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Abstract. In this paper, we study the stationary dynamics of a processing system comprised of several
parallel queues and a single server of constant rate. The connectivity of the server to each queue is randomly
modulated, taking values 1 (connected) or O (severed). At any given time, only the currently connected
queues may receive service. A key issue is how to schedule the server on the connected queues in order
to maximize the system throughput. We investigate two dynamic schedules, which are shown to stabilize
the system under the highest possible traffic load, by scheduling the server on the connected queue of
maximum backlog (workload or job number). They are analyzed under stationary ergodic traffic flows and
connectivity modulation. The results also extend to the more general case of random server rate.

We then investigate the dynamics of acyclic (feed-forward) queueing networks with nodes of the previous
type. Their links (connectivities) are stochastically modulated, inducing fluctuating network topologies. We
focus on the issue of network throughput and show that it is maximized by simple node server schedules.
Rate ergodicity of the traffic flows traversing the network is established, allowing the computation of the
maximal throughput.

Queueing networks of random topology model several practical systems with unreliable service, includ-
ing wireless communication networks with extraneous interference, flexible manufacturing systems with
failing components, production management under random availability of resources etc.

Keywords: queueing networks, random topology, modulation process, optimal resource allocation
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1. Introduction: Basic model, applications, approach

Consider a queueing system comprised of K € Z first-in-first-out (FIFO) queues and
a server of constant service rate r € R.. There is a stochastic flow of jobs arriving
to the queues with random service requests. The queues have infinite capacity buffers,
where jobs are placed (while waiting to be served). At any given time the server is
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connected (has access) to a subset of the queues, and those are the only ones that may
receive service. The server/queue connectivities are randomly modulated, changing in
time according to a stochastic process. A server allocation/scheduling policy is used to
decide which queues to serve among those that are currently connected.

We investigate the system dynamics under stationary traffic flows and server/queue
connectivity modulation. In particular, we are interested in the fundamental problem of
queueing stability and asymptotic convergence to a well-defined ‘steady state’. The
system’s behavior depends heavily on the specific policy used to schedule the server on
the connected queues. This raises the issue of identifying schedules which stabilize the
system under the maximum possible traffic load, given fixed statistics of the server/queue
connectivity process. Key objectives of this work include: (1) studying this queueing
system within a general stationary ergodic framework, (2) extending the baseline model
to networks of servers/queues with randomly fluctuating connectivity (where a variety of
interesting applications arise) and (3) enhancing the general methodology for analyzing
stationary ergodic queueing structures.

In a deterministic setting, time-varying networks have been previously studied with
respect to maximizing the flow reaching a destination [14] and computing shortest paths
[15,16]. In a stochastic setting, related work has been done in a discrete-time Markovian
(Bernoulli server/queue connectivity, i.i.d. arrivals etc.) modeling context [19], where
allocating the server to the longest queue currently connected maximizes the system
throughput. For parallel queues with finite buffers and random server connectivity (and
routing), overflow minimization schedules have been considered in [3,10]—also in a
Markovian/renewal context. Still, the rich behavior that can be exhibited by the family
of systems under consideration in a stationary ergodic context (for example, retaining
memory of the initial state forever, etc.) remains little understood.

The paper is organized as follows. The modeling framework is presented in
Section 1.1, key applications are discussed in Section 1.2, and the stability issue is
introduced in Section 1.3. Two server schedules are studied: (1) the MCW (Maximum
Connected Workload), assigning the server to the currently connected queue with the
maximum workload, and (2) the LCQ (Longest Connected Queue), assigning it to the
connected queue with the largest number of jobs. The stability of the MCW schedule is
studied in Section 2 and of the LCQ one in Section 3—they are both shown to maximize
the stability region of the system under stationary ergodic traffic flows and connectiv-
ity modulation. Basic model extensions are given in Section 4. Finally, feed-forward
networks of queues with random links (connectivities) are studied in Section 5. The
network modeling framework is introduced in Section 5.1, rate-ergodicity of network
flows under MCW and LCQ is discussed in Section 5.2, and the network throughput
problem is addressed in Section 5.3.

The described queueing system/network exhibits a substantially more complicated
stationary behavior than others studied in the past, for example, the G/G/1 queue [1,11]
and feed-forward networks of such queues, etc. Indeed, it involves decision-making
and dynamic server control, generating some new conceptual and technical issues in
the ergodicity/stability analysis (which is mainly based on sample-path arguments).
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To address these issues, we further develop some general methods and associated tech-
niques, including system stressing (Proposition 2.2), extremal stability (Proposition 2.3),
rate stability (Theorem 2.2) etc. The intuition behind them typically reflects upon the
geometry of the sample paths of the processes. Well-established methods (like, Loynes’
construction of stationary regimes [11]) are also used, but are only briefly discussed.

1.1. Model and notation

Let t;’ € R be the arrival time of the jth job to arrive toqueueg € K= {1, 2,3, ..., K},
and qu € R, its associated service (processing) time requirement. Thus, its service time

is oj‘.] /r,if r > 0 is the service rate and the server operates on this job uninterrupted.
The random marked point process [1,8,9,13]

Ny =1{(1]. o7). j € Z}, M
describes the stochastic input traffic into the gth queue. The collection of processes
N = {N,, g € K} comprises the overall input to the queueing system.

We introduce next the connectivity process {C,,t € R}, where C, is the set of
connected queues at time ¢. Let C be the set of all possible values that the connectivity
process may attain throughout its evolution. Note that C is a subset of the power set
2K Define 5; € R to be the time of the kth occurrence of change in the server/queue
connectivities, and ¢; € C the set of connected queues that the system switches into at
time s;. We can then structure the random marked point process

M = {(st, e), k € Z}, 2)

which we call connectivity modulation process, and write

C=) ljgzicy,) 3)
keZ

where 1 is the standard indicator function.

The processes NV, and M are defined on some common probability space (2, F, P)
and are assumed to be stationary and ergodic with respect to the time shifts 6.\, =
{(t? -z, a;.’), j € Z},0M = {(sx —z,¢),k € Z}, for every z € R,q € K. The
numbering of jobs and connectivity switching epochs on every sample path is such that
...tfl < tg <0< tf’ < t;’ < t?H--- and -5 1 <50 <0 <1+ <85 <
Sk+1 - - - almost surely. Moreover, the processes are assumed to have a finite number of

points in every finite time interval almost surely. The traffic intensity (average workload
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Figure 1. Left panel: an example of a system comprised of four queues with four connectivity sets: C; =
{1,2}, C, = {2,3,4}, C5 = {3, 4}, C4 = {4}. Right panel: Evolution of the connectivity process C, over
time for the system shown in the left panel.

per unit time) entering queue g € K is given by

. 1
Pq = }L“QO 7 iezzofl{z_ge(o,t]} =E jGZZG/'ql{r_‘;e(o,l]} a.5. )

It is assumed that p, > O for every g € K. The collection of the traffic intensities of all
queues g € K defines the raffic intensity vector of the system p. By the stationarity and
ergodicity of M, we can define the connectivity state probabilities

t

PC = lim l / l{cxzc}ds = p[Co = C], a.s. (5)
t=oo [t Jo

Itis assumed that Pc > O forevery C € C, that s, there is a positive probability that the

system will visit each one of its connectivity states in C (those not visited should not be

included in C). A schematic representation of the system under consideration and the

evolution of its connectivity process is presented in figure 1.

The system manager decides how to allocate/schedule the processing power of the
server to the queues that are currently connected, based on some service policy A € A,
where A is the set of all such feasible policies. Since each queue is FIFO, the head job
of a queue will receive service when the server is allocated to it. We particularly focus
on the following two simple dynamic server scheduling policies:

1. The first one, called Maximum Connected Workload (MCW) schedule and denoted
by Amcw € A, assigns the server at any given time to the currently connected queue
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with maximum workload. In case the workloads of two or more queues are equal, the
MCW schedule distributes the processing power of the server equally among these
queues.

2. The second policy, called Longest Connected Queue (LCQ) schedule and denoted
by Arcq € A, assigns the server to the connected queue with the largest number
of jobs in it (queue length) at every decision epoch. Such epochs are the service
completion, connectivity switching (sx), and job arrival (¢;) times. In case a few
queues have the same maximum length at a decision epoch, one of them is chosen
for service, according to some arbitrarily fixed priority scheme.

Notice that the LCQ policy tries to balance the queue sizes, while the MCW the work-
loads. We are mainly interested in the stability region of the system. It turns out that
both policies maximize it.

1.2. Application scope

We next discuss some key applications of the model. Our objective is not to be exhaustive,
but rather indicative of its wide applications scope, capturing the essential characteristics
of diverse practical situations.

The model has various applications to communication networks with unreliable
links, for example, wireless packet networks [3,19]. Indeed, consider the case where the
server corresponds to a tunable receiver and the queues are associated with transmitters
operating in orthogonal channels. Packets arrive at each transmitter and are queued up
waiting to be transmitted to the receiver. Time is slotted (discrete). The receiver can tune
to a transmitter and receive a packet in each time slot. Extraneous interference in each
transmission channel may cause the signal-to-interference ratio (SIR) to drop below
some threshold required for maintaining acceptable quality of service. In that case, the
receiver/transmitter link is essentially severed; connectivity is only re-established when
the interference subsides and the link SIR rises again above the required threshold. The
receiver is informed of each transmitter’s backlog over a separate control channel and
issues a transmit request to one of them in each time slot. An important performance mea-
sure is the aggregate system throughput, given the interference statistics in each channel.

A canonical application of the model—in the area of flexible manufacturing and
reliability—is that of a factory workstation manned by a worker, who operates a set of
unreliable tools, working on multiple classes of products. Each class is queued up in a
separate buffer. To complete a job of a certain product class the worker needs to use a
particular subset of the tools, which of course must be operational. Tools fail at random
times and it takes a random time to have them repaired. When a tool is unavailable (due to
failure) the worker cannot operate on the product class/queue that requires this tool. Thus,
the worker corresponds to the server, and his operational accessibility (connectivity) to
various product classes/queues is modulated by the tool availability. We are interested
in the overall service capacity of the workstation, given the statistics of tool failure and
repair epochs.
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Relevant applications appear also in the area of computer systems, for example in
parallel/distributed processing and in database concurrency control, where exogenous
control signals may enable or temporarily halt the execution of consecutive processing
tasks of a subsystem. Such is the case in ‘gated’ service, where the gate is modulated
by some agent external to the local subsystem.

Several applications of the model arise in the areas of business organization and
production management. For example, a particular way of micro-managing the cash flow
in a department within a large company (or a factory) is the following. At the beginning of
each day (time period) the company allocates to the department head a certain amount of
money to satisfy requests for purchasing several items from the open market, which are
needed by various department offices. The purchase requests for each item are queued
up in a separate FIFO buffer. The money spent for the satisfying of a purchase request
(the o”’s of \V,) is proportional to the amount/volume of the requested item. From day
to day, the availability (and prices) of requested supplies varies stochastically in the
open market. When an item is not available (or its price is higher than some acceptable
threshold set by the company), the requests placed in this item’s queue cannot be satisfied,
even if there is enough cash. At the end of each day/period, the department head returns
all unused funds to the company fund pool, only to get a new allocation at the start of
the next day. The problem is to determine the production capacity of the department,
given the statistics of item availability (and/or price) in the open market.

Finally, there are applications in transportation and distribution networks. The
server may correspond to the distribution center of a company, which has a fleet of
vehicles of some total transport capacity. The fleet is used to deliver goods to retailers
which place orders for quantities of goods in the buffers. The accessibility of the retail-
ers from the distribution center could be prohibited by adverse weather conditions or
unacceptable traffic delays (in case of goods that can possibly perish in transit), due to
high congestion of the transportation networks.

It should be noted that the modulation of connectivities may be either direct or
indirect. For example, in the reliability model described above the tools fail due to inher-
ent, uncontrollable reasons. On the other hand, in the communication network example,
a link’s quality fluctuates continuously (according to the extraneous interference). The
link is severed during excursions of its quality below a certain threshold, which can
be chosen by the system designer. There is a rather mature theory for excursions and
sojourns of stochastic processes above/below thresholds [7], which can be used for per-
formance optimization with respect to these thresholds, especially within a Markovian
modeling domain. This is, however, beyond the scope of this paper and is only mentioned
as an interesting topic of further study.

