
Multi-server queueing systems with multiple priority classes

Mor Harchol-Balter∗ Takayuki Osogami† Alan Scheller-Wolf‡ Adam Wierman§

Abstract

We present the first near-exact analysis of an M/PH/k queue withm > 2 preemptive-resume priority
classes. Our analysis introduces a new technique, which we refer to as Recursive Dimensionality Reduc-
tion (RDR). The key idea in RDR is that them-dimensionally infinite Markov chain, representing the
m class state space, is recursively reduced to a1-dimensionally infinite Markov chain, that is easily and
quickly solved. RDR involves no truncation and results in only small inaccuracy when compared with
simulation, for a wide range of loads and variability in the job size distribution.

Our analytic results are then used to derive insights on how multi-server systems with prioritization
compare with their single server counterparts with respectto response time. Multi-server systems are
also compared with single server systems with respect to theeffect of different prioritization schemes –
“smart” prioritization (giving priority to the smaller jobs) versus “stupid” prioritization (giving priority
to the larger jobs). We also study the effect of approximating m class performance by collapsing them
classes into just two classes.

Keywords: M/GI/k, M/PH/k, multi-server queue, priority queue, matrix analytic methods, busy periods,

multi-class queue, preemptive priority.

1 Introduction

Much of queueing theory is devoted to analyzing priority queues, where jobs (customers) are labeled and

served in accordance with a priority scheme: high-priority(H) jobs preempt medium-priority (M) jobs,

which in turn preempt low-priority (L) jobs in the queue. Priority queueing comes up in many applications.

Sometimes the priority of a job is determined by the job’s owner via a Service Level Agreement (SLA),

whereby certain customers have chosen to pay more so as to gethigh-priority access to some high-demand

∗Supported by NSF Career Grant CCR-0133077, NSF Theory CCR-0311383, NSF ITR CCR-0313148, and IBM Corporation
via Pittsburgh Digital Greenhouse Grant 2003.
Email: harchol@cs.cmu.edu; Web: http://www.cs.cmu.edu/∼harchol; Address: Department of Computer Science, Carnegie Mel-
lon University, 5000 Forbes Ave., Pittsburgh, PA, 15213; Phone: 412-268-7893; Fax: 412-268-5576.

†Email: osogami@cs.cmu.edu; Address: Department of Computer Science, Carnegie Mellon University, 5000 Forbes Ave.,
Pittsburgh, PA 15213; Phone: 412-268-3621.

‡Email: awolf@andrew.cmu.edu; Address: Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave., Pitts-
burgh, PA, 15213; Phone: 412-268-5066.

§Email: acw@cs.cmu.edu; Address: Department of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pitts-
burgh, PA, 15213; Phone: 412-877-9455.

1

resource. Other times, the priority of a job is artificially created, so as to maximize a company’s profit or

increase system utilization. For example, an online store may choose to give high-priority to the requests of

big spenders, so that those customers are less likely to go elsewhere, see [17].

Analyzing the mean response time (and higher moments of response time) for different classes of jobs

is clearly an important problem.1 While this problem has been well understood in the case of a single-server

M/GI/1 queue since the 1950’s [5], the problem becomes much more difficult when considered in the context

of a multi-server M/GI/k system, and even for an M/M/k system when jobs have different completion rates.

This is unfortunate since such multi-server systems are prevalent in many applications where prioritization

is used, e.g., web server farms and super-computing centers.

The reason that priority queueing is so difficult to analyze in a multi-server setting is that jobs of different

priorities may be in service (at different servers) at the same time, thus the Markov chain representation of

the multi-class, multi-server queue appears to require tracking the number of jobs of each class. Hence one

needs a Markov chain which is infinite inm dimensions, wherem is the number of priority classes. While

the analysis of a 1-dimensionally infinite Markov chain is easy, the analysis of anm-dimensionally infinite

Markov chain (m > 1) is largely intractable.

Prior work

The number of papers analyzing multi-server priority queues is vast, however almost all are restricted to

only two priority classes. Of those restricted to two priority classes, all assumeexponential service times.

The only papersnot restricted to two priority classes are coarse approximations based on assuming that the

multi-server behavior is related to that of a single server system [2] or approximations based on aggregating

the many priority classes into two classes [19, 22].

Two priority classes

We start by describing the papers restricted totwo priority classesand exponentially-distributed service

demands. Techniques for analyzing the M/M/k dual priority system can be organized into four types on

which we elaborate below: (i) approximations via aggregation or truncation; (ii) matrix analytic methods;

(iii) generating function methods; (iv) special cases where the priority classes have the same mean. Unless

otherwise mentioned, preemptive-resume priorities should be assumed.

Nearly all analysis of dual priority M/M/k systems involves the use of Markov chains, which with two

priority classes grows infinitely in two dimensions (one dimension for each priority class). In order to

overcome this, researchers have simplified the chain in various ways. Kao and Narayanan truncate the chain

by either limiting the number of high priority jobs [12], or the number of low priority jobs [10]. Nishida

1We will use the termresponse timethroughout the paper to denote the time from when a job arrives until it is completed. We
will also occasionally talk about thedelay(wasted time), which we define as the job’s response time minus its service requirement.

2

aggregates states, yielding an often rough approximation [22]. Kapadia, Kazmi and Mitchell explicitly

model a finite queue system [13]. Unfortunately, aggregation or truncation is unable, in general, to capture

the system performance as the traffic intensity grows large.

Although, in theory, the matrix analytic method can be used to directly analyze a 2D-infinite Markov

chain (see for example [3]), the matrix analytic method is much simpler and more computationally efficient

when it is applied to a 1D-infinite Markov chain. Therefore, most papers that use the matrix analytic method

to analyze systems involving 2D-infinite Markov chains firstreduce the 2D-infinite chain to a 1D-infinite

chain by, for example, truncating the state space by placingan upper bound on the number of jobs [12, 10,

16, 21]. Miller [18] and Ngo and Lee [21] partition the state space into blocks and then “super-blocks,”

according to the number of high priority customers in queue.This partitioning is quite complex and is

unlikely to be generalizable to non-exponential job sizes.In addition, [18] experiences numerical instability

issues whenρ > 0.8.

A third stream of research capitalizes on the exponential job sizes by explicitly writing out the balance

equations and then finding roots via generating functions. In general these yield complicated mathematical

expressions susceptible to numerical instabilities at higher loads. See King and Mitrani [19]; Gail, Hantler,

and Taylor [8, 9]; Feng, Kowada, and Adachi [7]; and Kao and Wilson [11].

Finally there are papers that consider the special case where the multiple priority classes all having the

same mean. These include Davis [6], Kella and Yechiali [14] (for non-preemptive priorities), and Buzen and

Bondi [4].

The only work dealing with non-exponential service times iscontained in a pair of papers, not yet

published, by Sleptchenko et. al. [25, 26]. Both papers consider a two-priority, multi-server system where

within each priority there may be a number of different classes, each with its own different exponential

job size distribution. This is equivalent to assuming ahyper-exponential job size distributionfor each of

the two priority classes. The problem is solved via a combination of generating functions and the matrix

analytic method. In theory, their technique may be generalizable to PH distributions, though they evaluate

only hyper-exponential distributions due to the increasedcomplexity necessary when using more general

PH distributions.

More than two priority classes

For the case ofmore than two priority classes, there are only coarse approximations. The Bondi-Buzen (BB)

approximation [2] is beautiful in its simplicity and usability. Is is based on an intuitive observation that the

“improvement” of priority scheduling over FCFS schedulingunderk servers is similar to that for the case

of one server with equal total capacity:

E[DM/GI/k/prio]

E[DM/GI/k/FCFS]
≈

E[DM/GI/1/prio]

E[DM/GI/1/FCFS]
= scaling factor. (1)

3

HereE[DM/GI/k/prio] is the overall mean delay under priority scheduling withk servers of speed1/k, and

E[DM/GI/k/FCFS] is defined similarly for FCFS. This relation is exact when jobsizes are exponential with the

same rate for all classes; however what happens when this is not the case has never been established.

