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Abstract

We present the first near-exact analysis of an MAPileue withm > 2 preemptive-resume priority
classes. Our analysis introduces a new technique, whickfgeto as Recursive Dimensionality Reduc-
tion (RDR). The key idea in RDR is that the-dimensionally infinite Markov chain, representing the
m class state space, is recursively reduceditedanensionally infinite Markov chain, that is easily and
quickly solved. RDR involves no truncation and results ity@mall inaccuracy when compared with
simulation, for a wide range of loads and variability in tbb jsize distribution.

Our analytic results are then used to derive insights on haWi+server systems with prioritization
compare with their single server counterparts with respecesponse time. Multi-server systems are
also compared with single server systems with respect tefthet of different prioritization schemes —
“smart” prioritization (giving priority to the smaller j&f) versus “stupid” prioritization (giving priority
to the larger jobs). We also study the effect of approxingatinclass performance by collapsing the
classes into just two classes.

Keywords: M/GI/k, M/PH/k, multi-server queue, priority queue, matdnalytic methods, busy periods,
multi-class queue, preemptive priority.

1 Introduction

Much of queueing theory is devoted to analyzing priority ugge where jobs (customers) are labeled and
served in accordance with a priority scheme: high-prio¢iy jobs preempt medium-priority (M) jobs,
which in turn preempt low-priority (L) jobs in the queue. @ity queueing comes up in many applications.
Sometimes the priority of a job is determined by the job’s enwia a Service Level Agreement (SLA),
whereby certain customers have chosen to pay more so ash@petriority access to some high-demand
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resource. Other times, the priority of a job is artificialleated, so as to maximize a company’s profit or
increase system utilization. For example, an online stag choose to give high-priority to the requests of
big spenders, so that those customers are less likely tsgarkére, see [17].

Analyzing the mean response time (and higher moments obnsgptime) for different classes of jobs
is clearly an important problehWhile this problem has been well understood in the case ofglesserver
M/GI/1 queue since the 1950’s [5], the problem becomes mumie miifficult when considered in the context
of a multi-server M/GIk system, and even for an M/&ystem when jobs have different completion rates.
This is unfortunate since such multi-server systems anafaet in many applications where prioritization
is used, e.g., web server farms and super-computing centers

The reason that priority queueing is so difficult to analyza multi-server setting is that jobs of different
priorities may be in service (at different servers) at thraesdéime, thus the Markov chain representation of
the multi-class, multi-server queue appears to requickitng the number of jobs of each class. Hence one
needs a Markov chain which is infinite in dimensions, where: is the number of priority classes. While
the analysis of a 1-dimensionally infinite Markov chain isydhe analysis of am-dimensionally infinite
Markov chain {n > 1) is largely intractable.

Prior work

The number of papers analyzing multi-server priority queeisevast, however almost all are restricted to
only two priority classes Of those restricted to two priority classes, all assiaxgonential service times
The only papersiot restricted to two priority classes are coarse approximatlmlased on assuming that the
multi-server behavior is related to that of a single serystesm [2] or approximations based on aggregating
the many priority classes into two classes [19, 22].

Two priority classes

We start by describing the papers restrictedvio priority classesand exponentially-distributed service
demands Techniques for analyzing the M/K/dual priority system can be organized into four types on
which we elaborate below: (i) approximations via aggregatr truncation; (i) matrix analytic methods;
(iii) generating function methods; (iv) special cases weltbe priority classes have the same mean. Unless
otherwise mentioned, preemptive-resume priorities shbalassumed.

Nearly all analysis of dual priority M/M{ systems involves the use of Markov chains, which with two
priority classes grows infinitely in two dimensions (one dimsion for each priority class). In order to
overcome this, researchers have simplified the chain inwanrvays. Kao and Narayanan truncate the chain
by either limiting the number of high priority jobs [12], dnd number of low priority jobs [10]. Nishida

Iwe will use the termresponse timéhroughout the paper to denote the time from when a job artiveil it is completed. We
will also occasionally talk about thdelay(wasted time), which we define as the job’s response time siitaservice requirement.



aggregates states, yielding an often rough approxima#i@h [Kapadia, Kazmi and Mitchell explicitly
model a finite queue system [13]. Unfortunately, aggregatiotruncation is unable, in general, to capture
the system performance as the traffic intensity grows large.

Although, in theory, the matrix analytic method can be useditectly analyze a 2D-infinite Markov
chain (see for example [3]), the matrix analytic method i€msimpler and more computationally efficient
when it is applied to a 1D-infinite Markov chain. Thereforegshpapers that use the matrix analytic method
to analyze systems involving 2D-infinite Markov chains fiesiuce the 2D-infinite chain to a 1D-infinite
chain by, for example, truncating the state space by plagingpper bound on the number of jobs [12, 10,
16, 21]. Miller [18] and Ngo and Lee [21] partition the staggaese into blocks and then “super-blocks,”
according to the number of high priority customers in queiidis partitioning is quite complex and is
unlikely to be generalizable to non-exponential job sizesddition, [18] experiences numerical instability
issues whemp > 0.8.

A third stream of research capitalizes on the exponentiakjpes by explicitly writing out the balance
equations and then finding roots via generating functiongieheral these yield complicated mathematical
expressions susceptible to numerical instabilities dtdridoads. See King and Mitrani [19]; Gail, Hantler,
and Taylor [8, 9]; Feng, Kowada, and Adachi [7]; and Kao ands@vi [11].

Finally there are papers that consider the special casesvthemultiple priority classes all having the
same mean. These include Davis [6], Kella and Yechiali [f@}]rfon-preemptive priorities), and Buzen and
Bondi [4].

The only work dealing with non-exponential service timesdtained in a pair of papers, not yet
published, by Sleptchenko et. al. [25, 26]. Both papersidens two-priority, multi-server system where
within each priority there may be a number of different adssseach with its own different exponential
job size distribution. This is equivalent to assuminbygper-exponential job size distributidor each of
the two priority classes The problem is solved via a combination of generating fionst and the matrix
analytic method. In theory, their technique may be germahle to PH distributions, though they evaluate
only hyper-exponential distributions due to the increasechplexity necessary when using more general
PH distributions.

More than two priority classes

For the case afore than two priority classethere are only coarse approximations. The Bondi-Buzer) (BB
approximation [2] is beautiful in its simplicity and usdbyil Is is based on an intuitive observation that the
“improvement” of priority scheduling over FCFS schedulimgderk servers is similar to that for the case
of one server with equal total capacity:

E [DM/GI/k/prio] E [DM/Gllllprio]
E[DWGIRFCFS = F[ DMIGILIFCFS

= scaling factor Q)



Here E[DMCVKP0] is the overall mean delay under priority scheduling witeervers of speed/k, and
E[DMGCVKFCFS js defined similarly for FCFS. This relation is exact when ites are exponential with the
same rate for all classes; however what happens when thig ieecase has never been established.

