n, n− k, k+1]q2 MDS code

and (C⊥H )⊥H = C, by the result (2) of Remark 5 and Lemma 20, we can obtain the following result

immediately.

Lemma 22. Let H be a parity check matrix of a q2-ary [n, k, d] linear code and l = dim(HullH(C)). If

k ≤ ⌊n
2 ⌋, then there exists an [[n, k−l, n−k+1;n−k−l]]q EAQECC Q and an [[n, n−k−l, k+1; k−l]]q

MDS EAQECC Q′.

Now, according to Lemma 22, we can present our new constructions of q-ary EAQECCs and MDS

EAQECCs.

Theorem 23. Let q = pm ≥ 3 be a prime power. The following statements hold.

(1) For 0 ≤ k ≤ q − 1, if q2 − k ≤ n ≤ q2, then there exists an [[n, k − l, n − k + 1;n − k − l]]q

EAQECC Q and an [[n, n− k − l, k + 1; k − l]]q MDS EAQECC Q′, where 0 ≤ l ≤ n+ k − q2.

(2) For 0 ≤ k ≤ q−1, if q2−k+1 ≤ n ≤ q2, then there exists an [[n+1, k− l, n−k+2;n+1−k− l]]q

EAQECC Q and an [[n+1, n+1−k−l, k+1; k−l]]q MDS EAQECC Q′, where 0 ≤ l ≤ n+k−q2−1.
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(3) If q2 − q ≤ n ≤ q2, then there exists an [[n+ 1, q − l, n− q + 2;n+ 1− q − l]]q EAQECC Q and

an [[n+ 1, n+ 1− q − l, q + 1; q − l]]q MDS EAQECC Q′, where 0 ≤ l ≤ n+ q − q2.

Example 24. The results (1), (2) and (3) of Theorem 23 can be used to obtain many EAQECCs and

MDS EAQECCs. According to Remark 1, the length of these new MDS EAQECCs are always greater

than q + 1 and do not completely cover each other. As an intuitive example, we list some new MDS

EAQECCs in Table 4.

Table 4: Some EAQMDS codes construted by Theorem 23 over F9

k l EAQMDS codes Ref. k l EAQMDS codes Ref.

8 3 [[76, 65, 9; 5]]9 Theorem 23(1) 8 3 [[77, 66, 9; 5]]9 Theorem 23(1)

8 3 [[78, 67, 9; 5]]9 Theorem 23(1) 8 3 [[79, 68, 9; 5]]9 Theorem 23(1)

8 3 [[80, 69, 9; 5]]9 Theorem 23(1) 8 5 [[78, 65, 9; 3]]9 Theorem 23(1)

8 5 [[79, 66, 9; 3]]9 Theorem 23(1) 8 5 [[80, 67, 9; 3]]9 Theorem 23(1)

8 3 [[81, 70, 9; 5]]9 Theorem 23(2) 8 5 [[81, 68, 9; 3]]9 Theorem 23(2)

9 3 [[76, 64, 10; 6]]9 Theorem 23(3) 9 3 [[77, 65, 10; 6]]9 Theorem 23(3)

9 3 [[78, 66, 10; 6]]9 Theorem 23(3) 9 3 [[79, 67, 10; 6]]9 Theorem 23(3)

9 3 [[80, 68, 10; 6]]9 Theorem 23(3) 9 3 [[79, 65, 10; 4]]9 Theorem 23(3)

9 5 [[78, 64, 10; 4]]9 Theorem 23(3) 9 5 [[79, 65, 10; 4]]9 Theorem 23(3)

9 5 [[80, 66, 10; 4]]9 Theorem 23(3) 9 5 [[81, 67, 10; 4]]9 Theorem 23(3)

Theorem 25. Let q = pm ≥ 3 be a prime power and n = m(q − 1), where 2 ≤ m ≤ q. Then for

any 1 ≤ k ≤ m − 1, there exists an [[n + 1, k − l, n − k + 2;n + 1 − k − l]]q EAQECC Q and an

[[n+ 1, n+ 1− k − l, k + 1; k − l]]q MDS EAQECC Q′, where 0 ≤ l ≤ k − 1.

Example 26. According to Remark 3, the EAQECCs and MDS EAQECCs of length n > q + 1

constructed by Theorem 25 are new. According to Remark 4, most of these EAQECCs and MDS

EAQECCs can not be obtained by Theorem 23. We list some of them in Table 5.

5. Summary and concluding remarks

The main contribution of this paper is to construct several new classes of MDS codes and totally

determine their Euclidean hulls (See Theorems 15 and 16) or Hermitian hulls (See Theorems 5, 6, 7

and Corollary 13). For Hermitian cases, four new classes of q-ary EAQECCs and four new classes of

q-ary MDS EAQECCs of length n > q + 1 are further obtained (See Theorems 23 and 25). And for

Euclidean cases, some new Euclidean self-orthogonal and one-dimensional Euclidean hull MDS codes

are given as examples.

In particular, for convenience, MDS codes with (k − 1)-dimensional Hermitian hull are called

Hermitian almost self-orthogonal MDS codes in this paper. Some new criterions for extended GRS
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Table 5: Some EAQMDS codes construted by Theorem 25 for some q

q m k l EAQMDS codes q m k l EAQMDS codes

8 5 4 2 [[36, 30, 5; 2]]8 8 6 4 2 [[43, 37, 5; 2]]8

8 7 6 4 [[50, 40, 7; 2]]8 8 8 6 4 [[57, 47, 7; 2]]8

9 5 4 2 [[41, 35, 5; 2]]9 9 7 4 2 [[57, 51, 5; 2]]9

9 9 8 3 [[73, 62, 9; 5]]9 9 9 8 5 [[73, 60, 9; 3]]9

16 7 6 2 [[106, 98, 7; 4]]16 16 8 6 2 [[121, 113, 7; 4]]16

16 13 6 2 [[196, 188, 7; 4]]16 16 14 6 2 [[211, 203, 7; 4]]16

25 14 4 2 [[337, 331, 5; 2]]25 25 18 4 2 [[433, 427, 5; 2]]25

25 15 4 2 [[361, 355, 5; 2]]25 25 19 4 2 [[457, 451, 5; 2]]25

25 16 6 4 [[385, 375, 7; 2]]25 25 20 6 4 [[481, 471, 7; 2]]25

25 17 6 4 [[409, 399, 7; 2]]25 25 21 6 4 [[505, 495, 7; 2]]25

codes being Hermitian almost self-orthogonal MDS codes and Hermitian self-orthogonal MDS codes

are presented (See Lemma 8 and Corollary 9). For future research, it would be interesting to construct

more Hermitian (almost) self-orthogonal MDS codes and MDS EAQECCs of length n > q + 1.
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