The other approximation (which we denote by MK-N) which allows for more than two priority classes

andexponentialjob sizes is due to Mitrani and King [19], and also used by Nishida [22] to extend the latter

author’s analysis of two priority classes tom > 2 priority classes. The MK-N approximation analyzes the

mean delay of the lowest priority class in an M/M/k queue withm ≥ 2 priority classes byaggregating all the

higher priority classes. Thus, instead of aggregating all jobs into one class, as BB does, MK-N aggregates

into two classes. The job size distribution of the aggregated class is then approximated with an exponential

distribution by matching the first moment of the distribution.

Contributions of this paper

In Section 2, we introduce a new analytical approach that provides the first near-exact analysis of the M/PH/k

queue withm ≥ 2 preemptive-resume priority classes. Our approach, which we refer to as Recursive

Dimensionality Reduction (RDR), is very different from theprior approaches described above. RDR allows

us to recursively reduce them-dimensionally infinite state space, created by tracking them priority classes,

to a 1-dimensionally infinite state space, which is analyticallytractable. The dimensionality reduction is

done without any truncation; rather, we reduce dimensionality by introducing “busy period transitions”

within our Markov chain, for various types of busy periods created by different job classes. The only

approximation in the RDR method stems from the fact that we need to approximate these busy periods

using Markovian (phase-type) PH distributions. We find thatmatching three moments of these busy periods

is usually possible using a 2-phase Coxian distribution, and provides sufficient accuracy, within one or

two percent of simulation, for all our experiments (our experiments span load ranging fromρ = 0.05 to

ρ = 0.95 and job size variability ranging fromC2 = 0 to C2 = 128). The accuracy of the RDR method can

be increased arbitrarily by better approximating the busy periods.

In theory RDR can handle systems with any number of servers, any number of priority classes, and PH

service times. In addition, RDR is quite efficient; for all the scenarios explored in this paper, the computation

time under RDR is less than a few seconds. However, the complexity of the RDR method does increase with

both the number of serversk and the number of classesm. Because RDR becomes less practical under

high m and k, we develop a much simpler, but only slightly less accurate,approximation RDR-A (see

Section 2.5). RDR-A simplifies calculations by approximating anm priority system with a two priority

system, which is then solved using RDR.

In Section 3 we present results from both RDR and RDR-A for per-class mean response time for an

M/PH/k queue with multiple priority classes, and also discuss the computation of higher moments of re-

sponse time. In Section 4, we use these results to obtain manyinterestinginsightsabout priority queueing.

First, in Section 4.1 we compare the performance of priorityqueueing in a multi-server system withk servers

4

each of speed1/k versus a single server of speed1. We find that the effect of priorities in a single server

system can be very different than in a multi-server system ofequal capacity. (A non-surprising consequence

of this result is that the BB approximation, which relies on relating a multi-server system to a single server

system, can exhibit large errors.) Next, in Section 4.2, we study the effect of priority policies that favor

short jobs (“smart prioritization”) versus priority policies that favor long jobs (“stupid prioritization”) under

systems with different numbers of servers. Understanding the effect of “smart” prioritization is important

because many common scheduling policies are designed to give priority to short jobs. Lastly, in Section 4.3,

we ask how effective class aggregation (aggregatingm > 2 priority classes into just2 priority classes) is

as an approximation for dealing with systems having than twopriority classes. We evaluate several types

of class aggregation including that proposed by the MK-N approximation and that used in RDR-A to show

when class aggregation serves as a reasonable approximation.

2 RDR analysis of M/PH/k with m priority classes

In this section we describe the RDR technique. We divide our explanation into three parts. As an intro-

duction, in Section 2.1, we deal only with the simplest case of m = 2 priority classes and exponential job

sizes, which we solve using the techniques in [24]. We then move to the difficult case ofm > 2 priority

classes, but still exponential service times, in Section 2.2. Here the techniques from [24] do not apply, so we

introduce Recursive Dimensionality Reduction (RDR). The RDR approach uses the analysis of them − 1

priority classes to analyze them-th priority class. This is a non-trivial procedure form > 2 since it involves

evaluating many complex passage times (busy periods) in thechain representing them − 1 priority classes,

as these passage times now form transitions within the chainrepresentingm priority classes. Finally in

Section 2.3, we show how RDR can be applied to the most generalcase ofm > 2 priority classes, with PH

service times.

All the analysis up to through Section 2.3 deals with how to derive mean per-class response times. In

Section 2.4 we illustrate how the RDR method can be extended to obtainvariance of response timefor each

class. Finally, in Section 2.5, we introduce RDR-A, which isan approximation of RDR, allowing very fast

(< 1 second) evaluation of high numbers of priority classes and servers, with small (< 5%) error.

2.1 Simplest case: Two priority classes, exponential job sizes

Consider the simplest case of two servers and two priority classes, high (H) and low (L), with exponentially

distributed sizes with ratesµH andµL respectively. Figure 1(a) illustrates a Markov chain of this system,

whose states track the number of high priority and low priority jobs; hence this chain grows infinitely in

two dimensions. Observe that high priority jobs simply see an M/M/2 queue, and thus their mean response

time is well-known. Low priority jobs, however, have accessto either an M/M/2, M/M/1, or no server at all,

5

Lλ Lλ Lλ

LλLλLλ

Lλ Lλ Lλ

LλLλLλ

Hλ

Hλ

Hλ Hλ

Hλ

Hλ Hλ

Hλ

Hλ Hλ

Hλ

Hλ
Hµ Hµ

Hµ Hµ
Lµ

Lµ
Lµ Lµ

L2µ

H2µ H2µ H2µ H2µ

H2µ
H2µH2µH2µ

L2µ
3L,0H2L,0H1L,0H

2L,3H 3L,3H1L,3H0L,3H

0L,2H 1L,2H 2L,2H 3L,2H

3L,1H2L,1H1L,1H0L,1H

0L,0H

(a)

B2µH
B2µH

B2µH
B2µH

+0L,2 H 1L,2 H+ 2L,2 H+ 3L,2 H+

λL

λLλLλL

λL λL

λL λL λL

λH λH λH λH

λHλHλHλH

Hµ Hµ Hµ Hµ

Lµ Lµ Lµ

Lµ L2µ L2µ
1L,0H 2L,0H 3L,0H

0L,1H 1L,1H 2L,1H 3L,1H

0L,0H

(b)

+0L,2 H 1L,2 H+ 2L,2 H+ 3L,2 H+

λL

λLλLλL

λL λL

λH λH λH λH

λH

Hµ Hµ Hµ Hµ
Lµ L2µ L2µ

λLλH λHλH
λL λL

λL λL λL

Lµ Lµ Lµ

B2µH

1L,0H 2L,0H 3L,0H

0L,1H 1L,1H 2L,1H 3L,1H

0L,0H

=

(c)

Figure 1:(a) Markov chain for a system with two servers and two priority classes where all jobs have expo-
nential sizes. This Markov chain is infinite in two dimensions. Via the Dimensionality Reduction technique,
we arrive at the chain in (b), which uses busy period transitions, and is only infinite in one dimension. In
(b), the busy period is represented by a single transition. In (c), the busy period is represented by a two
phase PH distribution (with Coxian representation), yielding a one-dimensionally infinite Markov chain.

depending on the number of high priority jobs. Thus their mean response time is more complicated, and this

is where we focus our efforts.

Figure 1(b) illustrates the reduction of the 2D-infinite Markov chain to a 1D-infinite chain. The 1D-

infinite chain tracks the number of low priority jobs exactly. For the high priority jobs, the 1D-infinite chain

only differentiates between zero, one, and two-or-more high priority jobs. As soon as there are two-or-more

high priority jobs, ahigh priority busy periodis started. During the high priority busy period, the system

only services high priority jobs, until the number of high priority jobs drops to one.2 The length of time

spent in this high priority busy period is exactly an M/M/1 busy period where the service rate is2µH . We

denote the duration of this busy period by the transition labeledB2µH
.