The other approximation (which we denote by MK-N) which a#ofor more than two priority classes
andexponentiajob sizes is due to Mitrani and King [19], and also used by Niah22] to extend the latter
author’s analysis of two priority classess o > 2 priority classes. The MK-N approximation analyzes the
mean delay of the lowest priority class in an MAMjueue withm > 2 priority classes byggregating all the
higher priority classesThus, instead of aggregating all jobs into one class, as &8 ,dMK-N aggregates
into two classes. The job size distribution of the aggregjatass is then approximated with an exponential
distribution by matching the first moment of the distribuatio

Contributions of this paper

In Section 2, we introduce a new analytical approach thatiges the first near-exact analysis of the M/RH/
gueue withm > 2 preemptive-resume priority classes. Our approach, whietrefer to as Recursive
Dimensionality Reduction (RDR), is very different from thgor approaches described above. RDR allows
us to recursively reduce the-dimensionally infinite state space, created by trackimgttpriority classes,

to a 1-dimensionally infinite state space, which is analyticdiigctable. The dimensionality reduction is
done without any truncation; rather, we reduce dimensitynaly introducing “busy period transitions”
within our Markov chain, for various types of busy periodeated by different job classes. The only
approximation in the RDR method stems from the fact that wedrte approximate these busy periods
using Markovian (phase-type) PH distributions. We find thatching three moments of these busy periods
is usually possible using a 2-phase Coxian distributiord piovides sufficient accuracy, within one or
two percent of simulation, for all our experiments (our expents span load ranging fropm = 0.05 to

p = 0.95 and job size variability ranging from@? = 0 to C? = 128). The accuracy of the RDR method can
be increased arbitrarily by better approximating the biesyogls.

In theory RDR can handle systems with any number of servaysnamber of priority classes, and PH
service times. In addition, RDR is quite efficient; for akktbicenarios explored in this paper, the computation
time under RDR is less than a few seconds. However, the caityptd the RDR method does increase with
both the number of serveisand the number of classes. Because RDR becomes less practical under
high m and k, we develop a much simpler, but only slightly less accurapgroximation RDR-A (see
Section 2.5). RDR-A simplifies calculations by approximgtianm priority system with a two priority
system, which is then solved using RDR.

In Section 3 we present results from both RDR and RDR-A forghess mean response time for an
M/PH/E queue with multiple priority classes, and also discuss thmaputation of higher moments of re-
sponse time. In Section 4, we use these results to obtain msamgstinginsightsabout priority queueing.
First, in Section 4.1 we compare the performance of prigpitgueing in a multi-server system witlservers

4



each of speed/k versus a single server of speedWe find that the effect of priorities in a single server
system can be very different than in a multi-server systesgofl capacity. (A non-surprising consequence
of this result is that the BB approximation, which relies etating a multi-server system to a single server
system, can exhibit large errors.) Next, in Section 4.2, tudysthe effect of priority policies that favor
short jobs (“smart prioritization”) versus priority poiés that favor long jobs (“stupid prioritization”) under
systems with different numbers of servers. Understandiegeffect of “smart” prioritization is important
because many common scheduling policies are designeda@garity to short jobs. Lastly, in Section 4.3,
we ask how effective class aggregation (aggregating- 2 priority classes into jus? priority classes) is
as an approximation for dealing with systems having thanpviarity classes. We evaluate several types
of class aggregation including that proposed by the MK-Nraximation and that used in RDR-A to show
when class aggregation serves as a reasonable approximatio

2 RDR analysis of M/PH/k with m priority classes

In this section we describe the RDR technique. We divide aptamation into three parts. As an intro-
duction, in Section 2.1, we deal only with the simplest casa.0= 2 priority classes and exponential job
sizes, which we solve using the techniques in [24]. We themento the difficult case ofn > 2 priority
classes, but still exponential service times, in Secti@n Bere the techniques from [24] do not apply, so we
introduce Recursive Dimensionality Reduction (RDR). TH2RRapproach uses the analysis of the- 1
priority classes to analyze the-th priority class. This is a non-trivial procedure far > 2 since it involves
evaluating many complex passage times (busy periods) ichthia representing the — 1 priority classes,
as these passage times now form transitions within the degiresentingn priority classes. Finally in
Section 2.3, we show how RDR can be applied to the most gecasal ofin > 2 priority classes, with PH
service times.

All the analysis up to through Section 2.3 deals with how tavdemean per-class response times. In
Section 2.4 we illustrate how the RDR method can be extermettainvariance of response tinfer each
class. Finally, in Section 2.5, we introduce RDR-A, whiclamsapproximation of RDR, allowing very fast
(< 1 second) evaluation of high numbers of priority classes angess, with small£ 5%) error.

2.1 Simplest case: Two priority classes, exponential jobzs

Consider the simplest case of two servers and two priortgsas, high (H) and low (L), with exponentially
distributed sizes with ratesy and .y, respectively. Figure 1(a) illustrates a Markov chain oftsystem,
whose states track the number of high priority and low pijojébs; hence this chain grows infinitely in
two dimensions. Observe that high priority jobs simply sed/&M/2 queue, and thus their mean response
time is well-known. Low priority jobs, however, have accasgither an M/M/2, M/M/1, or no server at all,



Figure 1:(a) Markov chain for a system with two servers and two prjociasses where all jobs have expo-
nential sizes. This Markov chain is infinite in two dimensioviia the Dimensionality Reduction technique,
we arrive at the chain in (b), which uses busy period transgi and is only infinite in one dimension. In
(b), the busy period is represented by a single transitian(c)), the busy period is represented by a two
phase PH distribution (with Coxian representation), yieffla one-dimensionally infinite Markov chain.

depending on the number of high priority jobs. Thus their mesponse time is more complicated, and this
is where we focus our efforts.

Figure 1(b) illustrates the reduction of the 2D-infinite Maw chain to a 1D-infinite chain. The 1D-
infinite chain tracks the number of low priority jobs exacthor the high priority jobs, the 1D-infinite chain
only differentiates between zero, one, and two-or-moré pigprity jobs. As soon as there are two-or-more
high priority jobs, ahigh priority busy periods started. During the high priority busy period, the system
only services high priority jobs, until the number of highiguity jobs drops to oné. The length of time
spent in this high priority busy period is exactly an M/M/1slgyeriod where the service rate2igy. We
denote the duration of this busy period by the transitioeleth S5, ,, .

The busy periodB,,,,, is not exponentially-distributed. Hence it is not clear how it slibfit into
a Markov model. We use a PH distribution (specifically a Coxitistribution) to match the first three

>Throughout the paper a “higher priority busy period” is defiras the time from when the system talsigher priority jobs
until there are onlyt — 1 higher priority jobs.