1.3. The queueing state and the issue of stability

We start the stability analysis by defining the queueing state X; (A, x) of the system
operating under policy A € A. This is needed below in setting up a precise technical
framework for propositions/proofs that follow.
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Let X7 ,(A, x) be the list of jobs (ordered by their arrival times) present at time
t in queue g € K, along with their corresponding service time requirements (residual
service times for those jobs that have already received service), given that the system has
started with initial state x = (x!, x2, ..., xX) attime s* < r. Accordingly, x7 is a list of
jobs—with certain service time requirements and some ordering for receiving service—
which exist in the buffer at time s*. We define X ,(A, x) = {X; (A, x), ¢ € K} to be
the queueing state of the system at time ¢, where s < ¢, for s, € R. Finally, let X be
the set of all possible queueing states, that is, the queueing state space of the system; its
zero element is denoted by 0 and corresponds to all buffers being empty.

Remark 1.1. Tt should be noted that the full system state should include the connectivity
state (which queues are connected) and the service state (which jobs are receiving service
and at what rate), besides the queueing one. However, the latter proves to be enough for
addressing the stability issues discussed in this paper.

Based on the previous definitions, let now WY (A, x) be the workload in queue ¢
at time 7 (i.e._the sum of all residual service time requirements of all jobs present in the
buffer) and Wi (A, x) = {W{ (A, x), ¢ € K}. Moreover, let U, (A, x) be the number
of jobs (queue length) in queue ¢ at time ¢ and Zj{”(.A, x) = {U (A x),q € K}. We
make (where appropriate) the technical assumption that all stochastic processes we are
studying are right-continuous and have left limits path-wise (cadlag [9]).

Recalling that C is the set of values that the connectivity process {C;, t € R} can
attain throughout its evolution, we introduce the notion of a cluster C of connectivity
sets, that proves useful in what follows. Define a undirected graph G = (V, E), whose
vertex set V is comprised of all non-empty connectivity sets. For the system shown in
figure 1, we have V = {Cy, (2, C3, C4}. An edge ¢, € E exists between two vertices
Cy, Cy € V, if the corresponding connectivity sets are non-disjoint; i.e. Cy N Cy #£ @.
For our example, it can be seen that the following edges exist e1,, €23, €24, €34. A cluster
C of connectivity sets corresponds to a connected component of G. For our example,
there exists a single connected component of the underlying graph, and hence the con-
nectivities sets form a single cluster. It should be noted that queues belonging to distinct
clusters do not interact with each other, under any processing policy. Indeed, service
decisions/actions on queues in one cluster do not affect any service decisions/actions in
any other cluster. On the contrary, queues belonging to the same cluster do interact, as
discussed in great detail later on. The reason for introducing clusters of queues is that
they form decoupled systems, which can be treated separately. Therefore, without any
loss of generality, we can assume that the set of queues K is a single cluster. The above
discussion and corresponding assumption proves to be critical in establishing certain
technical facts later.

A fundamental question is under what traffic load conditions (traffic intensities) and
for which server allocation policies A € A the system remains stable, in the broad sense
that no queue backlog blows up to infinity over time. Loading beyond capacity renders
the system unstable, causing the explosion of at least one of its queues. Identifying
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necessary and sufficient conditions for stability and characterizing the stable dynamics
of the system are two key issues studied here.

Before examining the intricate case of stability,let us first look at the easier one of
instability. We start by defining the load set

DM:{&eRf:Zaq<r|: Z ch|,f0reveryQ§K,Q7é@} (6)
qeQ CeC:CNQ#D

which is eventually shown to be the stability region of the system. Moreover, we define
the topological boundary of DM by 9D (in the standard Euclidean topology of ]R_’ﬁ),
which turns out to be the capacity surface of the queueing system.

Proposition 1.1 (The Case of Instability). For any stationary ergodic input and modu-
lation processes A and M, we have that, if

5¢DMU8DM:[&GR_’E:Zaq§r|: > Pc:|,

q€Q CeC:CNQAD

foreveryQ C K, Q # @}, @)

then, for any server allocation policy A € A, there exists at least one nonempty set of
queues Q C K, such that

3 q —
Jim 3 WA x) = 00 ®)

q€0Q

almost surely, for every s € R, x € X. That is, when o0& pM U DM, the system is
unstable under any policy A, in the sense that the workload of some set of queues blows
up to infinity as t — oo.

Proof. From p ¢ DM | J D™ we immediately have that there is some Q € K, Q # ¢
such that

Su-r ¥ on) o
q€Q CeC:CNQ#Y
Observe now that the queues in Q can only receive service when C; N Q # (4, so

t
D WLAX =Y Y ol e — 7 / Lic,nozmdt. (10)

q€Q qeQ jeZ §
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Dividing (10) by ¢+ — s and letting t — oo, we get

quQ W;I,t(Ai X) -

t—00 t—=s _qu_r

lim inf |:
q€Q CeC:CNQ#W

ch| > 0, (11)

using Birkoff’s ergodic theorem (since N and M. are stationary ergodic processes).
The last inequality in (11) is due to (9). Relation (11) implies that lim,_, o Y 4€0 W;{ ‘
(A, x)=o00, and (8) follows immediately. This completes the proof of the
proposition. a

Remark 1.2 (The Case of Stability—What Could Go Wrong). The previous proposition
shows that if 5 & DM JIDM then at least one queue will eventually explode, no
matter which allocation policy .4 € A is used (and that occurs consistently on almost all
sample paths). But what could happen if 5 € DM | ] 9D ? This would heavily depend
on the policy .A. In general, the system could exhibit highly diverse stability behavior on
different sample paths, for some fixed policy .A. For example, the workload of different
queues might blow up on different traffic traces, while there may be some traffic traces
on which the workload of all queues remains finite! From a practical point of view, this
is an undesirable situation; the stability status of the system is not uniquely specifiable,
but depends on the materializing sample path. Instead, we would like to identify with
certainty (almost surely) the system stability status, given the load statistics.

The key issue here is whether there exist some server scheduling policies A € A,
sustaining non-explosive backlog behavior on (almost) all sample paths, when p € DM,
Such schedules could be thought of as maximizing the stability region (barring unknown
behavior on the surface 3D™). In fact, the definition of stability employed in this paper
is the existence of a proper invariant distribution for the multidimensional workload
(queue length) process of the system. The proof of this result is obtained through careful
path-wise analysis and an appropriate Loynes’ construction [1]. This notion of stability
is the one typically employed under Loynes’ approach, leading to the construction of a
finite stationary regime of the system. It guarantees that the workload and queue lengths
will be finite with probability one (although their expected values may be infinite, unless
additional assumptions are imposed), given that the system starts empty. Given the lack
of ‘pathwise coupling’ (as shown below), stability here reflects convergence-in-law of
the system backlog state to the finite stationary regime constructed by the Loynes’
method. These issues are discussed and explained in detail in the following section.

2. Stability of the maximum connected workload (MCW) schedule

Throughout this section we consider the system, denoted by S, operating under the
Amcw schedule defined in Section 1.1. We first observe that, due to this schedule’s
nature, the workload process W; ;(Amcw, X) does not depend on the detailed structure
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of x, but only on the corresponding workload vector w = (wh, w2, ..., we, ..., wk
where w? is the sum of the service requirements (workload) of all jobs in x4. Therefore,
we write

’

W (Amcew, x) = W, (), ¢ €K, (12)

and VVSJ(AMCW, X) = WM(J)), q € K, accordingly.

2.1. Workload monotonicity and ‘Loynes Construction’ of a stationary regime

We start with by establishing a monotonicity relation, which is then leveraged for the
construction of a stationary operational regime using the Loynes method [1,11].

Remark 2.1 (Notation). In the remainder of the paper, vector inequalities are assumed
to hold component-wise; i.e. for vectors Z;,Z, € RX,if 7} < 75, then z} < z5,k =
I,...,K.

Proposition 2.1 (Workload Monotonicity under Aycw). Under the Apcw schedule,
for any fixed s, € R with s < ¢, and for initial workloads w1, W, € RX, we have that

Wy < Wy = Wy, (W) < Wy () (13)
almost surely. That is, the workload is an increasing function of its initial value.

Proof. On any fixed sample path of NV and M, we observe the evolution in (s, t] of
two copies of the system, S ! with initial state x;, and S? with initial state X,. Due to
the fact that both N/ and M. are marked point processes and the nature of the Apcw
policy, it can be easily seen that we can partition (s, ¢] into a union of disjoint intervals
Ty T, withs =Ty < Ty < --- < Ty < Typg1 -+ < Ty—1 < Ty = t, each of
them having the following properties:

1. There is no job arrival in any queue in (7}, Tp,+1).
2. There is no connectivity switching in (75, T;;+1)-

3. The set Q! of queues having maximum workload in S' (hence, receiving service
under Apicw) remains invariant throughout (7, T,,,+1). The same holds for the set
2 analogously defined for S2. Note that in general Q) # Q2.

The epochs T, correspond to occurrences (possibly simultaneous) of (1) job ar-
rivals, (2) connectivity switchings and (3) changes in the set of queues receiving service
under Aycw in S! and/or S2.

Due to the structure of the system, for every intermediate epoch z € (s, t] and
every initial state x we have

W, () = W (W, (). (14)
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CT CTm

Figure 2. The graph on the left depicts the situation in case 2(a) of Proposition 2.1, while the graph on the
right that of case 2(b).

Working in (T, Tyt1), let ] = Ws,Tm(le) be the workload of S! at epoch 7,
and W, = W, 1, (i,) that of S%. We show that

W < iy = Wy, () < Wy, (b)) (15)

for every z € (T,,, T,,+1), by considering the following cases. Since for every z €
(T, Trus1), the sets of queues receiving service Q,ﬁl and Qi remain invariant, we see
that

1. For every queue ¢ ¢ Q, |J Q. we have W] _(w}) = wy! < wyl = Wi _(w}) for
z € (T, T,41), since queues not belongiong to Q}n U an do not receive service.

2. For every queue ¢ € Q! | J 02, we consider the following two cases (see figure 2):

(a) If Q,ln C Qﬁl, then for any arbitrarily chosen g* € Q}n, we have W;W Z(17/1) <
W%mz(ﬁ)’l) < W}Im,z(ﬁ)/z) = W%“Z(ﬁ);), forz € (T,n, T;uy1)- The second inequality
follows from the fact that w)! <wj’, while the service rate in ¢* for S! is
r/1Q} |, which is faster than the corresponding service rate r/| Q2 | in S? (since

Q! C ©2). The previous values of service rates are true when all queues under
consideration are nonempty; if not, a slight modification leads to the same result.

(b) If Q), is not a subset of Q07 (Q,, — Oy, # #), let min g1 o2 {W/; (w2)} be
attained on some ¢* € Q! — Q2 Since ¢* ¢ Q2 ,itdoes notreceive service in S?,
so Wiy (wh) = Wi (W) = mingegiug: (Wi (wh)} forall z € (T, Tupr).
Therefore, W} _(w}) < maxgepiugx (W7 (WD) = Wi (W) < w! <

1q* . - -
wy = mlnqu;,Ule{W;{m’Z(w/z} < ng’z(w/z), for all ¢ € Q! |JQ? and
7€ (Tm, Tm+1)-

The above arguments (see figure 2) prove (15) in (7, Tp+1). At time T, any
combination of the following events may occur: 1) connectivity switching, 2) change
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of Q! and/or Q2 3) job arrivals to one or more queues. Since the workload processes
WTW .(w})and WTW ) Z(ﬁjé) are right-continuous and have left limits, (15) naturally extends
to z = T,,11, thus, holding for every z € (T,,, Tp+1]. As mentioned before, its inductive
application on consecutive time intervals (induction on m) completes the proof of the
lemma. ]

Remark 2.2 (Workload Spreading). An interesting observation is that, under the Apcw
policy, the initial workload difference between S' and S? is being gradually diffused on
the various queues, tending towards a more balanced distribution on them. During this
process, path-wise domination of S! by S? is preserved. This provides some important
piece of intuition regarding the above proof.

Based on Proposition 2.1, we can use a Loynes-type [11] procedure to construct
a stationary operational regime of the system. Observe that for every s’ < s, we have
Wf ,(O) < W? ,(Ws S(O)) = Wf t(O) where the inequality follows from Proposition 2.1
and the equality by arguing as in (14). Therefore, since W ,(0) isincreasing ass — —oo,
we can path-wise define the processes

for every g € K, which are later shown to be a proper (finite) stationary operational
regime of the system under proper conditions. It is easy to see that {W/, t € R} is time
stationary and ergodic. Indeed, including as workload arguments the sample paths of
the processes N and M. on which the workloads are constructed, we can easily see that

W,0;6.N,0.M) = Wi, (O; N, M), (17)
for any z € R, g € K. Letting s — —o00, we get
WHON, 0, M) = Wi (N, M). (18)

The stationarity and ergodicity of A/ and M immediately induce analogous properties
on {W/,t € R}. The main problem is to characterize the limits (16) in terms of being
finite (or infinite) almost surely, based on key statistical parameters of N' and M. We
establish below a series of facts, leading to Proposition 2.4 which resolves this issue
eventually.