The busy periodB2µH
is not exponentially-distributed. Hence it is not clear how it should fit into

a Markov model. We use a PH distribution (specifically a Coxian distribution) to match the first three

2Throughout the paper a “higher priority busy period” is defined as the time from when the system hask higher priority jobs
until there are onlyk − 1 higher priority jobs.

6

λL λL λL
Hµ

Lµ

Hµ λH λH Hµ λH λHHµ
Lµ L2µ L3µ

λLλL λL

0H,0L 0H,1L 0H,2L 0H,3L

H2µ λH λHH2µ H2µ λH H2µ λH

B3µH B3µH B3µH B3µH
λHλHλHλH

Lµ Lµ Lµ

λLλLλL

λL λL

L2µ L2µ

λL

1H,0L 1H,1L 1H,2L 1H,3L

2H,0L 2H,1L 2H,2L 2H,3L

3+H,1L 3+H,2L 3+H,3L3+H,0L

Figure 2:This chain illustrates the case of two priority classes and three servers. The busy period transitions
are replaced by a Coxian phase-type distribution matching three moments of the busy period duration, as
shown in Figure 1.

moments of the distribution ofB2µH
. Parameters of the PH distribution, whose first three moments match

those ofB2µH
, are calculated via the closed form solutions provided in [23].

Figure 1(c) illustrates the same 1D-infinite chain as in Figure 1(b), except that the busy period transition

is now replaced by a two phase Coxian distribution. The limiting probabilities in this 1D-infinite chain can

be analyzed using the matrix analytic method, which yields the mean response time for low-priority jobs via

Little’s law. The only inaccuracy in the above approach is that only three moments of the high-priority busy

period have been matched. We will see later that this sufficesto obtain very high accuracy across a wide

range of load and job size distributions.

Figure 2 shows the generalization to a three server system. We simply add one row to the chain shown in

Figure 1, and now differentiate between 0, 1, 2, or 3-or-morehigh priority jobs. This can be easily extended

to the case ofk > 3 servers.

2.2 Harder case: m priority classes, exponential job sizes

We now turn to the more difficult case ofm > 2 priority classes. We illustrate this for the case of two

servers and three priority classes: high-priority (H), medium-priority (M), and low-priority (L). The mean

response time for class H jobs and that for class M jobs are easy to compute. Class H jobs simply see an

M/M/2 queue. Class M jobs see the same system that the low-priority jobs see in an M/M/2 queue having

two priority classes. Replacing the L’s by M’s in the chain inFigure 1 yields the mean response time for the

M class jobs.

The analysis of the class L jobs is the difficult part. The obvious approach would be to aggregate the H

and M jobs into a single class, so that we have a 2-class system(H-M versus L jobs). Then we could apply

the technique of the previous section, tracking exactly thenumber of low-priority jobs and maintaining

limited state information on the H-M class. This is the approach that we follow in Section 2.5 in deriving

our RDR-A approximation. However, this approach is imprecise because the duration of the busy periods

in the H-M class depends on whether the busy period was started by 2H jobs, 1H and 1M job, or 2M jobs

7

B2

B1

B4

B3

λ p
2M,HM

λMM
µ λH

µ
H

λ p
MH,HH

λ p
MH,HM

λ p
2H,HH

λ p
2H,MH

λ p
MH,MH

λ p
MH,MM

λ p
2M,MM

B6

B5

uL,0M,0H

uL,1M,0H

uL,0M,1H

uL,2M,0H

uL,2M,0H

uL,1M,1H

uL,1M,1H

uL,0M,2H

uL,0M,2H

(u−1)L,0M,0H

(u−1)L,1M,0H

(u−1)L,0M,1H

(u−1)L,2M,0H

(u−1)L,2M,0H

(u−1)L,1M,1H

(u−1)L,1M,1H

(u−1)L,0M,2H

(u−1)L,0M,2H

(u+1)L,0M,0H

(u+1)L,1M,0H

(u+1)L,0M,1H

(u+1)L,2M,0H

(u+1)L,2M,0H

(u+1)L,1M,1H

(u+1)L,1M,1H

(u+1)L,0M,2H

(u+1)L,0M,2H

+
0M,2 H 1M,2 H

+
2M,2 H

+
3M,2 H

+

1M,0H 2M,0H 3M,0H

0M,1H 1M,1H 2M,1H 3M,1H

0M,0H

busy periods

2 possible states

for end of H−M

3 possible states

for start of H−M

busy periods

Figure 3: (Left) Portion of the 1D-infinite chain used to compute mean response time for low-priority jobs
in the case of three priority classes and two servers, and allexponential service times. (Right) Chain used
to compute moments of the durations of the six busy period transitions.

in service. By ignoring the priorities among H’s and M’s, we are ignoring the fact that some types of busy

periods are more likely than others. Even given the information on who starts the busy period, this still does

not suffice to determine its duration, because the duration is also affected by the prioritization within the

aggregated H-M class.

Thus a precise response time analysis of class L requires maintaining more information. As before

we want to exactly track the number of class L jobs. Given thatthere are two servers, we need to further

differentiate between whether there are zero H and M jobs, one H or M job, or two or more H and M jobs.

Whenever there are two or more H and M jobs, we are in an H-M busyperiod. For an M/M/2 with three

priority classes, there aresix types of busy periodspossible, depending on the state at the start the busy

period –(0M, 2H), (1M, 1H), or (2M, 0H) – and the state in which the busy period ends –(0M, 1H) or

(1M, 0H). We derive the busy period duration by conditioning on who starts and ends the busy period.

Figure 3 (left) shows the level of the 1D infinite chain in which the number of class L jobs isu. In

state (uL,vM,wH), v class M jobs andw class H jobs are in the system ifv + w < 2; otherwise, the state

(uL,vM,wH) denotes that we are in a H-M busy period that was started byv class M jobs andw class H

jobs. Observe that there are six types of busy periods depicted, labeledB1, B2, . . . ,B6; the busy period is

determined by the state in which it was started and the state in which it ends. Notice, for example, that both

states in the fourth and fifth row are labeled (uL,2M,0H), meaning that the busy period is started by two

class M jobs; but these two states differ in the class of the job that is left at the end of the H-M busy period:

In state (uL,2M,0H) of the fourth row, the busy period ends leaving a class H job, whereas in state of the

8

fifth row, the busy period ends leaving a class M job. (Recall that the class of job left at the end of a busy

period is probabilistically determined at the beginning ofthe busy period and the duration of the busy period

is conditioned on the class of the job left at the end.) Herep2M,H , for example, denotes the probability

that the busy period started by two class M jobs ends leaving one class H job, whereaspMH,M denotes the

probability that the busy period started by one class M and one class H job, ends leaving one class M job.

The remaining probabilities are defined similarly.

It remains to derive the moments of the duration of busy periods, B1, B2, ..., B6, and probabilities

p2M,M , p2M,H , pMH,M , pMH,H , p2H,M , andp2H,H in Figure 3(left). The trick to deducing these quantities

is to observe that the six busy periods correspond to passagetimes between two “diagonal” (shaded) levels

in the chain shown in Figure 3(right), which is the 1D-infinite chain that we used to analyze the class M

performance. Note that the 3 states in the right shaded diagonal level correspond to the three possible “start”

states for busy periods, and the two states in the left shadeddiagonal level correspond to the two possible

“end” states for the busy periods. Thus, for example, busy period B1 in Figure 3(left) corresponds to the

first passage time from state (2M,0H) to state (1M,0H) in the chain in Figure 3(right). Likewise, probability

p2M,M corresponds to the probability that, in Figure 3(right), state (1M,0H) is the first state of the two

possible “end” states that is reached, given that the “start” state is (2M,0H). Inter-level passage times and

ending probabilities within the chain in Figure 3(right) can be calculated using techniques developed by

Neuts in [20]. We provide a precise description of this in Appendix A. Observe that these computations are

greatly facilitated by the fact that our chains are infinite in only one dimension.