Figure 2:This chain illustrates the case of two priority classes dmdé servers. The busy period transitions
are replaced by a Coxian phase-type distribution matchimgé moments of the busy period duration, as
shown in Figure 1.

moments of the distribution ab,,,,. Parameters of the PH distribution, whose first three mosneaitch
those ofB,,,,, are calculated via the closed form solutions provided 8].[2

Figure 1(c) illustrates the same 1D-infinite chain as in FegL(b), except that the busy period transition
is now replaced by a two phase Coxian distribution. The Iigiprobabilities in this 1D-infinite chain can
be analyzed using the matrix analytic method, which yighddsmhean response time for low-priority jobs via
Little's law. The only inaccuracy in the above approach & tinly three moments of the high-priority busy
period have been matched. We will see later that this suffwebtain very high accuracy across a wide
range of load and job size distributions.

Figure 2 shows the generalization to a three server systasiMply add one row to the chain shown in
Figure 1, and now differentiate between 0, 1, 2, or 3-or-nfigé priority jobs. This can be easily extended
to the case ok > 3 servers.

2.2 Harder case: m priority classes, exponential job sizes

We now turn to the more difficult case et > 2 priority classes. We illustrate this for the case of two
servers and three priority classes: high-priority (H), megpriority (M), and low-priority (L). The mean
response time for class H jobs and that for class M jobs angteasompute. Class H jobs simply see an
M/M/2 queue. Class M jobs see the same system that the lawitgrjobs see in an M/M/2 queue having
two priority classes. Replacing the L's by M’s in the chairFigure 1 yields the mean response time for the
M class jobs.

The analysis of the class L jobs is the difficult part. The obrgi approach would be to aggregate the H
and M jobs into a single class, so that we have a 2-class systavhversus L jobs). Then we could apply
the technique of the previous section, tracking exactlyrtheber of low-priority jobs and maintaining
limited state information on the H-M class. This is the agmiothat we follow in Section 2.5 in deriving
our RDR-A approximation. However, this approach is impsedbecause the duration of the busy periods
in the H-M class depends on whether the busy period was dthyt@H jobs, 1H and 1M job, or 2M jobs
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Figure 3:(Left) Portion of the 1D-infinite chain used to compute messponse time for low-priority jobs
in the case of three priority classes and two servers, anéxbnential service times. (Right) Chain used
to compute moments of the durations of the six busy periogitians.

in service. By ignoring the priorities among H’s and M’s, we g&noring the fact that some types of busy
periods are more likely than others. Even given the infoiomadn who starts the busy period, this still does
not suffice to determine its duration, because the duraiaiso affected by the prioritization within the

aggregated H-M class.

Thus a precise response time analysis of class L requirestairahg more information. As before
we want to exactly track the number of class L jobs. Given thate are two servers, we need to further
differentiate between whether there are zero H and M jobs,Hbor M job, or two or more H and M jobs.
Whenever there are two or more H and M jobs, we are in an H-M pesipd. For an M/M/2 with three
priority classes, there agx types of busy periodsossible, depending on the state at the start the busy
period —(0M,2H), (1M,1H), or (2M,0H ) — and the state in which the busy period end9, 1H) or
(1M,0H). We derive the busy period duration by conditioning on wiaststand ends the busy period.

Figure 3 (left) shows the level of the 1D infinite chain in whithe number of class L jobs is. In
state {L,vM,wH), v class M jobs andv class H jobs are in the systemuif+ w < 2; otherwise, the state
(uL,vM,wH) denotes that we are in a H-M busy period that was started tlgss M jobs andv class H
jobs. Observe that there are six types of busy periods ashitdabeledB,, B, ..., Bg; the busy period is
determined by the state in which it was started and the statdnich it ends. Notice, for example, that both
states in the fourth and fifth row are labeled_(2M,0H), meaning that the busy period is started by two
class M jobs; but these two states differ in the class of thahat is left at the end of the H-M busy period:
In state {:L,2M,0H) of the fourth row, the busy period ends leaving a&slal job, whereas in state of the



fifth row, the busy period ends leaving a class M job. (Redwlt the class of job left at the end of a busy
period is probabilistically determined at the beginninghaf busy period and the duration of the busy period
is conditioned on the class of the job left at the end.) Heng x, for example, denotes the probability
that the busy period started by two class M jobs ends leaviggctass H job, whereas, 7,1 denotes the
probability that the busy period started by one class M arelabaiss H job, ends leaving one class M job.
The remaining probabilities are defined similarly.

It remains to derive the moments of the duration of busy pisti®;, Bs, ..., Bg, and probabilities
P2M, M P2M,H, PMH,M, PMH,H, P2H,M, @andpag g in Figure 3(left). The trick to deducing these quantities
is to observe that the six busy periods correspond to passage between two “diagonal” (shaded) levels
in the chain shown in Figure 3(right), which is the 1D-infnithain that we used to analyze the class M
performance. Note that the 3 states in the right shaded nigdmvel correspond to the three possible “start”
states for busy periods, and the two states in the left shdidggnal level correspond to the two possible
“end” states for the busy periods. Thus, for example, busioga3; in Figure 3(left) corresponds to the
first passage time from state (2M,0H) to state (1M,0H) in th&ircin Figure 3(right). Likewise, probability
pa2nr, M COrresponds to the probability that, in Figure 3(rightptst(1M,0H) is the first state of the two
possible “end” states that is reached, given that the "sssate is (2M,0H). Inter-level passage times and
ending probabilities within the chain in Figure 3(right)nche calculated using techniques developed by
Neuts in [20]. We provide a precise description of this in Apgix A. Observe that these computations are
greatly facilitated by the fact that our chains are infiniteonly one dimension.

The extension of RDR ten > 3 classes is straightforward. For example, for the case ef 4 classes,
we proceed as in Figure 3, where we first create a chain thelstexactly the number of jobs in class 4,
and creates busy periods for the aggregation of the thréehigriority classes. Then to derive the busy
periods for the three higher priority classes, we make ugbeokexisting chain for three classes shown in
Figure 3(left), and compute the appropriate passage tiorethét chain. For an M/M/ with m priority
classes, there ar@™"; =) (™) possible busy periods. That is, the number of different sypiebusy
periods is polynomial irk if m is constant ©@(k™)), and it is polynomial inm if k is constant @ (m*));
however, it is exponential ik andm if neither k nor m is constang

3Remark We note that in practice the number of busy periods can heceetifurther, so that an M/MAwith m priority classes

has(7”,jf;3)2 busy periods of class 1 to class — 1 jobs. An advantage of this reduction is that the number of Imgsiods of
class 1 to class: — 1 jobs becomes independent of the type of PH distributionsishesed to approximate the busy period of class
1to classn — 2 jobs.