2.2. System stressing and the extremal stability region

We next introduce the concept and method of g-stressing of the system S, which is used
in the finiteness proof of Section 2.3. In a nutshell, g-stressing corresponds to an artificial
inflation by a factor § € R, of the service times of all jobs arriving to queue ¢, so that
from oj‘.’ they become (1 + 8 )0;’, J € Z while the rest of the system parameters remain
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unchanged. The stressing method developed below builds on related ideas utilized in
[2] on a different model. Its role in stability analysis seems to extend to more general
queueing systems of appropriate structure.

Define the family of g-stressing operators {OZ[-], q € K}, which operate on the
input traffic V' = {NV,, ¢ € K}, as follows:

O3INT = O§[{{(] .o} ). j € Z).¢' € K}] (19)
= {4, (14 Bly=y0?)). j € Z}. 4’ €K} = N(g, B)

path-wise, for every ¢, ¢’ € K, 8 € [0, 0c0). We call 8 the magnitude of the g-stressing
operation. Note that O;[; [V] simply ‘inflates’ the service times of A/, by a factor 8, and
for B = 0, Of is the identity operator.

The path-wise evolution of the system depends exclusively on the sample paths
of the arrival and modulation processes. Therefore, the g-stressing operators induce a
well defined transformation of every quantity associated with the system (for example,
the workloads of the various queues). We use the same notation Og to denote the effect
of g-stressing on all such quantities, as elaborated below. The resulting input processes
N, B) = (’)g [/\/q/], remain stationary and ergodic with respect to time shifts 9,, while
their traffic intensities become

pg(q. B) = Oflog] = py(1 + Blig—g)- (20)

We denote the g-stressed systems by S(g, 8) = (’)Z [S] and the workload of each queue
by

Wi (s q, B) = O W ()] 21
defined analogously to the original non-stressed one.

Proposition 2.2 (Workload Monotonicity under System Stressing). For any g € K, if
B < B, then for every s, t € R with s < ¢, we have

W (Ayew. 734, B) < W (Ayiew. 714, B). (22)

path-wise, for every ¢! € K. That is, the system workload is monotone with respect to
the magnitude 8 of any g-stressing operation (all other parameters being fixed).

Proof. Following the notation, definitions, and arguments introduced in the proof of
Proposition 2.1, it is easily seen that we only need to prove (22) in every time interval
(Tn, Tyiy1], since a system stressed by an amount 3’ sees job arrivals with larger service
times in queue ¢ than a system stressed by (< B’) path-wise (while all other queues
see the same service times in both systems). To show that (22) holds for s = 7,, and
t € (Tpy, Tyus1] we compare the system S(g, B’) to S(g, B) exactly as S' to S? in the
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proof of Proposition 2.1. We can then apply induction on the consecutive time intervals.
This completes the proof of the proposition. O

Remark 2.3 (Effects of System Stressing). Essentially, g-stressing amplifies the traffic
intensity of the input flow A, by a factor B, by scaling up all its service times by
(1 4+ B) As a result, the system experiences higher load and congestion stress, and the
workloads of all queues increase (Proposition 2.2). By consecutively amplifying the
traffic intensities of various input flows, we can stress the system further and further.
The danger is that stressing may eventually drive the system unstable. However, (22)
implies that if a stressed version of the system is stable, then the original version is also
stable.

System stressing is a key method or ‘device’ for proving (later in Section 2.3) that
the Loynes stationary regime constructed in (16) is proper (finite) when 5 € DM. To
do that, we need to stress the system as defined in Proposition 2.3 below, driving p into
a special ‘extreme’ subset of D, called the extremal stability region and denoted by
e The intuition pointing to the importance of this process is given in Remark 2.4.

Proposition 2.3 (The Extremal Stability Region). Given any input and modulation
processes N and M with traffic intensity vector p = {p,,q € K} € DM, if K
is a cluster of more than two queues, then there exist positive stressing coefficients
Bi, B2, - Bk, .- -, Bk € (0, 00), such that the stressed input process

N' =N, B1:2, Bos k. Bis .. . K, Bx) = Of [ ... 04 [ ... O3 [04 [N]]]] 23)
has traffic intensity vector
P ={1+Bypg. q €K} e EM (24)

where the set ¢ is defined as

€M=DMm[&eRf:Zaq>r|: Z Pc:|, forevery Q C K, Q # 0+,

qeQ CeC:CCQ
(25)

and called Extremal Stability Region (note that Q is a proper subset of K in (25)).
Therefore, it is possible to stress the system and drive its traffic intensity vector (under
input process ) into the extremal stability region £

Proof. For completeness, a detailed proof of this fact is given in Appendix 6.1. It is
constructive and largely ‘geometric,” proceeding by induction on the queues/dimensions
{1,2,3...K}. By repeated stressings of the system on consecutive queues, the traffic
intensity vector p is eventually driven from its initial place in D™ into the special
extremal stability region e M C DM. The intuition is ‘visually’ captured in the simple
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Figure 3. An example of a simple system of two queues with connectivity set probabilities P[C;] =

0.3, P[C,] = 0.2, P[C;3] = 0.5, and initial traffic intensity vector o = (0.25, 0.10). Through stressing

of Vi by B = % and then of N> by 8, = %, the initial intensity vector is driven to its final value

D’ = (0.55,0.325), which lies in ™ (shaded area).

example of figure 3 where we have two queues and three possible connectivity sets, and
the extremal stability region is seen as the shaded area. a

Remark 2.4 (The Key Property of the Extremal Stability Region). The intuition behind
the definition of the extremal stability region £ is that when p € M all queues have
to fully interact and ‘cooperate’ with each other in order to stabilize the system under
Awmcw. Specifically, the queues in any connectivity set C* € C cannot be stable if they
only receive service when C, = C*. Instead, they need to receive additional service
when C; = C’ # C* for some other C’ with C' N C* # @ in order to keep the workload
from exploding. This fact ties the queues together and makes stability a global property
rather than a local or decomposable one. In a nutshell, in the extremal stability region
the ‘fate’ of the queues is common, in the sense that it is not possible for a few of those
to go unstable, while the rest remain stable under Aycw. They are tightly coupled and
if one goes unstable then they all do.

The need for stressing the system to drive it into the extremal stability region
becomes clear in the key proof of Proposition 2.4 in the next section. It basically allows
us to directly establish the result in one dominating case, as opposed to the alternative
approach of breaking the proof down into numerous sub-cases, depending on which
sub-region of D the load/rate vector lies in.
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2.3. Finiteness of the stationary regime

We are now ready to resolve the issue of under what conditions the stationary regime
constructed in (16) following the Loynes method is actually proper or finite almost
surely.

Proposition 2.4 (Finiteness of the Stationary Workloads). For any stationary and er-
godic input and modulation processes N and M, if

g € DM (26)
then

W = lim WZ,0) <oo,Vt €R, for every q €K, 27
§—>—00
almost surely. Under this condition the processes {W/, € R}, ¢ € K form a finite
stationary operational regime of the system.

Proof.  Using Pr0p0s1t10n 2.3, we can always stress the system so that p € e™. Due
to Proposition 2.2, Wg t(0) < (9 kL. OKK [... [(91 w/ (O)]]]] pathwise, hence, if
the limit (27) is finite for the stressed system, then th1s 1s also true for the original one.
Therefore, we can always assume that the system satisfies the condition

p eeM, (28)

without any loss of generality (if not work with the stressed one which always does).

In order to reduce the overhead on notation, we write Wfl(O) W{,, dropping 0
when this does not induce any problems of understanding. We also write V9(z,t) =
>z O’qu{t;le(z,ﬂ} and observe that

. Vi, 1)
lim

z—>—00 [ — 7

= p, (29)

for every t € R, g € K, almost surely, due to Birkoft’s individual ergodic theorem
[18,21].
We first consider the more intricate case of K being a cluster of more than two
queues (K > 2). The simple case of K = 1 is discussed briefly at the end of this proof.
In what follows we work on a arbitrarily fixed sample path as well as time ¢ € R.
Starting the system empty at time s < ¢, we define the random time

T, = inf{z € (s, t] : when connected to some queue the server does not idle in [z, #]},
(30)

which is the last time (before ¢) that all connected queues are empty. If the server never
idles (when connected) in (s,7], we naturally set 7, = s, while if it is connected and
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idling at time #, we set Ty = ¢. Definition (30) implies that at time 7 there exists some
queue which is empty. Due to Proposition 2.1, 7 decreases as s — —oo; therefore,
T, = lim,_, _, Ty exists (but may be —o0). We will show that T is finite.

Arguing by contradiction, suppose that T, = lim;_,_o, Ty = —o0. Due to the
nature of Aycw and (30), all queues in the connectivity set Cy- € C are empty (at
time 7). Since there is only a finite number of connectivity sets in C, there must exist
a C* € C and a subsequence {s,,,m € Z.} of {s} with lim,,_,» 5,, = —00, such
that C7- = C* for every m € Z,. Hence, all queues in C* are empty at every time
T, .00 < W/, < W! _+VIT, —€eT, +e = VT, —€T, +e =
V40, T, +¢€)— V40, T;, — 6),mf0r every € > 0 and every ¢ € C*. Dividing by t — Ty,
taking the limits as m — o0, and using (29) we get

q
ZqEC* Wsm,]}

lim n Q. (31)

m— 00 t — Tsm

We next need to extend the property established in (31) from a connectivity set C*
to the entire set of queues K. The following fact, whose proof is given in Appendix 6.2,
achieves precisely this goal.

Fact 1: Given Ze EM we have that on any sample path of A and M (almost surely),
if limy_, _o, Ty = T, = —o0, then the following are true:

1. Given nonempty Q C K, if there exists some decreasing sequence {sy, k € Z,}
with limy_, o 5y = —00, such that

0
. quQ WSk,Txk
Iim —=

=0, 32
k— 00 r — Tsk ( )

then there exists a connectivity set C’ € C, C' € Q, C'NQ # ¥ and a subsequence

{s;,1 € Z} with lim;_, o, s; = —00, such that
> o Wi
L =as@uen Maty 0. (33)
[— 00 r — TS[
2. If there exists some C* € C and a decreasing sequence {s,,,m € Z.,} with
lim,,,_, o0 S,y = —00, such that
Y gec- W
lim =4 Sl _ g (34)
m— 00 t— TSm

then there exists a decreasing subsequence {s,, n € Z.} of {s,,} withlim,_, .o s, =
—00, such that

q
hIIl ZqEK WS,,,TS”

n—00 t— Tv,,

=0, (35)
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Fact 1 above, then implies that there exists a subsequence {s,,n € Z,} of {s,,} with
lim,,_, o S,m = —00, such that

ek Wi
. qeK s, T,
lim ———=

n—00 t — TSn

—=0. (36)

Since the server never idles in (7, , ¢] (see (30)), whenever it is connected to some queue,
we have that

0= Wii=D Wi+ VT, 0-r), f lecads. GY)

qgekK geK qeK ceC

for every s < t. Working with (37) on the subsequence {s,}, dividing by (t+ — T}, ) and
letting n — oo, we get

Wq
0 < fim 2ok Mo S pg—r > Pe, (38)

noo t—1, geK CeC

using Birkoff’s individual ergodic theorem [18,21]. From (31) and (38), we eventually

have
ry Pes) p (39)

ceC qeK

which is a contradiction, because p € DM. Therefore, we must have limg_, o Ty, =
T, > —o0.

In view of the above, all queues in Cy- are empty at time 7. Since T is finite,
there is only a finite amount of workload that can arrive to the queues in C7- in the finite
interval [T, t]. Therefore,

Wi < oo, foreveryq e Cy-. (40)

We need to extend the finiteness of the workloads from the queues belonging to
connectivity set Cy- to all the queues in the system. Fact 2, stated next and whose proof
is given in Appendix 6.3, achieves this objective.