The extension of RDR tom > 3 classes is straightforward. For example, for the case ofm = 4 classes,

we proceed as in Figure 3, where we first create a chain that tracks exactly the number of jobs in class 4,

and creates busy periods for the aggregation of the three higher priority classes. Then to derive the busy

periods for the three higher priority classes, we make use ofthe existing chain for three classes shown in

Figure 3(left), and compute the appropriate passage times for that chain. For an M/M/k with m priority

classes, there are
(

m+k−2
k

)(

m+k−3
k−1

)

possible busy periods. That is, the number of different types of busy

periods is polynomial ink if m is constant (Θ(km)), and it is polynomial inm if k is constant (Θ(mk));

however, it is exponential ink andm if neitherk norm is constant.3

3Remark: We note that in practice the number of busy periods can be reduced further, so that an M/M/k with m priority classes

has
(

m+k−3
k−1

)2
busy periods of class 1 to classm − 1 jobs. An advantage of this reduction is that the number of busy periods of

class 1 to classm− 1 jobs becomes independent of the type of PH distributions that is used to approximate the busy period of class
1 to classm − 2 jobs.

The trick to reducing the number of busy periods is illustrated by considering the example of the M/M/2 with three classes, shown
in Figure 3. Here, by taking the mixture of the six busy periods,B1, B2, ...,B6, we can approximate the H-M busy period byfour
PH distributions. These four distributions of the H-M busy period are differentiated by the state from which weenterthe H-M busy
period (either (0M,1H) or (1M,0H)) and by the state we returnto after the H-M busy period (either (0M,1H) or (1M,0H)).

We illustrate how usingB1 andB3, we can obtain (the moments of) the distribution of the conditional H-M busy period when
we enter the H-M busy period from (1M,0H) and return to (1M,0H). When we are at state (1M,0H), an arrival of an H job or an M
job starts an H-M busy period. When the arrival is an H job (respectively, an M job), the H-M busy period ends with an M job with
probability pMH,M (respectively,p2M,M), and the conditional duration of the H-M busy period isB3 (respectively,B1). Since
the arrival processes are Poisson, this conditional H-M busy period, which ends with an M job, starts at state (1M,0H) with rate

9

Practically speaking, the RDR approach is fast for a small number of servers and a small number of

priority classes. In examples we ran with an M/M/2 and 10 priority classes, the RDR algorithm yielded

mean response times within tens of seconds.

2.3 General case: Analysis of M/PH/k with m priority classes

In this section, we explicitly describe how RDR can be applied to analyze the case of PH job size distribu-

tions. We describe RDR for the case of two servers (k = 2) and two priority classes (m = 2), high (H) and

low (L) , where the class H jobs have a particular 2-phase PH job size distribution with Coxian representa-

tion, shown in Figure 4(a).4 Generalization to higherk’s and higherm’s is straightforward by applying the

recursive algorithm introduced in Section 2.2.

Analyzing the performance of class H is trivial, since high-priority jobs simply see the mean response

time in an M/PH/2 queue, which can be analyzed via standard matrix analytic methods. To analyze the

class L jobs, as before, we create a 1D-infinite Markov chain tracking the class L jobs, and use busy period

transitions to represent needed information regarding theclass H jobs.

Observe that under the 2-phase Coxian job sizes distribution, we will needfour different types of busy

periods for high priority jobs, depending on the phases of the two jobs starting the busy period (1 & 1, or, 1

& 2) and the phase of the job left at the end of the busy period (1or 2). To derive the durations of these busy

periods, we observe that the busy periods correspond to passage times from shaded level3 to shaded level2

in the Markov chain shown in Figure 4(b). Figure 4(b) describes the behavior of class H jobs, where states

track the number of high priority jobs in the system and the phases of the jobs being processed. Namely,

at state (0H) there are no high priority jobs in the system; atstate (1H,i), there is one high priority job in

phasei; at state (nH,i, j) there aren high priority jobs in the system and the two jobs are being processed

are in phasei andj, respectively (jobs in the queue are all in phase 1). The firstpassage times in Figure 4

are computed again using techniques in [20].

Figure 4(c) shows a level of the chain that tracks the number of low priority jobs, where the number of

low priority jobs isu. The low priority job sizes are assumed to be exponentially distributed, but this can be

easily generalized to PH distributions. In state (uL,0H), no high priority jobs are in system. An arrival of a

high priority job in state (uL,0H) triggers a transition to state (uL,1H,1). In state (iL,1H,j), one high priority

job in phasej is in the system forj = 1, 2. An arrival of a high priority job in state (uL,1H,j) triggers a

transition to state (iL,2+H,1, j) for j = 1, 2. In state (iL,2+H,1, j), at least two high priority jobs are in the

system, and the two jobs that started the busy period were in phase one andj, respectively, forj = 1, 2.

The four types of busy periods are labeled asB1, B2, B3, andB4, and the duration of these busy periods is

λM ·p2M,M +λH ·pMH,M . Thus, the duration of this conditional H-M busy period isB3 with probability
λM ·p2M,M

λM ·p2M,M +λH ·pMH,M

andB1 otherwise. The other three H-M busy periods can be analyzed analogously.
4Under the Coxian job size distribution, a job starts in phaseone where it is processed for a time exponentially distributed with

rateµ
(1)
H , and then either completes (with probabilityqH = 1 − pH) or moves to phase two (with probabilitypH).

10

H
(1)µ H

(2)µH
p

H
q

H1 − p=

(a)

µ
H
(1)q

H

Hλ

µ
H
(1)q

H

µ
H
(1)p

H
H
(2)2µµ

H
(1)p

H

Hλ Hλ Hλ

µH
(2)

Hλ
Hλ

µ
H
(1)q

H

µH
(2)

µ
H
(1)p

H

q
HH

(1)2µ
p

HH
(1)2µ

q
HH

(1)2µ

p
HH

(1)2µµH
(2)

0H

1H,2

1H,1 2H,1,1 3H,1,1

2H,1,2 3H,1,2

H
(2)2µ

2H,2,2 3H,2,2

2 possible states
for start of
busy periods.

2 possible states
for end of
busy periods.

(b)

B2

B1

B4

B3λ p
(1,2),1H

λHµ (1)

H
q

H

λ p
(1,2),2H

λ p
(1,1),1H

λ p
(1,1),2H

µ (1)

H
p

H

µ (2)

H

uL,2 H,1,1
+

uL,2 H,1,1
+

uL,2 H,1,2
+

uL,2 H,1,2
+

uL,0H

uL,1H,1

uL,1H,2

+
(u+1)L,2 H,1,1

+
(u+1)L,2 H,1,1

+
(u+1)L,2 H,1,2

+
(u−1)L,2 H,1,1

+
(u−1)L,2 H,1,1

+
(u−1)L,2 H,1,2

(u−1)L,2 H,1,2
+ (u+1)L,2 H,1,2

(u+1)L,1H,2

(u+1)L,1H,1

(u+1)L,0H

(u−1)L,1H,2

(u−1)L,1H,1

(u−1)L,0H

+

(c)

Figure 4:(a) A 2-phase PH distribution with Coxian representation. (b) Markov chain which will be used to
compute the high-priority job busy periods, in the case where high-priority job size have a PH distribution
with Coxian representation shown in (a). (c) Chain for a system with two servers and two priority classes
where high priority jobs have Coxian service times.

approximated by PH distributions by matching the first threemoments of the busy period distribution (note

that the busy period cannot start with two jobs in phase two).Finally, p(1,j),k denotes the probability that

a busy period started by two jobs in phases one andj, ends with a single job in phasek, for j = 1, 2, and

k = 1, 2.

2.4 Computing variance of response time and higher moments

Throughout our discussion of RDR thus far, we have been concerned with computing the mean per-class

response time. It turns out that computing higher moments ofper-class response time is not much more

difficult. Before we present our approach, we make two remarks. First, observe that it is trivial to derive

all moments of the steady-state per-classnumber of jobsin the system, directly from the steady-state prob-

abilities for the Markov chain, which we have already computed. Unfortunately, however, we cannot apply

the beautiful generalization of Little’s Law to higher moments (see [27, 1]) to immediately get the per-class

higher moments of response time for free, since jobs do not necessarily leave our system in the order in

which they arrive.