The trick to reducing the number of busy periods is illugtdaty considering the example of the M/M/2 with three classieswn
in Figure 3. Here, by taking the mixture of the six busy pesids;, Ba, ..., Bs, we can approximate the H-M busy period floyir
PH distributions. These four distributions of the H-M bugyipd are differentiated by the state from which evgerthe H-M busy
period (either (OM,1H) or (1M,0H)) and by the state we retirafter the H-M busy period (either (OM,1H) or (1M,0H)).

We illustrate how usind3; and Bs, we can obtain (the moments of) the distribution of the ctodal H-M busy period when
we enter the H-M busy period from (1M,0H) and return to (LM)OWhen we are at state (1M,0H), an arrival of an H job or an M
job starts an H-M busy period. When the arrival is an H jobgeesively, an M job), the H-M busy period ends with an M joblwit
probability parrr,ar (respectivelypaar,as), and the conditional duration of the H-M busy periodds (respectively,B;). Since
the arrival processes are Poisson, this conditional H-M Ipesiod, which ends with an M job, starts at state (1M,0Hhwite



Practically speaking, the RDR approach is fast for a smathlmer of servers and a small number of
priority classes. In examples we ran with an M/M/2 and 10ngsicclasses, the RDR algorithm yielded
mean response times within tens of seconds.

2.3 General case: Analysis of M/PH{ with m priority classes

In this section, we explicitly describe how RDR can be agpt®analyze the case of PH job size distribu-
tions. We describe RDR for the case of two servérs=(2) and two priority classes{ = 2), high (H) and
low (L) , where the class H jobs have a particular 2-phase BHipe distribution with Coxian representa-
tion, shown in Figure 4(&).Generalization to highek’s and highenn’s is straightforward by applying the
recursive algorithm introduced in Section 2.2.

Analyzing the performance of class H is trivial, since hjgiierity jobs simply see the mean response
time in an M/PH/2 queue, which can be analyzed via standartdixranalytic methods. To analyze the
class L jobs, as before, we create a 1D-infinite Markov chaicking the class L jobs, and use busy period
transitions to represent needed information regardingltdes H jobs.

Observe that under the 2-phase Coxian job sizes distrilqutve will needfour different types of busy
periods for high priority jobs, depending on the phases etto jobs starting the busy period (1 & 1, or, 1
& 2) and the phase of the job left at the end of the busy periaut @). To derive the durations of these busy
periods, we observe that the busy periods correspond tagasisnes from shaded levgto shaded leve?
in the Markov chain shown in Figure 4(b). Figure 4(b) dessithe behavior of class H jobs, where states
track the number of high priority jobs in the system and thasgls of the jobs being processed. Namely,
at state (OH) there are no high priority jobs in the systenstatie (1H;), there is one high priority job in
phasei; at state ¢H,i, j) there aren high priority jobs in the system and the two jobs are beingessed
are in phase andj, respectively (jobs in the queue are all in phase 1). Thegdassage times in Figure 4
are computed again using techniques in [20].

Figure 4(c) shows a level of the chain that tracks the numblawopriority jobs, where the number of
low priority jobs isu. The low priority job sizes are assumed to be exponentiadiyriduted, but this can be
easily generalized to PH distributions. In stai&,0H), no high priority jobs are in system. An arrival of a
high priority job in state®L,0H) triggers a transition to statel(,1H,1). In statedL,1H,5), one high priority
job in phasej is in the system foj = 1,2. An arrival of a high priority job in stateul.,1H,j) triggers a
transition to statei(,27H,1, j) for j = 1, 2. In state {L,27H,1, ), at least two high priority jobs are in the
system, and the two jobs that started the busy period werbdaepone ang, respectively, forj = 1, 2.
The four types of busy periods are labeled®s B,, B3, and By, and the duration of these busy periods is

AN "P2M, M
M, M+ H PMH, M

An P2, v+ A - paa, - Thus, the duration of this conditional H-M busy periodds with probability X s

and B; otherwise. The other three H-M busy periods can be analyzakbgously.
“Under the Coxian job size distribution, a job starts in pharsewhere it is processed for a time exponentially distébutith
rateug), and then either completes (with probability = 1 — px) or moves to phase two (with probabilipyr).
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Figure 4:(a) A 2-phase PH distribution with Coxian representatidm) arkov chain which will be used to
compute the high-priority job busy periods, in the case whegh-priority job size have a PH distribution
with Coxian representation shown in (a). (c) Chain for a egstwith two servers and two priority classes
where high priority jobs have Coxian service times.

approximated by PH distributions by matching the first threements of the busy period distribution (note
that the busy period cannot start with two jobs in phase twaally, p(; ;) denotes the probability that
a busy period started by two jobs in phases onejamhds with a single job in phage for j = 1,2, and
k=1,2.

2.4 Computing variance of response time and higher moments

Throughout our discussion of RDR thus far, we have been coadewith computing the mean per-class
response time. It turns out that computing higher momentseofclass response time is not much more
difficult. Before we present our approach, we make two resafdrst, observe that it is trivial to derive
all moments of the steady-state per-classnber of jobsn the system, directly from the steady-state prob-
abilities for the Markov chain, which we have already congplutUnfortunately, however, we cannot apply
the beautiful generalization of Little’s Law to higher momt® (see [27, 1]) to immediately get the per-class
higher moments of response time for free, since jobs do noessarily leave our system in the order in
which they arrive.

Below we sketch our approach for computing per-class vagian response time for the case of two
servers, two priority classes (H and L), and exponentialisertimes. We will refer to Figure 1(c) during
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our discussion. For class H jobs, it is easy to compute thiarveg of their response time, via standard
matrix analytic methods, since they are oblivious to clagsbls. Thus we will concentrate on class L jobs.

Consider the 1D-infinite Markov Chain shown in Figure 1(@ttlracks the number of class L jobs. Our
approach thus far has been to compute the limiting probigsiliuse those to derive the mean number of
class L jobs in the system, and then apply Little’s Law todielean response time for class L jobs. Now,
we instead use the limiting probabilities to condition oratvh class L arrival sees. Specifically, by PASTA
(Poisson Arrivals See Time Averages) a class L arrival witbbpbility 7, ;) will see state(iL, jH)
when it arrives, and will cause the system state to change to 1)L, j H) at that moment.

To calculate the variance in response time seen by this Elassgval, we remove all tha;, arcs from the
Markov chain in Figure 1(c), so that there are no more claagivals. This enables us to view the response
time for the class L arrival as the first passage time of thigiffem chain from staté(: + 1)L, jH) to the
state where our clask arrival departs. The only complexity is in figuring out exgéh which state our
classL arrival departs, where our class L arrival is the last clagsblto enter the system.

The final class L arrival may depart the modified Markov chdia first time it hits(1L,0H) or
(1L,1H), depending on the sample path the chain follows. We will caimphe passage time to go from
state((i + 1)L, 7H) to one of these statds(1L,0H ) or (1L, 1H) }. Itis important to observe that the first
time we hit a state with 1L, the state we hit canno{ be, 2™ H), by virtue of the fact that the Markov chain
doesn't have decreasing arcs in its bottom rows.