Fact 2 : On any sample path (almost surely) of the input N and modulation M. processes,
the following are true for pin€™ and every t € R:

1. If Q C Kiis such that

lim WY, (Amcw. 0) = Wi (Ayew) < oo, forevery g € Q, 41)

§—>—00

then there exists a queue ¢’ € K — Q, such that

lim qu,/t(AMCW» 0) = W (Amcw) < 00 (42)

§—>—00
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2. If there exists some C* C K, such that
W (Amew) < 0o, foreveryg € C*, (43)
then
W (Amew) < oo, foreveryq € K. (44)

Using Fact 2 above, (40) implies that W,/ < oo, for every g € K, proving (27).

The stationarity of the {W/, g € K} processes follows from (18). Moreover, ob-
serve that, due to the nature of the MCW policy, W, ,(w) is a continuous function of the
initial workload w, and is a piecewise continuous function of t between successive job
arrival times. Therefore, it is easy to see that the evolution equations of the workload
processes Wy ,(0) are also satisfied by their limiting counterparts W/ hence, the latter
constitute an operational regime of the system.

Finally, in the case of K = 1, the model corresponds to a system comprised of a
single queue and a server that takes vacations. Hence, it is essentially covered by Loynes
result [1].

This completes the proof of the Proposition 2.4. O

Remark 2.5 (The Use of Extremal Stability). Note that the main purpose of Fact 1 is
to extend the local property (34) (summation over C*) to a global one (35) (summa-
tion over the whole K). Similarly, the main purpose of Fact 2 is to extend the local
property (43) (valid over C*) to a global one (44) (valid over the whole K). The main
vehicle of the proofs of both results is the fact that we are working in the Extremal
Stability Region e™. Indeed, this is what directly enforces the validity of relations
(145), (153), (161), (164), (165), (167), which are the cornerstones of the proofs of
Facts 1 & 2.

2.4. Stability and workload convergence to the stationary regime

Given the proper (finite) nature of the stationary operational regime of the system (when
7 € D) we can now show that the workload process converges to this stationary regime
at large times.

Theorem 2.1 (Stability under the Aycw Policy). For any stationary ergodic input and
modulation processes A and M, if

g € DM (45)

then
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lim PIW!, ., ©0)e B, W, (0)€By, ..., W, (0)€B,, ..., W, (0) € Byl
= ll_lglo POV (Amcw, 0) € B, W (Aucw, 0)

€ By, .... W/ . (Aucw. 0) € By]
= PIW!' e B,WeB,, ..., W €B,,...., WI¥ € By] (46)

foreverys e R, N e Z,.,ne {1,2,...,N},a, € R, q, € K, B, € B, where B is the
field of Borel sets of R. That is, given that the system starts empty and operates under the
Amcw policy, the queueing state process {Wy,(Amcw., 0), ¢ € K} = {W/,(0), ¢ € K}
converges in distribution to the proper stationary regime, {W/, ¢ € K} at large times.
Therefore, the system can be characterized as stable.

Proof.  We just show the theorem for N = 1; the extension to N > 1 is immediate.
Using (17), we have W/, (0;6,N, 6, M = W] ..., (O; N, M); setting z = —1,
we get Wi, (0;60_N,0_, M) =W, , (0; N, M). By the stationarity of A" and M,
we have

P[Wo o (OGN, M) € B] = P[W!,, (0;6_.N,0_,M) € B]
= P[W", ., (O:N, M) € B]. (47)

From (16) and Proposition 2.4, we have that lim, ., W', , (0; N, M) = W' (N, M)
< oo almost surely, so lim,_,o, p[W{", , (0; N, M € By]) = P[WX (N, M)], for any
fixed s € R The latter implies (46) for N = 1. The same steps work in the general case
as well. |

Putting all previously established facts together, we see that if p ¢ DM _J dDM
then no policy can stabilize the system (Proposition 1.1), but if 5 € DM then Aycw does
stabilize it (Proposition 2.4). Therefore, we can say that 9D is the capacity surface or
frontier of the system. Unfortunately, in the critical case p € D™ the stability status
of the system cannot be characterized in an almost sure manner. Indeed, Proposition 2.4
and Theorem 2.1 collapse because relations (33), (35), (42) and (44) fail to hold almost
surely. Hence, the system may exhibit distinct behaviors on different sample paths (of
the type discussed in Remark 1.2).

Remark 2.6 (Lack of Path- Wise Coupling and Infinite Memory). A well-known prop-
erty of the G/G/1 queue [11] (and other queueing systems [1]) is that on any fixed
sample path of the arrival and service time sequence, the sample path of the workload
process - starting with an arbitrary initial workload at time O - couples (merges) at a
finite time with that of a system starting with the queue empty. This key property makes
the stationary operational regime produced by the Loynes construction [11] unique and
the G/G/1 queue eventually forgetful of its initial state. More importantly, it allows the
extension of the basic theory of single queues to acyclic networks of G/G/1 queues
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[1]. An important question is whether such a path-wise coupling property holds for the
queueing system under consideration in this paper, which includes the G/G/1 queue as
a special case. Unfortunately, the answer is negative, as the following counterexample
shows. Consider a system of two queues 1, 2 and two connectivity sets C; = {1, 2} and
C, = {2}. Let a sample path of the connectivity process be

C = Z Colecpmoms1y) + Z Colyiepm+1,2m+2)) (48)

mez mez

and those of the arrival processes

M={(t} =2j.0] =05).j ez}, NMy={(tj=2j—150;=1),j€Z} (49

Such paths could belong to stationary ergodic processes. To see this consider a connec-
tivity process that evolves (with positive probability 1/2) either according to the scenario
presented in (48) or according to (with positive probability 1/2)

C = Z Colyeramom+1y) + Z Cilycam+1,2m42)) (50)

meZz mez

It can be seen that the connectivity process C; is invariant to time shifts 8; and therefore
stationary, as well as ergodic. In addition, the shifted versions of the input processes N7,
and N, are stationary and ergodic.

Suppose now that at ¢t = 0 the system starts with queue 1 having initial workload
« and queue 2 being empty. The evolution of the workloads @ = 0 is given by

1
Wol,z(o’ 0) = Z (5 - t) 1{[6[2m,2m+%)} (5D
meZy
and
Wg,(0,0) = Z (I =Dl cppmsd 2ms 2y (52)
meZy

However, for « > 0, we get at the limit

1
. 1 1
lim [Wo (e, 0) — Wy (0, 0)] = 51{0@%} +al, 1 (53)
and
. 2 w2 _
lim [Wg (e, 0) — W, (0.0)] =0 (54)

The limiting values are only attained asymptotically (actually the sequences are decreas-
ing) and no path-wise coupling occurs in finite time or otherwise. Note that full memory
of the initial condition a is retained forever when o < %, but not when o > % The point
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of this example is that for the system under study, there may be sample paths of positive
measure where path- wise coupling fails to occur, as opposed to the G/G/1 and other
well behaved queueing systems, where coupling occurs with probability 1 (i.e. on every
sample path). Hence, this system exhibits a much richer behavior.

2.5. Rate stability and flow conservation

Remark 2.6 indicates that the job departure process may not converge to a stationary
flow eventually, but instead retain some memory of the system’s initial state forever.
This turns out to be a very serious problem when one tries to extend the results to
acyclic networks of nodes of the previous type. The standard method of Loynes [11]
for acyclic networks of G/G/1 queues collapses. What is needed is a weaker version
of the main result which shows that the queueing system maps rate-ergodic input flows
to also rate-ergodic departure flows and supports flow conservation, when it is stable.
The preservation of rate-ergodicity of job flows through nodes plays a pivotal role
in analyzing networks of random links. This is done in Section 5. Below we set the
framework and prove the result for a single node, which then inductively extends to
multiple nodes.

Relaxing the basic assumptions of the previous analysis, assume that the in-
put N, ={(t],0]), j € Z},q € K and the modulation-induced connectivity process
{C;,t € Z} are simply rate-ergodic, that is,

. 2 jez e . 2 jez%iLien.n) .
lim ———— =4,, lim = pg, lim
1—00 r—s 1—00 t—s t—o00 t—§

(35)

almost surely (where ,, p,, P. are constants), for every s € R,q € Kand C € C.
Hence, we do not require the processes to be stationary or generally ergodic—only to
have rates.

Let d]q. (s, X, Amcw) be the departure time of the jth job in the gth queue, given
that the system operates under Aycw and started at time s with initial condition x. We
define the departure rate as

DRI b
. 7 Hd (s, A ,x)€[0,1)}
205, X, Ayew) = lim =1 : (56)

t—00 t—s

when the limit exists and is constant almost surely; in that case we call the departure
process rate-ergodic.

Theorem 2.2 (Rate-Ergodicity of Output Flows under Aycw and Flow Conservation).
For any rate-ergodic input and connectivity processes, when

p € DM, (57)
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then, for every initial state x € X, we have that

llm qu,l‘(AMCW9 X) —

t—00 t

0 (58)

almost surely, which implies the conservation of flows through the queueing system
)‘Zuz(-AMCW, X) = )»f-/n =2 (59)

almost surely, for every g € K. Therefore, the queueing system is flow-conserving (rate
stable) and the output flows are also rate-ergodic.

Proof. The proof of relation (58) is based on emulating the arguments in the proof
of Proposition 2.4, working forward in time (s fixed, t — ©0), instead of backwards
(s — —oo,t fixed) as done originally. A close look at the pathwise arguments of
the proof of Proposition 2.4 reveals that they remain valid under the milder condi-
tion of rate ergodicity of A/ and M. However, when working forward in time the
Cesaro limit (58) is naturally the strongest result obtained corresponding to (27). Be-
sides certain technical differences the main rationale of the proof remains the same as in
Proposition 2.4.
As in Proposition 2.4 we assume that the system satisfies the condition

pe &M, (60)

without any loss of generality.
In what follows we work on a arbitrarily fixed sample path as well as time ¢ € R.
Starting the system empty at time O < ¢, we define the random time

T, = inf{z € (0, t] : when connected to some queue the server does not [z, ¢]}, (61)

which is the last time (before ¢) that all connected queues are empty. If the server never
idles (when connected) in (0, ¢], we naturally set 7, = 0, while if it is connected and
idling at time 7, we set T; = ¢. Definition (61) implies that at time 7, there exists some
queue which is empty. We first show that

=0. (62)

Arguing by contradiction, suppose that lim;_, o(t — 7;)/t = € > 0. Due to the nature
of Ayicw and (61), all queues in the connectivity set C 75 € C are empty (at time 7,").
An argument similar to the one appearing in the proof of Proposition 2.4 guarantees
that there exists a connectivity set C* € C and an increasing subsequence {¢,,, m € Z.}
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of {t} with lim,,_.1,, = 00, such that C;- = C* for every m € Z,. We then get that
(similarly to (31))

Y gec- Wo
. ecx o,
lim =4 2w

m— 00 tm

=0. (63)

We show next that for some increasing Subsequence {¢,, n €, Z.} of {t,,} with lim,,_, o,
t, = o0 we have

>k W
. eK " 0,T;
lim =42 2w

n— 00 tn

=0. (64)

We first define the random time (similarly to (141))

T,(Q)=inflz € [0, T;] : Vx € [z, T;], RoxN Q # Ponlywhen C, C Q} < T};
(65)

if Ro.;;, N Q # @ and Cr, £ Q the definition becomes degenerate, in which case we set
7(Q)=T.

The proof of (64) proceeds along identical lines to the ones presented in the proof of
Fact 1 of Proposition 2.4 (relationships (146)—-(161)) and therefore is omitted. However,
it should be noted that the main difference is that in the proof of Fact 1, t is kept fixed
and s — —oo (working backwards in time), while in this proof the starting point is kept
fixed (s = 0) and t — oo (working forwards in time).