Below we sketch our approach for computing per-class variance in response time for the case of two

servers, two priority classes (H and L), and exponential service times. We will refer to Figure 1(c) during

11

our discussion. For class H jobs, it is easy to compute the variance of their response time, via standard

matrix analytic methods, since they are oblivious to class Ljobs. Thus we will concentrate on class L jobs.

Consider the 1D-infinite Markov Chain shown in Figure 1(c) that tracks the number of class L jobs. Our

approach thus far has been to compute the limiting probabilities, use those to derive the mean number of

class L jobs in the system, and then apply Little’s Law to yield mean response time for class L jobs. Now,

we instead use the limiting probabilities to condition on what a class L arrival sees. Specifically, by PASTA

(Poisson Arrivals See Time Averages) a class L arrival with probability π(iL,jH) will see state(iL, jH)

when it arrives, and will cause the system state to change to((i + 1)L, jH) at that moment.

To calculate the variance in response time seen by this classL arrival, we remove all theλL arcs from the

Markov chain in Figure 1(c), so that there are no more classL arrivals. This enables us to view the response

time for the class L arrival as the first passage time of this modified chain from state((i + 1)L, jH) to the

state where our classL arrival departs. The only complexity is in figuring out exactly in which state our

classL arrival departs, where our class L arrival is the last class Ljob to enter the system.

The final class L arrival may depart the modified Markov chain the first time it hits(1L, 0H) or

(1L, 1H), depending on the sample path the chain follows. We will compute the passage time to go from

state((i + 1)L, jH) to one of these states{ (1L, 0H) or (1L, 1H) }. It is important to observe that the first

time we hit a state with 1L, the state we hit cannot be(1L, 2+H), by virtue of the fact that the Markov chain

doesn’t have decreasing arcs in its bottom rows.

If (1L, 1H) is the first state that we hit with 1L, then we know that we must have gotten there from

(2L, 1H), which means that the single L job remaining is in fact the last arrival. (We’re assuming preemption

is done “oldest first to be preempted”). Thus we need to now addon the passage time to go from(1L, 1H)

to (0L, ∗) to get the full response time for the arrival.

If (1L, 0H) is the first state that we hit with 1L, then we know that we got there from state(2L, 0H).

In this case, the remaining 1L is equally likely to be the lastarrival or not. With probability half, the last

arrival is already gone, in which case we add nothing to the response time. With probability half, this last

arrival remains, in which case we now add on the passage time to go from(1L, 0H) to (0L, ∗) to get the

full response time for the arrival.

Observe that computing the above passage times is straightforward, since all theλL arcs have been

removed.

2.5 Introducing RDR-A

We have seen that the RDR method can become computationally intensive as the number of priority classes

grows. This motivates us to introduce an approximation based on RDR called RDR-A. RDR-A applies to

m > 2 priority classes and PH job size distributions.

The key idea behind RDR-A is that the RDR computation is far simpler when there are only two priority

classes: H and L. In RDR-A, underm priority classes, we simply aggregate these classes into two priority

12

classes, where them−1 higher priority classes become the new aggregate H class andthemth priority class

becomes the L class. We define the H class to have a PH job size distribution that matches the first three

moments of the aggregation of them − 1 higher priority classes.

Observe that the RDR-A method is similar to the MK-N approximation. The difference is that in MK-

N, both the H and L classes are exponentially-distributed. Thus under MK-N, the H class only matches

thefirst moment of the aggregatem − 1 classes, whereas under RDR-Athreemoments are matched. The

reason that we are able to match the first three moments, rather than just the first moment is that we have the

RDR technique, which allows the analysis of multi-server priority queues withPH job size distributions, as

described in Section 2.3.

3 Results and Validation

In this section we present results for per-class mean response times in M/M/k and M/PH/k queues with

m = 4 priority classes, derived using RDR and RDR-A, respectively. To the best of our knowledge, these

are the first such analytical results in the literature. We will validate our results against simulation, and show

that their relative error is small. Furthermore the time required to generate our results is short, typically less

than a second for each data point.

Figure 5 (top row) shows our results for per-class mean response times in an M/M/2 queue (left plot)

and an M/PH/2 queue (right plot), both as a function of loadρ. The PH distribution used is a 2-phase PH

distribution with squared coefficient of variation,C2 = 8. All job classes have the same distribution, and

the load is distributed evenly between the four classes. Theleft plot is derived using RDR and the right plot

using RDR-A. Observe that the M/PH/2 queue (right plot) results in higher mean response time than the

M/M/2 queue (left plot), as expected. In both cases the mean response time of the lower-priority classes

dwarfs that of the higher-priority classes.

Figure 5 (bottom row) shows the relative per-class error forour results, when compared with simulation.

Throughout the paper we always show error indelay (queueing time) rather than response time (sojourn

time), since the error in delay is proportionally greater. We define relative error as

error= 100 ×
(mean delay by RDR or RDR-A)− (mean delay by simulation)

(mean delay by simulation)
(%).

We only show the error for classes 2, 3, and 4, since our analysis is virtually exact for class 1 (solved via

matrix-analytic methods). We see that the relative error inthe mean delay of RDR and RDR-A compared to

simulation is within 2% for all classes and typically within1%, for allρ’s. We will see later that this error

increases only slightly when we move to the case of priority classes with different means.

Figure 6 (left) again uses RDR-A to calculate per-class meanresponse time in the M/PH/2 queue with

four classes, but this time as a function ofC2, the squared coefficient of variation of the job size distribution.

13

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

ρ

m
ea

n
re

sp
on

se
 ti

m
e

class 1
class 2
class 3
class 4

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

ρ

m
ea

n
re

sp
on

se
 ti

m
e

class 1
class 2
class 3
class 4

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

ρ

er
ro

r (
%

)

class 2
class 3
class 4

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

ρ

er
ro

r (
%

)

class 2
class 3
class 4

(a) M/M/2 with four classes (b) M/PH/2 with four classes

Figure 5:Top row shows per-class mean response time for M/M/2 (left) and M/PH/2 (right) with four priority
classes. Left graph is derived using RDR and right graph is derived using RDR-A. Bottom row shows the
error in our analytically-derived mean delay relative to simulation results, for the corresponding graphs in
the top row.

(Again, all classes have the same job size distribution). Aswe see from the figure, the per-class mean

response time increases nearly linearly withC2. Figure 6 (right) shows the relative error in mean delay

when the results of the RDR-A analysis in the left plot are compared with simulation. Again the error is

under 2%. We will see later that this error increases only slightly when we move to the case of priority

classes with different means.

Finally, we note that in the above computations RDR is much more computationally efficient than sim-

ulation. Simulation requires tens of minutes to generate each figure, since the simulation is run 30 times,

and in each run 1,000,000 events are generated. By comparison our analysis takes only a few seconds for

each figure. Further, if we try to reduce the number of events in the simulation to 100,000 events, to speed

it up, we see five times as much variation in the simulation around our analytical values. Thus, it is possible

that as we increase the number of events in simulation, the difference in our analysis and the simulation may

decrease even further.

14

0 50 100 150
0

100

200

300

400

500

600

C2

m
ea

n
re

sp
on

se
 ti

m
e

class 1
class 2
class 3
class 4

0 50 100 150
−3

−2

−1

0

1

2

3

C2

er
ro

r
(%

)

class 2
class 3
class 4

Figure 6: (Left) Per-class mean response times for M/PH/2 with four priority classes, derived via RDR-A
analysis. (Right) Relative error in analysis of mean delay compared with simulation.

4 Comparisons and Insights

In this section we apply RDR and RDR-A to answer fundamental questions on prioritization in multi-

server systems. In Section 4.1 we compare the behavior of multi-server versus single server systems under

prioritization. In this context, we also evaluate the BB approximation, which approximates the effect of

prioritization in a multi-server system by that in a single server system. In Section 4.2 we evaluate the effect

of prioritization schemes which favor short jobs in multi-server systems. Finally, in Section 4.3 we study

the effect of aggregating multiple priority classes into just two classes, so as to significantly speed up the

analysis. In this context we also evaluate the MK-N approximation discussed earlier.