If (1L,1H) is the first state that we hit with 1L, then we know that we mustehgotten there from
(2L, 1H), which means that the single L job remaining is in fact thedasval. (We're assuming preemption
is done “oldest first to be preempted”). Thus we need to nowoerdithe passage time to go frarhL, 1H)
to (0L, x) to get the full response time for the arrival.

If (1L,0H) is the first state that we hit with 1L, then we know that we geréhfrom stat€2L,0H ).

In this case, the remaining 1L is equally likely to be the Esival or not. With probability half, the last
arrival is already gone, in which case we add nothing to tepamse time. With probability half, this last
arrival remains, in which case we now add on the passage tirge from(1L,0H) to (0L, ) to get the
full response time for the arrival.

Observe that computing the above passage times is sti@ightid, since all the\;, arcs have been
removed.

2.5 Introducing RDR-A

We have seen that the RDR method can become computationggdhsive as the number of priority classes
grows. This motivates us to introduce an approximation daseRDR called RDR-A. RDR-A applies to
m > 2 priority classes and PH job size distributions.

The key idea behind RDR-A is that the RDR computation is fiaupdér when there are only two priority
classes: H and L. In RDR-A, undet priority classes, we simply aggregate these classes irdgtiority
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classes, where the — 1 higher priority classes become the new aggregate H clasthand” priority class
becomes the L class. We define the H class to have a PH job sizdoglion that matches the first three
moments of the aggregation of the— 1 higher priority classes.

Observe that the RDR-A method is similar to the MK-N approiion. The difference is that in MK-
N, both the H and L classes are exponentially-distributetdusTunder MK-N, the H class only matches
the first moment of the aggregate — 1 classes, whereas under RDRi##fkee moments are matched. The
reason that we are able to match the first three momentsr ththvejust the first moment is that we have the
RDR technique, which allows the analysis of multi-servaonity queues witHPH job size distributions, as
described in Section 2.3.

3 Results and Validation

In this section we present results for per-class mean regptimes in M/Mk and M/PHA queues with

m = 4 priority classes, derived using RDR and RDR-A, respeativéb the best of our knowledge, these
are the first such analytical results in the literature. Wewalidate our results against simulation, and show
that their relative error is small. Furthermore the timeuiegg to generate our results is short, typically less
than a second for each data point.

Figure 5 (top row) shows our results for per-class mean resptimes in an M/M/2 queue (left plot)
and an M/PH/2 queue (right plot), both as a function of lpad’he PH distribution used is a 2-phase PH
distribution with squared coefficient of variatio> = 8. All job classes have the same distribution, and
the load is distributed evenly between the four classes.l@fhplot is derived using RDR and the right plot
using RDR-A. Observe that the M/PH/2 queue (right plot) itssim higher mean response time than the
M/M/2 queue (left plot), as expected. In both cases the mesponse time of the lower-priority classes
dwarfs that of the higher-priority classes.

Figure 5 (bottom row) shows the relative per-class errootorresults, when compared with simulation.
Throughout the paper we always show errodelay (queueing time) rather than response time (sojourn
time), since the error in delay is proportionally greatee défine relative error as

(mean delay by RDR or RDR-AY} (mean delay by simulation)

error= 100 - -
% (mean delay by simulation)

(%).

We only show the error for classes 2, 3, and 4, since our asalysirtually exact for class 1 (solved via
matrix-analytic methods). We see that the relative errdhénmean delay of RDR and RDR-A compared to
simulation is within 2% for all classes and typically withifoe, for all p’s. We will see later that this error
increases only slightly when we move to the case of priotagses with different means.

Figure 6 (left) again uses RDR-A to calculate per-class niegponse time in the M/PH/2 queue with
four classes, but this time as a function(st, the squared coefficient of variation of the job size disiiin.
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Figure 5:Top row shows per-class mean response time for M/M/2 (Ieth\a/PH/2 (right) with four priority
classes. Left graph is derived using RDR and right graph isvdd using RDR-A. Bottom row shows the
error in our analytically-derived mean delay relative torailation results, for the corresponding graphs in
the top row.

(Again, all classes have the same job size distribution). w&ssee from the figure, the per-class mean
response time increases nearly linearly with. Figure 6 (right) shows the relative error in mean delay
when the results of the RDR-A analysis in the left plot are pamed with simulation. Again the error is
under 2%. We will see later that this error increases onghly when we move to the case of priority
classes with different means.

Finally, we note that in the above computations RDR is muchencomputationally efficient than sim-
ulation. Simulation requires tens of minutes to generatd éigure, since the simulation is run 30 times,
and in each run 1,000,000 events are generated. By comparnscanalysis takes only a few seconds for
each figure. Further, if we try to reduce the number of evantlheé simulation to 100,000 events, to speed
it up, we see five times as much variation in the simulatiomadoour analytical values. Thus, it is possible
that as we increase the number of events in simulation, ffex@fice in our analysis and the simulation may
decrease even further.
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Figure 6: (Left) Per-class mean response times for M/PH/2 with foumniy classes, derived via RDR-A
analysis. (Right) Relative error in analysis of mean delagnpared with simulation.

4 Comparisons and Insights

In this section we apply RDR and RDR-A to answer fundamentgstions on prioritization in multi-
server systems. In Section 4.1 we compare the behavior di-sauler versus single server systems under
prioritization. In this context, we also evaluate the BB m@&pimation, which approximates the effect of
prioritization in a multi-server system by that in a singéever system. In Section 4.2 we evaluate the effect
of prioritization schemes which favor short jobs in muktirger systems. Finally, in Section 4.3 we study
the effect of aggregating multiple priority classes intetjtwo classes, so as to significantly speed up the
analysis. In this context we also evaluate the MK-N appraion discussed earlier.

4.1 Comparing multi-server versus single server performane under prioritization

In this section we compare systems with different numbesgpfers. It is important to note that throughout
these comparisons, weld the total system capacity fixebhat is, we compare a single server of unit speed
with a 2-server system, where each server has speed hdifawitserver system, where each server has
speed one-fourth, etc.

Figure 7 considers an M/PKkystem with two priority classes whekes one (left) then two (middle)
then four (right), but the total system capacity is held fixaod load is fixed ab = 0.8. The low-priority
jobs are exponentially-distributed. The high-priorityogofollow a Coxian distribution where the squared
coefficient of variation for high priority jobs;'%, is varied. The means of the two classes are the same and
the load is split evenly between the two classes. The plaw gier-class mean response time as a function
of C%. All results are computed using RDR.