Since the server never idles in (7;,, t,] whenever it is connected to some queue, we
have that

Iy
0= 3 W, = 3 Win + Vw3 [ eeadz 69
q<K q<K qeK CceCVTn
Dividing by ¢, and letting n — oo, we get
. quK W(;I,Tt,,
0= lim =4=—= 4 > pg—r> Pcle (67)
n geK CceC
using Birkoffs individual ergodic theorem. From (64) we get that

(qu—rZPc>620 (68)

qeK CceC

which holds only if € = 0 (since p € D™). Therefore, € = 0 showing (62).
In view of the above, all queues in Cy, are empty at time 7;. So, we have that

0< W, < Wi, +VUT,. 1) (69)
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for every g € Cy,. Dividing (69) by 1, letting t — oo and using (62) we get that

q

0,1

lim =0, foreveryq € Cr,. (70)

t—oo f

Analogously, to (162), we define the random time

7/(Q) =inf{z € [0,¢] : Vx € [z,t], RoxN Q # FonlywhenC, C Q} <1
(71)

When Ry, N Q # ¥ and C;, € O me definition becomes degenerate, in which case we
set7',(Q) =t.
We proceed to show that

i t—T/(0)
m —— =

t—00 t

0. (72)

The proof proceeds along the lines-given in the proof of relationship (164) of Fact 2 of
Proposition 2.4, Based on (72) we can easily show that

Wé .(Cr)
lim 2gecy Wog (Cr —=0. (73)

—00 t

Arguments similar to those leading to relationships (166) and (167) show that

W,
lim —— = Oforeveryq € K. (74)
t—oo f
This completes the proof of the Proposition.
To prove (59) we argue as follows. Due to the rate ergodicity of N and M, and the
fact that all buffers are FIFO, 58 implies an analogous relation for the queue lengths,

lim Uy (Avcw, x)
t—00 t -

0 (75)

almost surely. Let NV, "1” (s, t] be the number of job arrivals in queue g in (s, ¢] and N;”t(s, t]
the number of departures. We can then write N:]’“‘(s, t] = N;“(s, t] — Llﬁ [(Amcw, X).
Dividing by 7 — s, letting 1 — 0o and using (75) and the rate ergodicity of A/, we get
(59). This completes the proof of the theorem. O

The rate stability concept and the corresponding flow conservation across the
queueing node that has been used in this section parallels the analysis found in [2,5,6]
for other—uvery different—queueing structures. More details on further extensions can
be gleaned from these references, but we opt not to elaborate more here in this direction.
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3. Stability of the longest connected queue (LCQ) schedule

Although quite similar to the previous study of the MCW schedule, the stability analysis
of the policy Aj cq defined in Section 1.1 has certain unique subtleties which need to be
specially addressed. The LCQ schedule could be more natural than MCW to implement
in several applications, which justifies our special interest in it. Such is the case in systems
where the queue lengths are directly observable, but the service time requirement of each
job becomes known only after this has completed execution.

We start by taking a more detailed look into the structure of the queueing state
X, /(ArLcg, X) = (x4 )4 € K} e X of the system (defined in Section 1.3). Recall

5,t(ALco,.X
that X7, (Arcq, X) is a list comprised of the jobs present at time 7 in queue ¢ € K, and
their associated service times (residual times for those in service), given that the system
started at time s < ¢ with initial state x (which is also some list of jobs with service
times). A moment of reflection shows that the general form of a queueing state of the
system (operating under Ajcq) is x x = {x?,q € K} € X with

x? = (x9(1), x12), x1(3), ..., xI(m), ..., x1(M?)) e R, (76)

where MY is the number of jobs in the FIFO queue ¢ € K and x?(m) the service time
of the job at the mth buffer place of that queue (x(1) is the residual service time of the
job that will receive service first).

We next define an equality relation and a partial ordering on X. For two queueing
states

xi = {xf = (x] (1), x{(2), x{3), ... x[(m), ..., x| (M])).q eK} e X (77
xo = {x§ = (xJ(1),x§(2), x{3), ..., x{(m), ..., x](M])).q €K} € X, (78)

we define x; = x, iff, for every ¢ € K, we have M{ = MJ and x{(m) = xJ(m) for
everym € {I,2, ..., M{ = MJ}; thatis, the two states have the same jobs with identical
service times. For g € K, we define of x{ < xJ iff

() M] < MJ and 2) x{(M] —m) = x3(M] —m) foranym € {0, 1, ..., M] —1};
that is, xj has all the jobs of x{ with identical service times, plus some other jobs that are
placed at the front of the x3 list (or the buffer ¢). Finally, we define x; < x, iff x{ < xJ
for every ¢ € K. The relationship x; < X, induces a partial ordering on the space
X.

We need to specify how the A cq policy resolves ties, that is, situations where the
maximum queue-length is attained in two or more queues. In such a case, we assign
the server to the queue with the highest priority among the competing ones, according
to some arbitrarily fixed priority scheme. We call this mechanism priority-based tie
resolution.

Finally, we assume that the service of jobs under A; g preemptive with respect
to job arrivals, so that there is no hysteresis in allocating the server to the queue with
maximum length. Moreover, when a queue becomes disconnected while the server is
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serving its front job, the latter remains in the buffer retaining its residual service time
and resuming when it is again the maximum length one among those connected.

Proposition 3.1 (The Queueing State Domination Argument for Ay cq). Under the Ay cq
policy with priority-based tie resolution, we have that x;, x, € X,

X; < xp = X (ArLcq, X1) < X, /(Arcg, X2) (79)

almost surely, for any fixed s, € R, s < ¢ and initial states x;, X, € X. That is, the
queueing state is an increasing function of its initial value.

Proof. The spirit of the proof is analogous to that of Proposition 2.1, in view of the
partial ordering < defined above. We emphasize here only the points where it differs
from the former proof.

Considering two copies of the system, S; with initial queueing state x; and S,
with x,, operating under the A cq policy on a fixed sample path of A" and M, we again
partition (s, ¢] into a union of disjoint intervals (7, Tyl Withs =Ty < T < --- <
Tw < Tyy1--- < Ty—1 < Ty = t and having the following property: in any open
time interval (7, T,,-1) there is no job arrival in any queue, no job service completion
in S; or S;, and no connectivity switching. Therefore, the epochs T, correspond to
occurrences (possibly simultaneous) of job arrivals, service completions and connec-
tivity switchings. All these three types of epochs are decision making instants, because
Apcq nas to decide where to allocate the server next (since the service discipline is
preemptive).

Analogously to Proposition (2.1), we just need to show (79) locally throughout
an arbitrarily chosen interval (7,,, T,,+1], since we can then obtain the global result
by induction on the index m. Note that the dynamics of the system are continuous
throughout (7,,,, T,,+1], and discontinuities may appear only at the epochs 7,,,; we as-
sume that the sample paths are continuous from the right and have left limits (cadlag).
Letting x; be the queueing state of S; and x, of S, at time 7T,,, we easily see that
X; < X, implies that X7,  (Aicq, X1) < X7, :(ALcq, X2) for every t € (T, Tuy1).
Indeed, recall that the queues are FIFO and, under Apcq, there is only one queue
receiving service at any time; let ¢; be that queue in S; and ¢; in S, throughout
(T, Tus1)- Then, the workloads of the front jobs in ¢; of &) and ¢, of &, are just
continuously diminishing at rate r, so the claim follows immediately. We still need
to prove the preservation of the partial ordering of queueing states at the (potential)
discontinuity time 7,1, i.e. that XTm,Tm;l (ALco. x1) < X7, »T,JH(ALCQ’ X,) implies that
Xz, (Arce: X1) = Xz, 7= (ALcq, X1) = Xq, 7 (ALcq, X2) = X7 7 (ALco. X2)
Since T, is always a decision instant for S; and/or S, (in die sense that the server has
to be reallocated, due to a conneetivity switching, job arrival or service completion),
then again we get that the A ¢ policy (with priority-based tie resolution) allocates the
server in such a way that the partial ordering is preserved. This completes the proof of the
proposition. O



32 BAMBOS AND MICHAILIDIS

Remark 3.1. TheAway the queueing state X ;(Arcq, X) is defined, immediately implies
that forx;, x; € X, s,¢f € R, s < ¢, we have

X1 <Xo = Wi ((Arcg, X1) < Wi (Arcg. X2)  and Uy ;(Arcg, X1) < Uy ((ArLcq, X2)
(80)

almost surely, under the assumptions of Proposition 3.1.
Based on Proposition 3.1, we can now define pathwise for every ¢ € K the
processes

Of = lim U, (Aico, 0), (81)

arguing analogously to (16). These processes are stationary and ergodic with respect
to time shifts, forming a stationary operational regime of the system operating under
Apcq. As in Section 4, the key issue is under what conditions they are finite, leading to
a proper steady state.

Proposition 3.2 (Finiteness of the Stationary Queue Lengths). For any stationary and
ergodic input and modulation processes N and M, if

p € DM (82)
then

Uf = lim Ul (ALcg,0) < oo, ¥Vt €R, for every g € K, (83)
§——00

almost surely. Under this condition the processes {U;,t € R},q € K form a finite
stationary operational regime of the system.

Proof. This proof is completely analogous to that of Proposition 2.4. We merely point
out notational substitutions that map the arguments used in Proposition 2.4 into the
framework under current consideration; we also discuss briefly a few slight deviations
of the arguments. O

In the proof of Proposition 2.4 substitute W,/ with U and W¢ , with WY, (ALcq, 0).
In the proof of Fact 1, the argument leading to (33) has to be built around the queue
lengths U, (ALcq, 0) instead of the workloads Wy ,(A|cq, 0), taking advantage of the
special nature of the Ajcq policy; this must also be followed while structuring the
related arguments in the proof of Fact 2. To capture again the dynamics of the workloads
qu, :(ALcq, 0) from those of the queue lengths US‘{ (ALcq, 0), we just need to use the
following fact. For every decreasing subsequences {sx, kK € Z,} and {t, k € Z.}, such
that s, < 1 for every k € Zi and lim,_, o, sy = —o0 and lim;_, o = —00, we have
that if limy_, oo (U, (Amcw, 0)/ 1} = 0, then limg_ oo WV, (Amcw, 0)/#} = 0 almost
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surely (and vice versa). This is due to the fact that the queues are FIFO and the stationarity
and ergodicity of the processes A and M.

Based on Propositions 3.1 and 3.2—which are analogous to Propositions 2.1 and
2.4)—we can directly obtain for U ,(Arcq, 0) results analogous to those of Theorems
2.1 and. 2.2 for W ,(Amcw, 0). The proofs are similar both in ‘spirit and letter,” so we
do not repeat them here.

4. Random service rate and other extensions

In a variety of applications the service rate itself is a stochastic process. All our results
extend naturally to that case. We point out below the appropriate modifications on
formulas and briefly explain the rationale allowing the extension. Let R = {r,, t € R}
be the stochastic process which gives the value of the service rate at any time. Process R
is also defined on the common probability space (€2, F, P) and is stationary and ergodic
with respect to time shifts 8,. The stability region of the single node system becomes

pMR — {& € Rf : Zaq<|: Z E[r,l{cr_c}]:|, forevery Q C K, Q # @}.

q€0 CeC:CNOAD
(84)

In the special case where the modulation process M. is independent of the service
process R the stability region becomes

DMR = 15 e RK . a, < E[r] Pc |, foreveryQ CK, Q #0¢,

+ q
q€Q CeC:CNQ#W

(85)

which obviously reduces to (6) in the special case r, = r. All the results of the constant
service rate case are based on sample path (geometric) arguments which carry through
to the stochastic service rate case. This fact provides additional justification for treating
the system in the stationary ergodic realm, using sample path arguments, that we have
followed throughout our analysis.

Another easy extension deals with the case where the server has different service
rates {r?,q € K} at the various queues (due to task specialization). It is easy to see
that all results carry through, since the effective service time of a job in ' becomes
oj'? /14, q € K. In this case the stability region takes the form

DM’R:{&eRf:Za—q<|: Z ch|, foreveryQ CK, Q #0¢,

qe0 CeC:CNQ+#D
(86)
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and is achieved by the standard LCQ schedule, as well as a modified MCW schedule
that rescales by r? the workload of each queue g correspondingly.

4.1. Backlog-responsive operation of MCW / LCQ vs. a randomized schedule

If the queue traffic intensities p, and the long-term probabilities of the connectivity sets
P¢ were known, then one might also consider a randomized schedule, which chooses a
queue to serve next—among the currently connected ones—by flipping a multi-valued
coin whose outcome probabilities depend on the current connectivity set. This is imple-
mented at every decision instant, which is either a service completion or a connectivity
switching (job arrival times could also be included). Specifically, suppose that at a given
decision instant the connectivity set is C (modulator’s state). Then, the server flips a
multi-valued coin with conditional probabilities

Pqc = P [choose queue g toserve under Acp4 | connectivity setis CJ. 87

If g ¢ C obviously p,C = 0. Coin flips are conditionally independent given the
modulator’s state C, and also independent from the service, modulation, and arrival flow
statistics. These conditional probabilities should satisfy for the system to be stable

Pg <T Z pqcPc, foreveryg € K, (88)
CeC:C#0

and

0 < psc =1, foreveryg €K, C € C,

quc =1, forevery C € C,C # 0. (89)
qeK

The advantage of the dynamic LCQ and MCW schedules is that they do not need to
know any statistical parameters (like p, and P¢) of the system. Furthermore, they will
also dynamically adapt to changing statistics of the arrival, service and modulation
processes.