4.1 Comparing multi-server versus single server performance under prioritization

In this section we compare systems with different numbers ofservers. It is important to note that throughout

these comparisons, wehold the total system capacity fixed.That is, we compare a single server of unit speed

with a 2-server system, where each server has speed half, with a 4-server system, where each server has

speed one-fourth, etc.

Figure 7 considers an M/PH/k system with two priority classes wherek is one (left) then two (middle)

then four (right), but the total system capacity is held fixed, and load is fixed atρ = 0.8. The low-priority

jobs are exponentially-distributed. The high-priority jobs follow a Coxian distribution where the squared

coefficient of variation for high priority jobs,C2
H , is varied. The means of the two classes are the same and

the load is split evenly between the two classes. The plots show per-class mean response time as a function

of C2
H . All results are computed using RDR.

The first thing to observe is that the response times in the case of one server appear very different from

the response times in the case of two servers, or four servers. The effect of prioritization in a single server

system offers little (quantitative) insight into the effect of prioritization in a multi-server system, aside from

15

0 50 100 150
0

50

100

150

200

C2
H

E
[T

]

High Priority
Low Priority

0 50 100 150
0

50

100

150

200

C2
H

E
[T

]

High Priority
Low Priority

0 50 100 150
0

50

100

150

200

C2
H

E
[T

]

High Priority
Low Priority

(1 server) (2 servers) (4 servers)

Figure 7:Contrasting per-class mean response time under one server (left), two servers (middle) and four
servers (right) for an M/PH/k with two priority classes. Total system capacity is fixed throughout, and
ρ = 0.8. Results are obtained using RDR.

the fact that in all cases the response times appear to be a nearly linear function ofC2
H .

Figure 7 also illustrates some other interesting points. Wesee that as we increase the number of servers,

underhighC2
H , the performance of both high-priority and low-priority jobs improves. By contrast, underlow

C2
H , the performance can get worse as we increase the number of servers. To understand this phenomenon,

observe that whenC2
H is high, short jobs can get stuck behind long jobs, and increasing the number of servers

can allow the short jobs to get a chance to serve. By contrast whenC2
H is low, all jobs are similar in size,

so we don’t get the benefit of allowing short jobs to jump aheadof long jobs when there are more servers.

However we do get the negative effect of increasing the number of servers, namely the underutilization of

system resources when there are few jobs in the system, sinceeach of thek servers only has speed1/k.

The behavior under lowC2
H , where more servers lead to worse performance, is more prominent under lower

loadρ.

Figure 7 already implies that the effect of prioritization on mean response time in a multi-server system

may be quite different from that in a single server system. InFigure 8 we investigate this phenomena more

closely, by evaluating when the BB approximation [2], whichis based on this assumption of similar behavior

in single and multi-server priority queues, is accurate. Looking at Figure 8, we see that the error in the BB

approximation appears to increase for higherC2 (right graph) and for more classes. With four classes and

two servers, the error is already 10% whenC2 = 8 and higher for higherC2. By contrast, for the same

4-class case as shown in Figure 8, the error in RDR is always< 2% independent ofC2 and the number of

servers (we have omitted this graph). In the above graphs allclasses were statistically identical. In the case

where the classes have different means, the error in BB can bemuch higher, whereas RDR-A is insensitive

to this.

4.2 The effect of biasing toward short jobs in multi-server versus single server systems

Until now, we have assumed that all job classes are statistically equivalent. In this section and the next

section, we remove this assumption. In this section we consider the effect of priority schemes which favor

16

1 2 3 4 5 6 7 8
−40

−30

−20

−10

0

10

20

30

40

number of servers

e
rr

o
r

(%
)

class 2
class 3
class 4

1 2 3 4 5 6 7 8
−40

−30

−20

−10

0

10

20

30

40

number of servers

e
rr

o
r

(%
)

class 2
class 3
class 4

(a)C2 = 8 (b) C2 = 25

Figure 8: Error in predicting mean delay using the BB approximation (compared with simulation) for an
M/PH/2 with four classes whereC2 = 8 (left) or C2 = 25 (right) andρ = 0.8.

short jobs in multi-server systems. Biasing towards short jobs is a common method for improving mean

response time in any system. We use RDR to understand how the benefit of favoring short jobs in a single

server system compares to that for a multi-server system.

Figure 9 considers a job size distribution comprised of an exponential of mean1, representing jobs which

are “short” in expectation, and an exponential of mean10, representing jobs which are “long” in expectation

(where job sizes are measured in a single-server system). The probability of each type of job is chosen to

split load evenly between the “short” and “long” jobs. The SMART scheduling policy assigns high priority

to the “short” jobs, and the STUPID scheduling policy assigns high priority to the “long” jobs (possibly due

to economic reasons). Figure 9 shows the results for a (a) oneserver, (b) two server, and (c) four server

system.

Looking at Figure 9, the SMART and STUPID policies are the same when loadρ is low. At low load,

the response time for both policies converges to simply the mean job size, which in these figures is20
11 for

the single server system,40
11 for the 2-server system, and8011 for the 4-server system (recall that in a system

with k servers, each server runs at1/kth the speed).

The most interesting observation is that more servers lead to less differentiation between SMART and

STUPID schemes. For example, at loadρ = 0.6, there is a factor of five differentiation between SMART and

STUPID with one server and only a 25% difference between SMART and STUPID with four servers. The

effect appears more prominent under lighter load. This can be explained by recalling our earlier observation

that multi-server systems allow short jobs a chance to jump ahead of long jobs, hence the negative effects of

the STUPID scheme are mitigated.

17

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

ρ

E
[T

]

SMART
STUPID

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

ρ

E
[T

]

SMART
STUPID

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

ρ

E
[T

]

SMART
STUPID

(1 server) (2 servers) (4 servers)

Figure 9:Illustration of mean response time under SMART versus STUPID prioritization in a 2-class system,
where the classes are exponentially-distributed with means one and ten respectively, for the case of one
server, two servers, and four servers.

0 50 100 150
−100

−50

0

50

100

C2

er
ro

r
(%

)

RDR−A
MK−N

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

ρ

er
ro

r
(%

)

RDR−A
MK−N

Figure 10:Effect of aggregation. Graphs show error in mean delay of the4th (lowest priority) class in the
MK-N and RDR-A approximations for an M/PH/2 with SMART prioritization. On the left as a function of
C2 whereρ = 0.8, and on the right as a function ofρ whereC2 = 8. The classes all have a 2-phase Coxian
distribution with squared coefficient of variationC2 and means: 1, 2, 4, and 8.

4.3 How effective is class aggregation: RDR-A

In the early 80’s Mitrani and King (later followed by Nishidain the early 90’s) proposed analyzing priori-

tization in a multi-server system via aggregation as follows: To obtain the mean response time of themth

class, simply aggregate classes 1 throughm − 1 into a single high-priority class, and let classm represent

the low-priority class – then analyze the remaining two class system. The above MK-N approximation re-

quired further approximating the single aggregate class byanexponentialjob size distribution, since it was

not known how to analyze even a two class multi-server systemwith non-exponential job size distributions.

Since RDR enables the analysis of multi-server priority queues with general PH job size distributions,

we can reapply the MK-N aggregation idea, but where now we areable to capture the higher moments of

the aggregated class. We call this approximation RDR-A, since it combines the use of RDR together with

18

aggregation.

To understand the effect of aggregation, we consider a two server system with four priority classes. All

the classes have a two phase PH distribution, with varying squared coefficient of variation (C2). The classes

differ however in their mean, having means 1, 2, 4, and 8, respectively, and are prioritized according to

the SMART scheme; classes with lower means have higher priority. (STUPID prioritization yields similar

insights.) Figure 10 examines the error in the mean delay of the 4th class under RDR-A and under MK-N

as a function ofC2 (left) and as a function ofρ (right).