The first thing to observe is that the response times in the absne server appear very different from
the response times in the case of two servers, or four servVaeseffect of prioritization in a single server
system offers little (quantitative) insight into the effef prioritization in a multi-server system, aside from
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Figure 7:Contrasting per-class mean response time under one sdefer;, f(wo servers (middle) and four
servers (right) for an M/PH{ with two priority classes. Total system capacity is fixeddighout, and
p = 0.8. Results are obtained using RDR.

the fact that in all cases the response times appear to belg lim@ar function ofC%{.

Figure 7 also illustrates some other interesting points sééethat as we increase the number of servers,
underhigh C?%,, the performance of both high-priority and low-priorityo@improves. By contrast, undew
()12{, the performance can get worse as we increase the numbewefselo understand this phenomenon,
observe that whe@'%, is high, short jobs can get stuck behind long jobs, and irstmgathe number of servers
can allow the short jobs to get a chance to serve. By contrash@? is low, all jobs are similar in size,
so we don't get the benefit of allowing short jobs to jump ahefldng jobs when there are more servers.
However we do get the negative effect of increasing the nurobservers, namely the underutilization of
system resources when there are few jobs in the system, sawteof thek servers only has spedd.
The behavior under low'?,, where more servers lead to worse performance, is more pesriinder lower
load p.

Figure 7 already implies that the effect of prioritizatiom mean response time in a multi-server system
may be quite different from that in a single server systentitjure 8 we investigate this phenomena more
closely, by evaluating when the BB approximation [2], whigbased on this assumption of similar behavior
in single and multi-server priority queues, is accurateoling at Figure 8, we see that the error in the BB
approximation appears to increase for high&r(right graph) and for more classes. With four classes and
two servers, the error is already 10% wh&h = 8 and higher for highet’. By contrast, for the same
4-class case as shown in Figure 8, the error in RDR is alwag$; independent of? and the number of
servers (we have omitted this graph). In the above grapludaaibes were statistically identical. In the case
where the classes have different means, the error in BB camuol higher, whereas RDR-A is insensitive
to this.

4.2 The effect of biasing toward short jobs in multi-server \ersus single server systems

Until now, we have assumed that all job classes are statligtiequivalent. In this section and the next
section, we remove this assumption. In this section we denshe effect of priority schemes which favor
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Figure 8: Error in predicting mean delay using the BB approximationripared with simulation) for an
M/PH/2 with four classes whei@? = 8 (left) or C? = 25 (right) andp = 0.8.

short jobs in multi-server systems. Biasing towards shaiys jis a common method for improving mean
response time in any system. We use RDR to understand hovetteditof favoring short jobs in a single
server system compares to that for a multi-server system.

Figure 9 considers a job size distribution comprised of ggoagntial of mean, representing jobs which
are “short” in expectation, and an exponential of mé@arrepresenting jobs which are “long” in expectation
(where job sizes are measured in a single-server systeng) pifibability of each type of job is chosen to
split load evenly between the “short” and “long” jobs. The SRI scheduling policy assigns high priority
to the “short” jobs, and the STUPID scheduling policy assibigh priority to the “long” jobs (possibly due
to economic reasons). Figure 9 shows the results for a (apener, (b) two server, and (c) four server
system.

Looking at Figure 9, the SMART and STUPID policies are the savhen load is low. At low load,
the response time for both policies converges to simply tearjob size, which in these figures%% for
the single server systeré% for the 2-server system, ar?é for the 4-server system (recall that in a system
with & servers, each server runslgkth the speed).

The most interesting observation is that more servers leéess differentiation between SMART and
STUPID schemes. For example, at Igaé 0.6, there is a factor of five differentiation between SMART and
STUPID with one server and only a 25% difference between SMARJI STUPID with four servers. The
effect appears more prominent under lighter load. This eaexplained by recalling our earlier observation
that multi-server systems allow short jobs a chance to jungad of long jobs, hence the negative effects of
the STUPID scheme are mitigated.
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Figure 10:Effect of aggregation. Graphs show error in mean delay ofdtie(lowest priority) class in the
MK-N and RDR-A approximations for an M/PH/2 with SMART ptipation. On the left as a function of
C? wherep = 0.8, and on the right as a function pfwhereC? = 8. The classes all have a 2-phase Coxian
distribution with squared coefficient of variati@¥ and means: 1, 2, 4, and 8.

4.3 How effective is class aggregation: RDR-A

In the early 80’s Mitrani and King (later followed by Nishidathe early 90's) proposed analyzing priori-
tization in a multi-server system via aggregation as foip@o obtain the mean response time of thé&
class, simply aggregate classes 1 through- 1 into a single high-priority class, and let classrepresent
the low-priority class — then analyze the remaining twoslsgstem. The above MK-N approximation re-
quired further approximating the single aggregate clasari®xponentiajob size distribution, since it was
not known how to analyze even a two class multi-server systgmnon-exponential job size distributions.
Since RDR enables the analysis of multi-server priorityussewith general PH job size distributions,
we can reapply the MK-N aggregation idea, but where now weahle to capture the higher moments of
the aggregated class. We call this approximation RDR-Asesincombines the use of RDR together with
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aggregation.

To understand the effect of aggregation, we consider a tweissystem with four priority classes. All
the classes have a two phase PH distribution, with varyingusg coefficient of variation((?). The classes
differ however in their mean, having means 1, 2, 4, and 8,edsly, and are prioritized according to
the SMART scheme; classes with lower means have higheritgri¢g8 TUPID prioritization yields similar
insights.) Figure 10 examines the error in the mean delage#ith class under RDR-A and under MK-N
as a function of”? (left) and as a function o (right).

We see that the error in RDR-A is never more than 5% regardie€g or p. By contrast, the error in
MK-N is almost never less than 50%, and gets worse under highd andC?.

What this tells us is that “aggregation into two classes"dead method for approximating prioritization
in multi-server systems where the number of classes is 2. However, the aggregation needs to be done
carefully — the distribution of the aggregate class must bdated more closely than can be captured by an
exponential distribution. Thus another benefit of RDR iseded; by allowing for PH job size distributions
it enables more accurate approximations of multi-clasgeays via aggregation.

5 Conclusion

This paper introduces the RDR technique, providing the fliestr-exact analysis of an M/PH¢ueue with

m > 2 priority classes. The RDR algorithm is efficient (requirioigly a second or two for each data point
in the paper) and accurate (resulting<ir2% error for all cases that we studied). Furthermore, RDR agpea
to maintain its accuracy across a wide range of loads andjebvariability (in this paper we studied load
p, ranging from0.05 to 0.95 and studied squared coefficient of variatiéi, ranging from0 to 128).

Although the RDR algorithm is efficient when the number obpty classes is small, it becomes less
practical when the number of priority classes grows (eay.ah M/M/2 with 10 priority classes, the running
time can get as high as tens of seconds). Hence we also ingdbde RDR-A approximation, which works
by aggregating the: > 2 priority classes into only two priority classes. The dimition of each aggregate
class is then captured by a PH distribution, and the reguRiclass system (with PH job sizes) is solved
using RDR. The RDR-A algorithm is extremely efficiert (1 second for a data point, regardless of the
number of classes), since its running time is that of the RI@Arahm for only two classes. Furthermore,
the RDR-A algorithm has high accuracy 6% error) across all loads an@?.