5. Feed-forward queueing networks with random link topologies

In this section, we consider open, acyclic, multiclass queueing networks of nodes hav-
ing randomly modulated connectivity—via on/off links—to other nodes. Hence, we can
view such networks as having random link topologies, fluctuating in time. We first de-
velop the general modeling framework and then analyze the dynamics of such networks.
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Figure 4. Anacyclic queueing network with random links. There are four classes of jobs having the following
paths: P, ={0,1,2,5,6,0}, P, ={0,1,2,4,6,0}, P ={0, 1, 3,4, 6,0} and Py = {0, 3, 4, 0}.

5.1. The network modeling framework

Suppose there are E € 7, servers (nodes), labeled by e € E = {1,2, ..., E}, with
service rates r¢, e € E. Let the imaginary node 0 correspond to the environment, where
jobs enter the network from and exit to; denote Eq = E | J{0}. There are also G € Z,
classes of jobs, labeled by g € G = {1, 2, ..., G}, which need to receive service on
several nodes by visiting them consecutively. Classes are distinguished by the network
routes of their jobs, as well as their service time statistics on the nodes they visit. Figure
4 shows a network of 6 nodes and 4 job classes traversing it.

Let P, be the directed path (route) that jobs of class g € G trace in the network. It
is the sequence of nodes that every g-class job visits consecutively (starting and ending
with node 0, since jobs enter from and exit to the environment node 0). Denote by
G® = {g € G : e € P,} the set of classes visiting node e € Eo. For any class g € G,
let g — (e) be the node preceding e on P, and g (e) the one following e. We assume
that the network is acyclic, that is, there exists some numbering of the nodes such that
on every class route the nodes appear in strictly increasing order, or g_(e) < e < g4(e)
for every g € G°, e € Eo.

Every node (server) has several FIFO output buffers of infinite capacity, one for
each job class visiting the node. Let B, be the input buffer of node e, where jobs of
class g € G¢ are placed upon service completion at node g_(e) while waiting to gain
access to node e to receive service next. In order for node e to provide service to a job
residing in its input buffer By it must be connected (has access) to it. The server-buffer
connectivities are randomly modulated.
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Let the random process L;(t) take the value 1, iff node e is connected to buffer B;
at time 7, and O otherwise. The family of stochastic processes

L) = {Ly(1), g € G°}, fore € Ey, (90)

specifies the connectivity pattern between the nodes and their input buffers at any time
t € R. It is defined on some probability space (2, F, P) and specifies the random link
topology for the queueing network. The set of input buffers that server e is connected to
attime tis Cf = {Bg, g € G° : Lg(¢) = 1}. Let C° be the set of values that the process

C¢ can attain throughout its evolution (i.e. the power-set 21B::8€G°)y The vector process
6‘, = (C}, t XXXXX logy which changes over

Extending our modeling approach of the single node case, let sy € R be the
time of the kth occurrence of change in the network connectivity structure and ¢, =
(c}(, c,%, Y A c,f) eC'x(C?x---xC¢x---CE the connectivity pattern that the
system switches into at time s;. We model these random quantities as elements of a simple
random marked point process M = {(sx, ¢&), k € Z}, which is the link connectivity
modulation process. Hence, C; = ), _; €15, <y,.,) gives the network topology process.

The jobs of various classes arrive from the environment (node 0) on random flows.
Let tf € Rbethearrival time of the jthjobofclass g € G tothe network. Each g-class job
needs to visit consecutively the nodes of its route Py = {0, e1, €2, €3,...€5,...€ M, 0}
to receive service. There are M, service nodes, and the dummy node O of the network
environment. Let 6}? = {af(el), ajg (e2), ... af(eMg)}, where aj‘.g (e) is the service time of
the jth job of class g on node e € P,. We model the gth class flow as a simple random
marked point process

Ne ={(e5,65), j € Z}. 91

Finally, recall that two distinct classes g, g’ € G may have the same route P, = 73;.

In that case, however, they must have different statistics of service times & ]‘.g and 6% in
order to be distinct classes.

We assume that the processes M and N, are defined on the probability space
(R, F, P) and are stationary and ergodic with respect to time shifts 6, M = {(sx —
Z, &), k € Z} and O, N, = {(tf -z, 6]‘.5'),j € 7). The arrival rate of g-class jobs-is

. 2'eZI 8e(s,1)]
An = lim S 92)

t—00 r—s

and the traffic intensity of g-class jobs on node e € P,

5je0f @1yt
pf = lim —— I =Dl 93)

t—00 r—3s

Actually, what is needed below is merely the rate-ergodicity of these limits.



QUEUEING NETWORKS OF RANDOM LINK TOPOLOGY 37

The key aspect of network operation is the schedule used for allocating the service
power of each node to the buffers it is currently connected to. Let A be the set of all such
allocation policies. Extending the definitions of Awmcw and A cq for a single node, let
Amcw € A be the policy that allocates the server of each node e € Eq to its connected
input buffer with maximum workload and A;cq € A to the connected input buffer with
maximum queue length. We are basically interested in determining the capacity of the
network, that is, the maximum load that it can handle without any buffer exploding.

The applications discussed in the introduction about a single node extend naturally
to the case of networks. For example, we can now model 1) multi-hop wireless communi-
cation networks (or satellite networks) with extraneous interference patterns, 2) complex
business structures with various interacting departments and exoge-nously provided cash
flow, 3) whole flexible manufacturing plants with unreliable tools, 4) complex distribu-
tion networks with randomly constrained accessibility and 4) protocols in communica-
tion and computer systems with random external control (enabling/disabling) signals.

5.2. Network flow ergodicity and conservation under MCW and LCQ

The network dynamics under the MCW and LCQ schedules turn out to be far more
complicated than those of a single node. Of all the stability results established a single
node, only those about rate-ergodicity and conservation of flows under Aycw and Ay cq
carry over to the case of acyclic networks (Theorem 2.2). Fortunately, this is enough for
addressing the fundamental issue of network throughput (by flow identification) which
is of prime practical interest.

The main problem with networks is that the monotonicity argument (Propositions
2.1 and 3.1) collapses for the global workload/queueing state of the network (list of all
jobs currently in it, together with their residual service times on each node). Therefore,
the Loynes construction [11] fails to produce a well-defined operational regime for
the whole network, and the results obtained for the single node can not be recaptured.
Moreover, the extension of the per-node Loynes procedure [11] inductively to the whole
network also fails, due to the situation discussed in Remark 2.6. Indeed, the input of a
downstream node does not fit the assumptions used to establish the results of Sections
2.1,2.3,2.4.

From a practical point of view, however, the most important issue regarding net-
work capacity is the existence (ergodicity) of link flows (and their computation). Fortu-
nately, the rate-ergodic framework we have developed in Theorem 2.2 does carry over
to the acyclic network case. The key is that (under Aycw and Ajpcq) rate-ergodicity
of input flows at a node induces rate-ergodicity of output ones, while stability reflects
conservation of flows.

Suppose the network starts operating at time s with initial state x (defined by
extension of the analogous definition for the single node case in Section 3) and follows
some A € A server allocation policy. Define tj?'(e; A, X, s) to be the arrival time of the
Jth job of class g € G* at buffer By, that is, the job’s service completion time at node
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g-(e). For every e € Ey, g € G¢, we can define the network flow

Y ez Lt (o A x.s)e(s

o . Z Ht; (es A X, 5)e(s,t]}

M(A, X, 5) = lim =L 0 , (94)
—00 r—s

as the arrival rate of g-class jobs to buffer Bg, or their departure rate from node g_(e),
when the limit is ‘ergodic’—that is, it exists for every s € R and is constant almost surely.

Using the MCW (or LCQ) schedule at every network node, and applying induc-
tively Theorem 2.2 on each node, we see that, if

Zp§<re|: > P[CS:C]:|, forevery V. € G,V #9,  (95)

gev CeCe:CNV#P

for every e € Eo, then every node is individually rate-stable. Hence, the network is
globally rate-stable and there is flow conservation, so

A (Amcw. X, 8) = A;", forevery g € G°, e € Ey, (96)

almost surely, for every s € R and every initial x. The key to applying Theorem 2.2
throughout the acyclic network is that (under rate-stability) the local traffic intensity of
every node e € Eg

8
ZjEZ o (e)l{tf(E;AMCWyan)e(Sat]}

pg(Amcw, X, s) = lim = pg 97)
—00 r—3s

is equal to the input traffic intensity p; (and hence ergodic), for every s € R and every
initial x. The proof is similar to that of flow conservation in Theorem 2.2. Analogous
results hold for the Ajcq policy.

5.3. Maximal flow problems and routing optimization—an example

We can formulate several flow optimization problems on queueing networks of random
topology. To showcase a couple of them, we consider a stripped down version of the
original model, suitable for exposing the main issues and ideas. We refer to the network
of Figure 5. For simplicity we assume that time is slotted and the service times of all
jobs of all classes on all nodes are equal to 1 time slot. Jobs arrive to node 1 according
to a Bernoulli process of rate 1. Traffic is split at nodes according to Bernoulli routing
(i.1.d. coin tossing) and is queued up in their output buffers. For every pair of node and
input buffer the link connectivity in every time slot is constant and independent of those
of other pairs (links). In Figure 5 we have followed the natural indexing of buffers B/,
connectivities L/, and job flows A¥ in terms of the network link (i, j) they refer to.
This is possibly the simplest example of the general network structure introduced in the
previous subsection.

A key problem is the computation of the maximal flow A (capacity, throughput,
see [12,17]) that the network can support without any node going unstable. Note that
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Figure 5. An acyclic queueing network with random links.

since the service times of all jobs are equal to 1 slot, the traffic intensity is equal to the
job flow (p/ = A'/) on every network link (i, j). Based on the results of the previous
section we can formulate the maximum flow problem as a linear program with variables
the links flows, as follows:

maximize A, subject to the constraints

1. Flow Conservation:

A= )\‘12 + )\‘13’ )\‘12 — )\‘24 =+ )\‘25’ )»13 — )»34 +)\.35, )\‘56 — )L25 + )\‘35’
)\46 — )\24 + )\34 )»60 — )»46 + )\56.

2. Node Stability:

A < P[L° =1] (node 1), A'? < P[L'? = 1] (node 2), A'* < P[L"} = 1] (node 3),
A < PIL®* =11, A% < P[L¥* =11, A2 + 23 <1 — P[L* =0]P[L* =0] (node 4),
AP < PILP® =112 < P[LY =11, AP + 23 <1 — P[L® =0]P[L* = 0] (node 5),
A < PIL*® =11, 2 < P[L = 1], A% + 3¢ < 1 — P[L* =0]P[L’® = 0] (node 6).

It should be observed that besides the constraints that appear in a standard network with
node capacities [12,17], there are additional ones emerging here. The latter reflect the
contention of multiple buffers for a single server, when their connectivities permit it. We
can also associate costs with the various links and study the minimum cost routing for a
fixed input-output flow. The problems presented on this very simple network extend to
the general case.
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6. Appendices
6.1. Proof of Proposition 2.3

6.1.1. Construction of stressing coefficients By, k € K
We start by constructing the Stressing coefficients i, k € K, and finally prove that the
resulting stressed input process N satisfies the required conditions (23) and (24). We

define the coefficients inductively for k € K = {1, 2, ..., K} as follows:
Zr +
fi= "3 i3 (98)
195
where
Er = i Ak_l 99
= pdin g lhe) ©9)
k—1
& = max {0, QS}(?I?@Q {(SQ 1{5k>62—1}}}, (100)
with
Agt=r > Pe=) (14 Blig=—1)pg (101)
CeC:CNQO#Y qeQ
5y ' =r Z Pc — Z (14 ByLig=k—1)) g (102)
CeC:CCQ qeQ

for every k € K, O € K. Note that in order to compute §; we only need to know
{B1,1 < k — 1}, which enter in the calculation of E; and &; through (99) and (100).
Therefore, we can construct the coefficients inductively.