We see that the error in RDR-A is never more than 5% regardlessof C2 or ρ. By contrast, the error in

MK-N is almost never less than 50%, and gets worse under higher load andC2.

What this tells us is that “aggregation into two classes” is agood method for approximating prioritization

in multi-server systems where the number of classes ism > 2. However, the aggregation needs to be done

carefully – the distribution of the aggregate class must be modeled more closely than can be captured by an

exponential distribution. Thus another benefit of RDR is revealed; by allowing for PH job size distributions

it enables more accurate approximations of multi-class systems via aggregation.

5 Conclusion

This paper introduces the RDR technique, providing the firstnear-exact analysis of an M/PH/k queue with

m ≥ 2 priority classes. The RDR algorithm is efficient (requiringonly a second or two for each data point

in the paper) and accurate (resulting in< 2% error for all cases that we studied). Furthermore, RDR appears

to maintain its accuracy across a wide range of loads and job size variability (in this paper we studied load

ρ, ranging from0.05 to 0.95 and studied squared coefficient of variation,C2, ranging from0 to 128).

Although the RDR algorithm is efficient when the number of priority classes is small, it becomes less

practical when the number of priority classes grows (e.g., for an M/M/2 with 10 priority classes, the running

time can get as high as tens of seconds). Hence we also introduce the RDR-A approximation, which works

by aggregating them > 2 priority classes into only two priority classes. The distribution of each aggregate

class is then captured by a PH distribution, and the resulting 2 class system (with PH job sizes) is solved

using RDR. The RDR-A algorithm is extremely efficient (< 1 second for a data point, regardless of the

number of classes), since its running time is that of the RDR algorithm for only two classes. Furthermore,

the RDR-A algorithm has high accuracy (< 5% error) across all loads andC2.

We use our analysis to obtain insights about priority queueing in multi-server systems. We start by

comparing multi-server systems with single server systemsof equal capacity. We find that the effect of

prioritization in multi-server systems cannot be predicted by considering a comparable single server sys-

tem. The reason is that adding servers creates complex effects not present in a single server. For example,

multiple servers provide a strong benefit in dealing with highly variable job sizes, however they also hinder

performance under lighter load. We also compare multi-server with single server systems, by evaluating the

19

error in the Bondi-Buzen (BB) approximation which is based on relating multi-server performance under

prioritization to single-server performance. We find that the error in BB can get quite high, whenC2 grows

or the number of classes grows.

We next consider the effect of “smart” prioritization, where classes of jobs with smaller means are given

priority over those with larger means. We find that “smart” prioritization has a much stronger effect in a

single-server system, than in a multi-server system of equal capacity. This can be explained in part by the

observation that multiple servers inherently help out short jobs by allowing them to jump ahead of long jobs.

Lastly, we evaluate the effect of class aggregation as an approximation method for analyzing a high

number of classes. We find that aggregation when done carefully – by capturing several moments of the

aggregated class – works surprisingly well, resulting in very low error. However, when the aggregate class

is approximated only with respect to it first moment (by just an exponential distribution), aggregation can

be very poor, resulting in error of well over 50%. The fact that RDR allows the first analysis of classes with

PH job size distributions enables this good aggregation approximation.

In this paper we have focused on the problem of multi-server queues withm > 2 priorities. What makes

this problem difficult is the fact that its Markov chain representation grows infinitely inm dimensions, and

there are dependencies between those dimensions (the classM jobs depend on the class H jobs, and the class

L jobs depend on both the class M and class H jobs). The RDR algorithm greatly simplifies this problem

by reducing the dimensionality of the Markov chain to just one. There are many other problems that also

exhibit high dimensionality in their Markov chain representation, and it is possible that the RDR method

introduced here may be applicable to those problems as well.

References

[1] D. Bertsimas and D. Nakazato. The distributional Little’s Law and its applications.Operations Re-
search, 43(2):298–310, 1995.

[2] A. Bondi and J. Buzen. The response times of priority classes under preemptive resume in M/G/m
queues. InACM Sigmetrics, pages 195–201, August 1984.

[3] L. Bright and P. Taylor. Calculating the equilibrium distribution in level dependent quasi-birth-and-
death processes.Stochastic Models, 11:497–514, 1995.

[4] J. Buzen and A. Bondi. The response times of priority classes under preemptive resume in M/M/m
queues.Operations Research, 31:456–465, 1983.

[5] A. Cobham. Priority assignment in waiting line problems. Operations Research, 2:70–76, 1954.
[6] R. Davis. Waiting-time distribution of a multi-server,priority queueing system.Operations Research,

14:133–136, 1966.
[7] W. Feng, M. Kawada, and K. Adachi. Analysis of a multiserver queue with two priority classes and

(M,N)-threshold service schedule ii: preemptive priority. Asia-Pacific Journal of Operations Research,
18:101–124, 2001.

[8] H. Gail, S. Hantler, and B. Taylor. Analysis of a non-preemptive priority multiserver queue.Advances
in Applied Probability, 20:852–879, 1988.

20

[9] H. Gail, S. Hantler, and B. Taylor. On a preemptive Markovian queues with multiple servers and two
priority classes.Mathematics of Operations Research, 17:365–391, 1992.

[10] E. Kao and K. Narayanan. Modeling a multiprocessor system with preemptive priorities.Management
Science, 2:185–97, 1991.

[11] E. Kao and S. Wilson. Analysis of nonpreemptive priority queues with multiple servers and two
priority classes.European Journal of Operational Research, 118:181–193, 1999.

[12] E. P. C. Kao and K. S. Narayanan. Computing steady-stateprobabilities of a nonpreeptive priority
multiserver queue.Journal on Computing, 2(3):211 – 218, 1990.

[13] A. Kapadia, M. Kazumi, and A. Mitchell. Analysis of a finite capacity nonpreemptive priority queue.
Computers and Operations Research, 11:337–343, 1984.

[14] O. Kella and U. Yechiali. Waiting times in the non-preemptive priority M/M/c queue. Stochastic
Models, 1:257 – 262, 1985.

[15] G. Latouche and V. Ramaswami.Introduction to Matrix Analytic Methods in Stochastic Modeling.
ASA-SIAM, 1999.

[16] H. Leemans.The Two-Class Two-Server Queue with Nonpreemptive Heterogeneous Priority Struc-
tures. PhD thesis, K.U.Leuven, 1998.

[17] D. McWherter, B. Schroeder, N. Ailamaki, and M. Harchol-Balter. Priority mechanisms for OLTP
and transactional web applications. InProceedings of the 20th International Conference on Data
Engineering (ICDE 2004), pages 535–546, April 2004.

[18] D. Miller. Steady-state algorithmic analysis of M/M/ctwo-priority queues with heterogeneous servers.
In R. L. Disney and T. J. Ott, editors,Applied probability - Computer science, The Interface, volume
II , pages 207–222. Birkhauser, 1992.

[19] I. Mitrani and P. King. Multiprocessor systems with preemptive priorities.Performance Evaluation,
1:118–125, 1981.

[20] M. Neuts. Moment formulas for the Markov renewal branching process.Advances in Applied Proba-
bilities, 8:690–711, 1978.

[21] B. Ngo and H. Lee. Analysis of a pre-emptive priority M/M/c model with two types of customers and
restriction.Electronics Letters, 26:1190–1192, 1990.

[22] T. Nishida. Approximate analysis for heterogeneous multiprocessor systems with priority jobs.Per-
formance Evaluation, 15:77–88, 1992.

[23] T. Osogami and M. Harchol-Balter. A closed-form solution for mapping general distributions to mini-
mal PH distributions. InPerformance TOOLS, pages 200–217, 2003.

[24] T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf. Analysis of cycle stealing with switching cost.
In ACM Sigmetrics 2003, pages 184–195, 2003.

[25] A. Sleptchenko. Multi-class, multi-server queues with non-preemptive priorities. Technical Report
2003-016, EURANDOM, Eindhoven University of Technology, 2003.