We use our analysis to obtain insights about priority quegién multi-server systems. We start by
comparing multi-server systems with single server systefrequal capacity. We find that the effect of
prioritization in multi-server systems cannot be predicy considering a comparable single server sys-
tem. The reason is that adding servers creates complexsffetpresent in a single server. For example,
multiple servers provide a strong benefit in dealing withhhigzariable job sizes, however they also hinder
performance under lighter load. We also compare multiesenith single server systems, by evaluating the
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error in the Bondi-Buzen (BB) approximation which is basedrelating multi-server performance under
prioritization to single-server performance. We find tiet error in BB can get quite high, whéi¥ grows
or the number of classes grows.

We next consider the effect of “smart” prioritization, wharasses of jobs with smaller means are given
priority over those with larger means. We find that “smartibgtization has a much stronger effect in a
single-server system, than in a multi-server system of lezpacity. This can be explained in part by the
observation that multiple servers inherently help out sjodrs by allowing them to jump ahead of long jobs.

Lastly, we evaluate the effect of class aggregation as arpaippation method for analyzing a high
number of classes. We find that aggregation when done clgrefllly capturing several moments of the
aggregated class — works surprisingly well, resulting iryvew error. However, when the aggregate class
is approximated only with respect to it first moment (by justexponential distribution), aggregation can
be very poor, resulting in error of well over 50%. The facttR®R allows the first analysis of classes with
PH job size distributions enables this good aggregatiomceqopation.

In this paper we have focused on the problem of multi-serueugs withn > 2 priorities. What makes
this problem difficult is the fact that its Markov chain repeatation grows infinitely imn dimensions, and
there are dependencies between those dimensions (thé/jalss depend on the class H jobs, and the class
L jobs depend on both the class M and class H jobs). The RDRitdgogreatly simplifies this problem
by reducing the dimensionality of the Markov chain to juseoihere are many other problems that also
exhibit high dimensionality in their Markov chain repretaion, and it is possible that the RDR method
introduced here may be applicable to those problems as well.
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A Moments of busy periods in nonhomogeneous QBD processes
(Can omit in final version if space constraints)

Neuts’ algorithm [20] is an efficient algorithm that caldgis the moments of various types of busy periods
in very general processes, i.e. M/G/1 type semi-Markov ggses. Because of its generality, however, the
description of the algorithm in [20] is sophisticated, ahds non-trivial to understand or implement. Since
Neuts’ algorithm can be applied to the performance anabfsisany computer and communication systems,
it is a shame that it has not been used more frequently intdrature.

The purpose of this section is therefore to make Neuts’ dlgurmore accessible by re-describing his
algorithm restricted to the first three moments of particty@es of busy periods in QBD processes. In
[20], the analysis is limited to homogeneous (level indelesm) processes. However, it is trivially extended
to nonhomogeneous (level dependent) QBD process which ea inethis paper. Therefore, we describe
Neuts’ algorithm for nonhomogeneous QBD processes thattsmfter levek, We omit all proofs, which
are provided in detail in [20], instead we focus on intuiteord interpretation. We include everything needed
to apply Neuts’ algorithm within our solution framework, that readers who wish to apply our methodology
can do so.

In our paper, we consider a QBD process with state spaee {(i,5)|i > 0,1 < j < P;}, which has
generator matrixQ:

A(10) A(()O)
A(21) A(11) A‘(:)1)
Q= A(22) A(12)

whereA(ll) is aP, x P, matrices. We assume that our QBD process has a repeatictustruthere exists
k < oo such thatAi(l) = Ai(k) fori =0,1,2 and for alll > k. Figure 11 shows a particular QBD process
with P, = 2 for all {.

We define level as denoting the set of states of the fofinj) for j = 1,..., P,. Our goal can be
roughly stated as deriving the passage time required togmt $tate(/, j) to levell — 1 conditioned on the
particular state first reached in level 1. More precisely, we seek the first three moments of the Higtan
of the time required to get from stafé j) to state(! — 1, k), given that staté! — 1, k) is the first state
reached inlevel — 1 foranyl > 1,1 < j < P,andl < k < P_;. In Section A.1, we introduce more
notation. In Section A.2, we show how Neuts algorithm can fygied to derive the first three moments
of the conditional passage time in the repeating part (k). In Section A.3, we extend the analysis to

nonrepeating parf (< k). In Section A.4, we summarize other generalization thattdlealgorithm allows.
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RO < ~A+a) o« >
! 8 —(A+5)
o A0
Ay = < 0 A ) forti >0
0 A+ +a) a >
A = forl>1
1 < 8 ~(A 2+ 6) e
m _ (m O
Ay = < 0 1 ) forl >1
(b)

Figure 11: An example of a QBD process: (a) states and transites, and (b) submatrices of the generator
matrix.

A.1 Notation
We define the transition probability matri®,(z), as

Ot(),l (1’) ao,o(fﬁ)

P( )_ al,z(m) al,l(x) al,o(m)
B az,z(fﬁ) az,l(m)

where the(s,t) element,P(z), is the probability that the sojourn time at statés < x and the first
transition out of state is to statet. Observe thaty; 1 (x) is aP; x P, submatrices fot > 0.
Next, we define the-th moment of submatrices; ;(x) as

al(;) :/0 x"dog ;(x)

fori =0,1,2, r = 1,2,3, andl > 0, where an integral of a matriX/ is a matrix of the integrals of the
elements in\/.
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Example

Consider the QBD process shown in Figure 11.44et= XA + 111 +a andvy, = A+ pe + 8. Then,aq 4(x)'s
and their momental(;';.) forr = 1,2, 3 look as follows:

1—eme 0 A0
— v
o) = ( 0 1— e 22 )( 01 A)
72
1 —em® 0 0o =
_ v
ualr) = ( 0 1— e 22 ) ( 8 01 )
72
1 —e™ M 0 £
_ Bt
al’Z(aj) N ( 0 1 — e 27 )( 01 M_2>
72
and
! A
W™ — [ w0
1,0 0o = 0 2
3 72
r!
o = [ 0 g "
’ r!
0 ¥ % 0
|
S R I
> Tl b2
0 V5 0 Y2
forl > 2.

Finally, letG;(z) be anP, x P, matrix whose(j, k) element(G;);x(x), is the probability that the time
to visit levell — 1 is at mostz and the first state visited in level- 1 is (I — 1, k) given that we started at
(1, 7). Also, let(Gy(")) ;. be ther-th moment of( Gy) 4 («); namely,G\*) = [ 27dGy () for r = 1,2,3.