Define now N* = ng[. .. (9%2 [(9}31 [AM1]] and p* its traffic intensity vector. Let

p° = p and note that 5X = p’. By construction, for every k € K, we have

pr= {'Orlzc’q € K} = {(1 +ﬂql{q§k})pqvq € K}

g, +
= {Pq + < = sq)hqsk},q € K}’ (103)
therefore
. ot q#k
Py = _ Er + & (104)
Yol a=k

for every ¢, k € K. Using 5¥~!in (101) and (102), we get
AT =7 Z Pc — Zp,’;—l, (105)

CeC:CNQA qe0
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sst=r > Pe=) o, (106)

ceC:CQ qeQ
while
Ep = le('}?eQ {aG'}. (107)
& = max {0, plmax {8"Q_11{Ek>551}}}, (108)

as in (99) and (100). In view of the above we can also construct p* inductively from

p*~1, starting from p° = p.

6.1.2. Proof of positiveness of stressing coefficients B, k € K
Proving B; > 0 is equivalent to showing (E; + &;)/2 > 0 due to (98). In view of (108)
it is enough to show that

Ay >0, forevery k €K, Q CK, Q#0, (109)

since &, > 0. Using induction on the k-index, we show that {A"Q_1 >0,v0 CK, Q #
¢} for every k € K. Indeed:

Step B.1: For k = 1 we immediately get that

Ay=r Y Pc—) p)>0, (110)

CeC:CNO#AD ge0

for every Q C K, Q # @, because p° = p € DM,

Step B.k: Suppose that A"Qfl > 0, forevery Q C K, Q # 0.

Step B.(k 4+ 1): We need to show that {AkQ > 0,V0 C K, Q # #}. Using Step B.k and
(104), we get E; > 0, and from the indicator function in (108), we have 0 < &, < Ey.
Hence, (E; + &)/2 < Ej. From (104), we see that

pk = g 1’ _{_g (111)
q — Sk k k—1 —
]q(1+7<10k +Dk, q_—k

for every g € K. We now need to examine the following two cases:

Case B.(k +1).1: Itk & QO (Q C K, Q # ), then relations (104) and (107) imply that
A'fQ = AlfQ_l > 0 (since pL’; = pg“ if ¢ # k), where the positiveness follows from
Step B.k. That proves the (k + 1)st step in this case.

Case B.(k +1).2: If k € Q, we have from (111) that

k k=1 | m— k—1 . k—1
< + &y = + min A
P < P} e=p 4 min {Ap)

k—1 : k—1
= P —
o+ Qerﬁzlzfleg {r Z C qu

CeC:CNQ#A q€0
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:Qenlg:ilfleQ[r Z Pc — Z plt;l}

CeC:CNQ#D qe(Q—{k})
= min {r Pc — k1 112
QeK:keQ{ Z ¢ Z ,Oq} (112)
CeC:CNQO#D qe(Q—{k})

the last inequality holding because ,oé‘ = pg_l for g # k (see 111). Therefore, we
have

0 < —p;+ min {r Pe= D pf;}
QEKAeQ | cecicnomn qe(Q—{k)
QGK”‘GQ{ CNQ#A( q€Q gefttee

which gives AkQ > 0, for every Q containing k. That proves the (k 4+ 1)** step in the
second case, completing the proof of Step B. (k + 1), as well as the induction.
Note that {A’fQ > 0,VQ C K, Q # (} implies

Zp§<r Z Pc (114)

qeQ CeC:CNQ#W
for every Q C K, Q # 0. Therefore, we have
ok e DM foreveryk € K. (115)
It also implies that
Er >0, foreveryk € K. (116)

Moreover, we have already seen that 0 < &, < E;. Using (111) we finally get

o8 > pi '+ &, forevery k e K, (117)

a fact which is used later.

6.1.3. Proof of o' = pX € EM.
Since pX € DM, in order to show that 5% € £M it is enough to prove that

pr >r Z Pc, forevery Q C K, Q # 0 (118)

qeQ CeC:CeC:CCQ
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To show (118), we actually prove (by induction) the stronger fact that

pr>r Z PC, forevery Q C {1,2,...,k},0 #0 (119)

qeQ CeC:CeC:CCQ

for every k € K, except for the case of k = K and Q = K (when (119) is not true as
discussed at the end of the proof). We can then show (118) by setting k = K in (119)
and dropping the case of Q = K.

In the proof of (119) we use the fact that for every k € K, and Q, Q C K, the

expression
ro), Pe=Yoppsr ). Pe—) 4 (120)

CeC:CNO#P qeQ CeC:CCQ qeQ

is equivalent to

k k
roY. Pe+Afg_g 8o (121)
CeH(0.9)

where H(Q, Q) ={C e C:CZ Q,CNQ#P,CNQ— Q) = P)}. To see this,
write Q = X} UX3and @ = A, U A;, where X1 = Q0 — Q, A, = 9 — Qand &3 =
QN Q(&X, X, X5 are mutually disjoint). Moreover, the sets of connectivities in (120)
canbe writtenas {C € C: C C 0} =V 1Udhand{C € C: CNQ #£ ¥} = Y,UY3U)y,
where

M ={CeC:CCQ,CNQ=P={CeC:C<(Q—-9Q)

Mm={CeC:CCQ,CNQ#M

Vi={CeC:CZQ.CNQ#MCN(Q~ Q) =0 =HQ,Q)

Vi={CeC:CZQ,CNQ#P,CN(Q- Q)+
={CeC:CN(Q— Q) #0}

e

V1, Vo, V3, Yy are mutually disjoint). We can then write (120) as

VZPC+rZPC_Zp§_Zp§§rZPC—Z:O(];’ (122)

Ce% C6y4 qGXz q€X3 Ceyl qGXl

after eliminating the terms ) - cy, Pc and > geXs p(’]‘ which appear on both sides of the
inequality. Observing that

AfQ—Q)=”ZPC—ZP§=r Z Pc — Z pf;, (123)

CeY, qeX, CeC:CN{Q—Q}#£0 qe{Q-0}

k _ k _ _ k

So-g=r Y Pc—y pk=r > Pc— Y pf  (124)
ce) qei) CeC:CC{Q-9Q} qe(Q—-9Q)

and V5 = H(Q, Q), leading immediately to (121).
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We proceed to prove (119), using induction as follows:

Step C.1: For k = 1 in (119), we just need to show that

ol >r Z Pc (125)

CeC:Ce{l

We start by observing that from (117) we have

0
,01 > /01 + 51 = ,01 + max {0 mal’éQ, {5Q1{51>5g}}}, (126)

which implies that p| > p¥ + 8% o> Lz, > 59> for every Q' C K containing queue 1.
Choosing Q' = {1}, we get

pi > Py + 80 Lz =50 (127)

We need to consider the following two cases:
Case C.1.I: If B, > &), then p| > p{ + 8,, so from (106) we get p; > o} +
(r ZCEC:Cg{l} Pc — ,0?), which immediately gives

ol >r Z PC, (128)

CeC:.Cc{1

proving (125) in this case.
Case C.1.2:If B¢ < 8{1}, then from (105) and (106) we have

JETWRTID ST 3] D SRS SYNNIED

CeC:CNGAY q€G CeC:Cc{l} qell)

Note that {1} may not be a member of C; this is why we write C C {1} instead of
C = {1} above (recall that ¥ ¢ C). Relation (129) implies that there exists a G C K,
containing queue 1, such that

r Z PC—Z,O <r Z Pc—qu (130)

CeC:CNG#Y qeG CeC:Cc{1} qef{l}

From (105) and (106), (130) implies that

0 0 0
ro Y. Pot Mgy =8 =9 =0. (131)
CeH({1},G)

If (G — {1}) # @, then (131) leads to a contradiction, because A?G_{l}) > 0
from section B of this proof. In the remaining situation of G = {1}, we see that
H{1},{1}) ={C € C:C Z {1}, Cn{l} # @, C NP = B} is not empty, because K



QUEUEING NETWORKS OF RANDOM LINK TOPOLOGY 45

is a cluster of more than one queue (as assumed in this analysis); therefore we again
get a contradiction. The above render Case C.1.2 impossible, leaving Case C.1.1 as
the only possibility, readily implying Step C.1. This completes the proof of this step.

Step C.k: Suppose that quQ ,0;‘ >r ZCEQCCQ Pc, forevery Q C {1,2,...,k}, Q #
7. -
Step C.(k + 1): We need to show that

Zp§+1>r Z Pc (132)

qeQ CeC:CCQ

forevery O € {1,2,...,k, k+ 1}, O # 0, except for the case where k + 1 = K and
0={1,2,...,K}.

If Q € {1,2,...,k}, the proof of (132) is trivial, because pé‘“ = ,0;‘ forg # k+1,
hence Step C.k immediately implies (132).

If{k+1}e Qand Q C {1,2,...,k + 1}, we proceed as follows. From (117) we
have

k+1 k _ Ak k
Pei1 > Pipr + ket = Py + max {0, ol o {80 l{ak+]>akg}}}, (133)

which implies that p,fill > ,(),’C‘Jrl + (SkQ, 1{5k+]>5kQ,}, forevery Q' C {1,2,...,k + 1}
containing queue (k 4 1). Choosing Q' = Q we get

P> Pl + ( Y. Pe- Zp§)1{5k+l>5kg}, (134)

CceC:CcQ qeQ
using (106). In order to prove (132) we examine the following two cases:
Case C.(k +1).1: If Biyy > 8y, then we get that
P+ Y. pks=r > P (135)
qe{0—{k+1}} CceC:CcQ

which implies

Skt Y P (136)

qeQ CeC:CcQ

because Q C {1, 2, ..., k+1}, {k+1} € Q,and/oé“rl =p§ foreveryg € {1,2, ..., k}.
Relation (136) proves (132) in this case.
Case C.ck + 1).2: If Bpyy < SI‘Q, then using (105) and (106) we get

GcK:r(r]gg)eQ”{r Z PC—Zpg <r Z PC—Zp,’;. (137)

CeC:CNQ 4 q€G CceC:CcQ ge0
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This implies that there exists a set G € K, containing queue (k 4 1), such that

roY. Pe—Y pb<r > Pe—> pk (138)

CeC:CNG#Y qeG CeC:CCQ qeQ

From (105) and (106), (138) implies that

roY . Pt A <8{p g =8=0. (139)
CeH(Q,G)

If O # G, then from the section 6.13 of this proof we have A567 o) > 0 (in the
case that (G — Q) # (), while from step C.k of this induction we have that SZ‘Q_G) <0
(in the case that (Q — G) # ). In all of the above considered cases, (139) produces a
contradiction.

The case Q = G needs special attention. Due to Ag =0, 5’5 = 0, relation (139)

reduces to

ro Y Pc<0, (140)
CeH(Q,0)

where H(Q, Q) ={C e C:C<Z O0,CNO #PB,CNP=0={CeC:C¢&
0, CNQO #@LTk+1#K(Q C{l1,2,...,k+ 1}), then H(Q, Q) is not empty,
since the set of queues K is assumed to be a cluster with more than one queue; therefore,
(140) leads to a contradiction. If k + 1 = K and Q # K, again H(Q, Q) is not empty
(since K is a cluster of more than one queue), so a contradiction can also established.
However, note thatif k + 1 = K and O = K, the set H(Q, Q) is now empty, and (140)
fails to produce a contradiction. This causes no problem, since the latter case has been
excluded from the statement of the Lemma. In view of the above, Case C.(k + 1).2 is
impossible, leaving Case C.(k + 1).1 the only possibility which readily implies (132),
completing the proof of this step, as well as the whole induction indeed. This completes
the proof of the Lemma. a

6.2. Proof of Fact 1 of Proposition 2.4

(1) We first define the set of active queues (receiving service under Ay cw) attime x > s,

Ry, = {q € Cy: WY, = max (W&} > 0} C C, (141)

given that the system has started empty at time s. In case all queues in C, are empty, we
can naturally set R, , = . We then define the random time

T(Q) = inf{z € [s, T;] : Vx € [z, T5], Ry,x N Q # P only when C; € 0} < Tj;
(142)
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if Ryr, N Q # ¥and Cr, £ Q the definition becomes degenerate, in which case we
set T3(Q) = T,. The two key properties captured by this definition are the following.
Firstly, for every x € (Z,(Q), T;], connected queues in Q receive service only when
C. C Q; actually, 7,(Q) is defined to be the earliest time in [s, Ty] after which the
previous condition holds uninterruptedly until T;. This implies that

1,
D Wi =) Wire+) VIT(Q).T) - ’f Lic,co.crmdx
q€0 q€Q q€Q Q)

+rI(T|(Q), T)), (143)

where I(7,(Q), Ty) = f??(Q) Lic.co.c.20.r, ,.—mdx > 0 is the total time in (Z;(Q), T5]
that the server spends idling, while connected exclusively to queues in Q. Secondly, since
Kis aclusterand Q C K, if s < 7;(Q), then at time 7~ (Q) we have C7-o) — Q # ¥
and Q (| R, 7-(g) # ¥, so there must exist a queue g, € Q such that

W o) S Wiy forevery ¢' € Crg— Q #0. (144)
Therefore, at 7,”(Q) the workload of some queue in Q dominates that of some queues
outside Q. These two key properties reflect the intuition associated with this proof and
underlie almost all of the following steps.