Matrix G = lim, .~ Gi(z) is a fundamental matrix used in the matrix analytic method) \earious
algorithms to calculat€x, have been proposed [15]. The most straightforward (but)sédgorithm for the
repeating part/(> k) is to iterate

G = —(A{) ALY (G)? - (AL) ALY )
until it converges. Oncé&y is calculatedG, for I < k can be calculated recursively:
~1
G = - (A(ll) + A(()I)G1+1) Ay, 3)

Notice that(Gy);x () is not a proper distribution function arf€@x);; = lim,_...(G1);x(z), which is
the probability that the first state in leviel- 1 is state(l — 1, k) given that we start at staté, j), can be less
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than 1. Therefore(Gf'“))j;‘C is not a proper moment rather a conditional moment: fthe moment of the
distribution of the first passage time to level 1 given that the first state in levél- 1 is state(l — 1, k)
and given that we start at statie j)” multiplied by “the probability that the first state reachiedevell — 1
is state(l — 1, k) given that we start at stafé j).”

A.2 Moments of passage time in the repeating part

The quantities that we need in our methodology are (a) theagiibty that the first state reached in level
[ —1is state(l — 1, t) given that we start at stafé s) and (b) ther-th moment of the distribution of the first
passage time to levél— 1 given that the first state in levél- 1 is state(l — 1,¢) and given that we start
at state(l, s). Quantity (a) is given byGy)s ¢, and quantity (b) is given b% Matrix G is obtained
by an iterative substitution of (2) and (3) for ahy> 1. Therefore, our goal is to derive matricéér) for

r = 1,2, 3. In this section, we derive the repeating pﬂlf,r) = Gfk) for I > k. In Section A.3 we derive
the nonrepeating parGlr) forl < k.

OnceGy is obtained, matri>Gf(1) is obtained by iterating
G = af? +alVGr + a1 G + alV GrGr + a0GY Gl + a0 GLGYY 4)
Similarly, matrixGl({z) is obtained by iterating

G? = of +aPap+22"6" + 0GP
+ai GG + 208V (GG + GG + a0 (G Gy + 26V G + GLGP) (5)

and matrifo') is obtained by iterating

G1(<3) = ag3) + a§3)Gk + 3a§2)G§:) + 3a:(ll)G§c2) + alG,(f)
+a$V GG + 308 (GG + GG + 30V (GG + 260G + G GP)
+a0(GY G + 3G G + 360G + G GY). (6)

We now give intuition behind expressions (4)-(6). The righhd side of (4) can be divided into three
parts: [0]aS", [1] iV G + a1 GV, and [2]afV GG + a0 GV Gy + aoGRGY. Forh = 0,1,2,
the (s, t) element of part/}] gives “the first moment of the distribution of the time to dgetm state(k, s)
to state(k — 1,t) given that the first transition out of statg, s) is to levelk + h — 1 and the first state
reached in levek — 1 is (k — 1,¢)” multiplied by “the probability that the first transition bof state(k, s)
is to levelk + h — 1 and the first state reached in level- 1 is (k — 1,¢).” Part [1] consists of two terms.
The first term,agl)Gk, is the contribution of the time to the first transition, ahd second termlG(l),
is the contribution of the time it takes to rea@h— 1, t) after the first transition. Similarly, part [2] consists
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of three terms. The first termx(()l)Gka, is the contribution of the time to the first transition, tleesnd
term,aOchl)Gk, is the contribution of the time it takes to come back froneldv+ 1 to level k after the
first transition, and the third termeGkG(l), is the contribution of the time it takes to go from leveto
level &k — 1.

The right hand sides of (5) and (6) can similarly be dividet ithree parts: part [0] consists of terms
containingas oragr); part [1] consists of terms containirgy oragr); part [2] consists of terms containing
ag or a(()’"). The three parts of (5) and (6) can be interpreted exactlgdinge way as the three parts of (4)
except that “the first moment” in (4) must be replaced by “teeond moment” and “the third moment” in
(5) and (6), respectively. The three terms in part [1] of @) be interpreted as follows. L&}, be the time
to the first transition and léf; be the time it takes from levéi to level k — 1. Then, the second moment of

the distribution of these two times is
E[(To +T)?) = E[(T.)*] + 2E[T.) E[Tg] + E[(Ta)?],

sinceT,, andT are independent. Roughly speakilftg‘f)G,c corresponds td[(T,,)?], 2a§1)G§:) corre-
sponds t@FE[T,|E[Tq], andangf) corresponds td[(T)?]. The other terms can be interpreted in the
same way.

A.3 Extension to nonrepeating part
Forl < k, Gfr) is calculated recursively.

G;l) = al(,12) + al(,ll)Gl + al,lGl(l) + al(i))Gl—f—lGl + al,oGl(_li_)lGl + Otl,()Gl_i_lGl(l)

= (-1 — aGry1)” (Oéz(,lz) + al(,ll)Gl + at(,lo)GlJrlGl + al,OGl(vlL)lGl)

G2 = o + a6 +2a0G" + G
+al(,2())Gl+1Gz + 2al(,10)(G§41r)1G1 + G1+1G§1)) + al,O(Gﬁ)lGl + 2G§J1r)1G§1) + GHIG?))

= I-ap1— al,OGl—i—l)_l
(al(i) + al(?l) G+ 20‘1(,11) Gl(l)

+ o ) Gry1Gr + 20 (G}

M Gi+ G GM) + eu0(GP), Gy + 2G Y G{”))

1+1 1+1
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G§3) = al(f;) + al(?l)Gl + 3al(’21)Gl(1) + 3al(’11)Gl(2) + al,lGl(3)

+al(i))Gl+1Gl + 30‘1(,20)(G§J1r)1G1 + G1+1G§1)) + Bal(’lo)(G(z)

@ G +261, G + GG

1+1

@)
+oyo(GP WG+ G GP).

® G +362 e +3a

1+1
= (I-oqa-— Oll,OGH-1)_1
(al(f;) + o)+ 3026 +3a{)6?
+c"l(,?E))GlﬁLlGl + 30‘1(,20)(G§J1r)1G1 + G1+1G§1)) + Bal(’lo)(G(z)

1+1
"‘al,O(Gﬁ)lGl + 3G§-2|-)1G§1) + 3G§i)1G§2)))

G +2GM, G + G111 GP)

A.4 Generalization allowed

Finally, we mention some generalizations that Neuts’ aflgor allows. (1) We restricted ourselves to the
first three moments, but this can be generalized to any higloenents. (2) We restricted ourselves to the
first passage time from levélto levell — 1, but this can be generalized to levelrom level I — i. (3)
We restricted to QBD processes, but this can be generalz®dt/®/1 type semi-Markov processes. (4)
We restricted ourselves to the moments of the distributiotin@ duration of busy periods, but this can be
generalized to the moments of the joint distribution of theation of a busy period and the number of
transitions during the busy period.
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