We proceed to prove that

1. t_TSk(Q)
m ———— =

1. 145
k—>oo t — Tsk ( )

Arguing by contradiction, suppose there exists € > 0 and a descreasing subsequence

{s.,a € Z,} of {s;} with lim,_, ., s, = —00, such that
t =11,
lim O l1+e (146)
a—>oo  f —

Sa

(note that t — 7;(Q) > t — T by construction). From (143) we have

TS(Z
PILAMED TN ST I Ty (147)
q€Q qeQ T, (Q)
Dividing by t — T, and letting a — oo, we get
T,
Yo Wi Yo VUTLO.TL) T licco.cndx

lim ———— > lim — lim ¢ .
a—>00 t — Tsa a—00 t — Tsa a—00 t — Tva

(148)
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In order to compute the right hand side of (148) we employ the decomposition trick
Vi(z,y) = Vi(z, 1) = V(y, 1) (149)
forevery z <y <t,z,y,t € R, and use (29) and (146) to get

VIT,(0),T,) . VI(T,(Q),1) . t—T,0) .. Vi(T,.1)
im —— =" "% i ——< =" 7 % lim ——~=  |im — </
avoe 11T, amoo 1 =T (Q)  awoe 1—=T, a1 —T,
= pq(l +e)— Pq = Py (150)

The analogous decomposition [ 1ic,cg.c,zndx = f;l{cXgQ,cx#g}dx — f;l{CXgQ’Cl;ﬁ@}
dx, together with (146) gives

. qu?“@ Lic,co.c.zmdx
lim —— =|r Z Pe |e. as1)

4o t =1, ceC.ccQ

Substituting (32), (150) and (151) in (148) we get
0> (qu —r Yy Pc)e, (152)
qeQ CeC:CCQ

which is a contradiction because the right hand side is positive (since € > 0, p € EM
and O C K). This proves that (145) is true.
Based on (145), we can now prove that

q
L LWl @

k—00 t — TSk

(153)

Indeed, from (143) we have

0= Wi 1,0 = > Wi, — Y VT T,) + r/ Lic,co.c.2mdx.

q€Q q€Q q€Q Ty (
(154)

Dividing by ¢t — T, and taking the limits as k — oo, we immediately get (153), since
all limits appearing in the right part of (154) are zero. The first limit is zero due to (32),
while the other two can be easily shown to be zero arguing as in (150) and (151), but
working on the subsequence {s;} and noting that € is actually zero now, due to (152).

We next show that for every decreasing subsequence {sp, b € Z.} of {s;} with
limy,_, o 5, = —00, we have

1. t— 7’?/,(Q)
imsup ———= <
h— o0 I —Sp

1. (155)
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Arguing by contradiction, suppose that there exists a decreasing subsequence {s., ¢ €
Zy} of {sp}, such that lime—.oo[(t — T;e(Q))/(r — 5)] = 1. Noting that W! , = <
Vi(se, T,,(Q)) = VA(sc, 1) — VI(T,,(Q), 1), we get

W 1.0 Vs, 1) 1=
li e < |i = i -
T T(Q) e 15, el — T, (0)
VAUT . (Q), 1)

— lim ——=" 2 =p 1—p, =0 (156)
c>o0o 1 —T;(Q) 7 7

for every ¢ € K. From (145), we get
sc - SC(Q)

lim (157)
c~ t =T, (0)
Also observe that
0<Y W, =) Woz+y V(T
q<K qeK qeK
t
—ry, / Lic,—cydx 4+ r1(T,(Q). 1), (158)
CceC (Q

where 1(7;,(Q), t) > 0 is the total time the server idles in the time interval (Z; (Q), t].
Noting that 1(7;,(Q),t) = 1(Z,(Q), T;,) (since the server never idles in (7}, t]), we
get that 1(7;,(Q),t) < T,, — 7T;,(Q). Dividing (158) by t — 7,.(Q), taking limits as
¢ — oo and using (156), (157) and the fact I(7Z; (Q).t) < T,, — 7,.(Q), we get
> 4k Pg — T Xcec Pc = 0, which is a contradiction since 5 € DM, This completes
the proof of (155).

Based on (155), we can choose a decreasing subsequence {s;,, b € Z,} of {s;}
with lim,_, o §p = —00 and a B € Z,, such that s, < 7,(Q) for every b > B. From
the definition of Z;(Q), since there is only a finite number of connectivity sets in C,
there must exist a decreasing subsequence {s;,/ € Z,} of {s,} (hence of {s;}) with
limjoo 51 = —00, a set C° € C and a queue ¢° € Q, such that Cr., =C%q% €
conon RS’TS[—(Q) # @ and C° — Q # () for large I’s (all [ greater thanl some threshold
value L € Z.). At time 7~ (Q) queue ¢° € Q () C? receives service, because it has
maximum workload among those in CT (0) = C°. That is, for all large I's (I > L) we
have

— w? q
s oz o) =W, 1m0 = 2 Winor (159)
q€Q

the inequality holding because g° is in Q. Letting |C?| denote the cardinality of C°, we
get that quco . T @ = |C | maxqeco{W T (Q)} |C?| quQ Wfl T, . Moreover, it

is easy to see that quC‘ .. T, = D gece W T o) T 2gece jer9; l{t €T, (). Ty 1+
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Combining the above we get the structural relation

0=y Wiy <ICUY Wirio+ Y VT, (Q).T,). (160)
q q

eCe qeQ eCe

Dividing (160) by ¢ — T, and taking the limits as / — oo, we immediately see that

q

lim 220cc Yom 0, (161)
[—00 r— TS[

since both limits of the right part in (161) become zero. The first one is due to (153),

applied on the {s;} subsequence of {s;}, while the second limit can be shown to be zero

arguing similarly to (150), but noting that due to (152) € is zero. From (32) and (161)

we immediately get the result (33). This proves Part 1 of Fact 1 of Proposition 2.4.

(2) To prove (35) we simply apply Part 1 of Fact 1, (161) repeatedly, starting with
the set Q = C* (assuming that C* C K; if C* = K the result is obvious). At every
application of Part 1 the base set Q is expanded into Q° = Q| J C?, which has at
least one more element than Q, while the supporting subsequence is further thinned out.
Therefore, after at most K applications the whole set K is exhausted, and a subsequence
{s,} of {s,} is obtained on which (35) holds. This completes the proof of Fact 1 of
Proposition 2.4.

6.3. Proof of Fact 2 of Proposition 2.4

(1) Analogously to (141), we define the random time

’];/(Q) =inf{z € [s, 1] : Vx € [z,¢], R;x N Q # Wonly whenC, C Q} <1;
(162)

When R, ;N Q # Band C; € Q the definition becomes degenerate, in which case we set
7./(Q) = t. The two key properties captured by definition (141) have direct analogues
for (162) in the interval (7/(Q), ], that is

YW =Y WL+ ) VUTQ), 1 - i’/, Lic,cocxmdx+rI(T)(Q), 1),

q€Q q€Q qeQ 7(Q)
(163)

where 1(7/(Q),t) = f},(Q) lic.co.c.#0,r, .=mdx > 01is defined as in the proof of Part
1 of Fact 1.
Based on (163), we can now prove that

limsup[t — 7] (Q)] < oo (164)

§—>—00
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Indeed, arguing by contradiction, suppose there exists a decreasing subsequence {s;}
of {s} with limy_, o 54 = —00, such that limy_.{t — 7 (Q)} = oco. From (163) we

have 3, co Wiy, = 2,00 VITL(Q). 1) = 7 [1, (o Lie,co)dx. Dividing by t — 77,
.Yd
letting d — oo and using (41), we get 0 > (3 . Py — T D_ceciecp Po), which is a

contradiction because the right hand side is positive (since g € £M and Q C K).
From (163), because of (41), (162) and (164), it is easy to see that

limsup Y~ W}z, < oo. (165)

§—>—00 ([EQ

The analogy between definitions (141) and (162) allows us to use a similar argument
to the one given in (159) in the current context; namely, securing the existence of a
decreasing subsequence {s., e € Z} of {s} with lim,_, », s, = —00 and two queues ¢, €

/ q qo0 q
hQ and g’ € K— Q, such that Wse,T’;(Q) < Wse,T’,;(Q) < quQ Wse,T’.W(Q) Therefore, we
ave

Wi =W g V(T 1) < 3O W 1)+ VI (T(Q),1). - (166)

Se
qe€0

Taking limits as e — oo and using (164), (165) and (166), we get

W = lim WY (Avew, 0) = lim WY (Avew, 0) < oo (167)
for ¢’ € —Q, which completes the proof of the first part of Fact 2.

(2) Analogously to Part 2 of Fact 1, here we apply Part 1 of Fact 2 repeatedly
(inductively), starting with QO = C*. At every step of the induction the current set Q is
expanded into Q' = Q U {¢q'} (where ¢’ € K — Q). Repeated application exhausts the
set K proving Fact 2. |

Acknowledgments

The authors would like to thank two anonymous referees for many helpful comments
and suggestions.

References

[1] FE. Baccelli and P. Bremaud, Elements of Queueing Theory—Palm Martingale Calculus and Stochastic
Recurrences (Springer-Verlag, 1994).

[2] F. Baccelli, N. Bambos and J. Walrand, On flows in stochastic marked graphs, Probability in the
Engineering and Informational Sciences 5 (1991) 145-157.

[3] N. Bambos and G. Michailidis, On parallel queueing with random server connectivity and routing
constraints, Probability in the Engineering and Informational Sciences 16 (2002) 185-203.



52

(4]

(5]
(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]
(19]

[20]
(21]

BAMBOS AND MICHAILIDIS

N. Bambos and G. Michailidis, On the stationary dynamics of parallel queues with random server
connectivities, in: Proceedings of 34th Conference on Decision and Control (CDC), New Orleans,
LA (1995) pp. 3638-3643.

N. Bambos and J. Walrand, Scheduling and stability aspects of a general class of parallel processing
systems, Advances in Applied Probability 25 (1993) 176-202.

N. Bambos and J. Walrand, On stability of state-dependent queues and acyclic queuing networks,
Advances in Applied Probability 21 (1989) 681-701.

S.M. Berman, Sojourns and extremes of stochastic processes. Wadsworth & Brooks/Cole (1991).

A. Brandt, P. Franken and B. Lisek, Stationary Stochastic Models. (John Wiley & Sons, 1990).

P. Bremaud, Point Processes and Queues: Martingale Dynamics (Springer Verlag, 1981).

C. Lott and D. Teneketzis, On the optimality of an index rule in multichannel allocation for single-
hop mobile networks with multiple service rates, Probability in the Engineering and Informational
Sciences 14 (2000) 259-297.

R.M. Loynes, The stability of a queue with nonindependent inter-arrival and service times, Proceedings
Cambridge Philosophical Society 58 (1962) 497-520.

E. Lawler, Combinatorial Optimization—Networks and Matroids (Holt-Rinehart-Winston, 1976).
K. Matthes, J. Kerstan and J. Meckes, Infinite Divisible Point Processes (John Wiley & Sons, 1978).
R.G. Ogier, Minimum-delay routing in continuous-time dynamic networks with piecewise-constant
capacities, Networks 18 (1988) 303-318.

A. Orda and R. Rom, Shortest-path and minimum-delay algorithms in networks with time- dependent
edge-length, Journal of-the ACM 37 (1990) 607-625.

A. Orda and R. Rom, Minimum weight paths in time-dependent networks, Networks 21 (1991a)
295-319.

C. Papadimitriou and K. Steiglitz, Combinatorial Optimization—Algorithms and Complexity
(Prentice-Hall, 1982).

K. Petersen, Ergodic Theory (Cambridge University Press, 1983).

L. Tassiulas and A. Ephremides, Dynamic server allocation to parallel queues with randomly varying
connectivity, IEEE Transactions on Information Theory 39 (1993) 466-478.

J. Walrand, An Introduction to Queueing Networks (Prentice Hall, 1988).

P. Walters, An Introduction to Ergodic Theory (Springer Verlag, 1982).