[26] A. Sleptchenko, A. van Harten, and M. van der Heijden. Anexact solution for the state probabilities
of the multi-class, multi-server queue with preemptive priorities, 2003 – Manuscript.

[27] W. Whitt. A review ofL = λW and extensions.Queueing Systems, 9:235–268, 1991.

21

A Moments of busy periods in nonhomogeneous QBD processes

(Can omit in final version if space constraints)

Neuts’ algorithm [20] is an efficient algorithm that calculates the moments of various types of busy periods

in very general processes, i.e. M/G/1 type semi-Markov processes. Because of its generality, however, the

description of the algorithm in [20] is sophisticated, and thus non-trivial to understand or implement. Since

Neuts’ algorithm can be applied to the performance analysisof many computer and communication systems,

it is a shame that it has not been used more frequently in the literature.

The purpose of this section is therefore to make Neuts’ algorithm more accessible by re-describing his

algorithm restricted to the first three moments of particular types of busy periods in QBD processes. In

[20], the analysis is limited to homogeneous (level independent) processes. However, it is trivially extended

to nonhomogeneous (level dependent) QBD process which we need in this paper. Therefore, we describe

Neuts’ algorithm for nonhomogeneous QBD processes that repeats after levelk, We omit all proofs, which

are provided in detail in [20], instead we focus on intuitionand interpretation. We include everything needed

to apply Neuts’ algorithm within our solution framework, sothat readers who wish to apply our methodology

can do so.

In our paper, we consider a QBD process with state spaceE = {(i, j)|i ≥ 0, 1 ≤ j ≤ Pi}, which has

generator matrixQ:

Q =















A
(0)
1 A

(0)
0

A
(1)
2 A

(1)
1 A

(1)
0

A
(2)
2 A

(2)
1

. . .
.















whereA
(l)
1 is aPl × Pl matrices. We assume that our QBD process has a repeating structure: there exists

k < ∞ such thatA(l)
i = A

(k)
i for i = 0, 1, 2 and for alll ≥ k. Figure 11 shows a particular QBD process

with Pl = 2 for all l.

We define leveli as denoting the set of states of the form(i, j) for j = 1, ..., Pi. Our goal can be

roughly stated as deriving the passage time required to get from state(l, j) to level l − 1 conditioned on the

particular state first reached in levell−1. More precisely, we seek the first three moments of the distribution

of the time required to get from state(l, j) to state(l − 1, k), given that state(l − 1, k) is the first state

reached in levell − 1 for any l ≥ 1, 1 ≤ j ≤ Pl, and1 ≤ k ≤ Pl−1. In Section A.1, we introduce more

notation. In Section A.2, we show how Neuts algorithm can be applied to derive the first three moments

of the conditional passage time in the repeating part (l > k). In Section A.3, we extend the analysis to

nonrepeating part (l ≤ k). In Section A.4, we summarize other generalization that Neuts’ algorithm allows.

22

1µ 1µ 1µ

2µ 2µ 2µ

λλ λ

βα α βα

1,20,2

λ λλ

2,11,10,1

2,1

β

(a)

A
(0)
1 =

(

−(λ + α) α
β −(λ + β)

)

A
(l)
0 =

(

λ 0
0 λ

)

for l ≥ 0

A
(l)
1 =

(

−(λ + µ1 + α) α
β −(λ + µ2 + β)

)

for l ≥ 1

A
(l)
0 =

(

µ1 0
0 µ2

)

for l ≥ 1

(b)

Figure 11: An example of a QBD process: (a) states and transition rates, and (b) submatrices of the generator
matrix.

A.1 Notation

We define the transition probability matrix,P(x), as

P(x) =















α0,1(x) α0,0(x)

α1,2(x) α1,1(x) α1,0(x)

α2,2(x) α2,1(x)
. . .

.















where the(s, t) element,Pst(x), is the probability that the sojourn time at states is ≤ x and the first

transition out of states is to statet. Observe thatαl,1(x) is aPl × Pl submatrices forl ≥ 0.

Next, we define ther-th moment of submatricesαl,i(x) as

α
(r)
l,i =

∫ ∞

0
xrdαl,i(x)

for i = 0, 1, 2, r = 1, 2, 3, andl ≥ 0, where an integral of a matrixM is a matrix of the integrals of the

elements inM .

23

Example

Consider the QBD process shown in Figure 11. Letγ1 = λ+ µ1 + α andγ2 = λ + µ2 + β. Then,αl,i(x)’s

and their momentsα(r)
l,i for r = 1, 2, 3 look as follows:

αl,0(x) =

(

1 − e−γ1x 0

0 1 − e−γ2x

)(

λ
γ1

0

0 λ
γ2

)

αl,1(x) =

(

1 − e−γ1x 0

0 1 − e−γ2x

)(

0 α
γ1

β
γ2

0

)

αl,2(x) =

(

1 − e−γ1x 0

0 1 − e−γ2x

)(

µ1

γ1
0

0 µ2

γ2

)

and

α
(r)
l,0 =





r!
γr
1

0

0 r!
γr
2





(

λ
γ1

0

0 λ
γ2

)

α
(r)
l,1 =





r!
γr
1

0

0 r!
γr
2





(

0 α
γ1

β
γ2

0

)

α
(r)
l,2 =





r!
γr
1

0

0 r!
γr
2





(

µ1

γ1
0

0 µ2

γ2

)

for l ≥ 2.

Finally, letGl(x) be anPl × Pl matrix whose(j, k) element,(Gl)jk(x), is the probability that the time

to visit level l − 1 is at mostx and the first state visited in levell − 1 is (l − 1, k) given that we started at

(l, j). Also, let(Gl
(r))jk be ther-th moment of(Gl)jk(x); namely,G(r)

l =
∫∞

0 xrdGl(x) for r = 1, 2, 3.

Matrix Gl = limx→∞ Gl(x) is a fundamental matrix used in the matrix analytic method, and various

algorithms to calculateGl have been proposed [15]. The most straightforward (but slow) algorithm for the

repeating part (l ≥ k) is to iterate

Gl = −(A
(k)
1)−1A

(k)
0 (Gl)

2 − (A
(k)
1)−1A

(k)
2 (2)

until it converges. OnceGk is calculated,Gl for l < k can be calculated recursively:

Gl = −
(

A
(l)
1 + A

(l)
0 Gl+1

)−1
A

(l)
2 . (3)

Notice that(Gl)jk(x) is not a proper distribution function and(Gl)jk = limx→∞(Gl)jk(x), which is

the probability that the first state in levell− 1 is state(l− 1, k) given that we start at state(l, j), can be less

24

than 1. Therefore,(G(r)
l)jk is not a proper moment rather a conditional moment: “ther-th moment of the

distribution of the first passage time to levell − 1 given that the first state in levell − 1 is state(l − 1, k)

and given that we start at state(l, j)” multiplied by “the probability that the first state reachedin level l − 1

is state(l − 1, k) given that we start at state(l, j).”

A.2 Moments of passage time in the repeating part

The quantities that we need in our methodology are (a) the probability that the first state reached in level

l− 1 is state(l− 1, t) given that we start at state(l, s) and (b) ther-th moment of the distribution of the first

passage time to levell − 1 given that the first state in levell − 1 is state(l − 1, t) and given that we start

at state(l, s). Quantity (a) is given by(Gl)s,t, and quantity (b) is given by
(G

(r)
l

)s,t

(Gl)s,t
. Matrix Gl is obtained

by an iterative substitution of (2) and (3) for anyl ≥ 1. Therefore, our goal is to derive matricesG
(r)
l for

r = 1, 2, 3. In this section, we derive the repeating part,G
(r)
l = G

(k)
l for l ≥ k. In Section A.3 we derive

the nonrepeating part,G(r)
l for l < k.

OnceGk is obtained, matrixG(1)
k is obtained by iterating

G
(1)
k = α

(1)
2 + α

(1)
1 Gk + α1G

(1)
k + α

(1)
0 GkGk + α0G

(1)
k Gk + α0GkG

(1)
k (4)

Similarly, matrixG
(2)
k is obtained by iterating

G
(2)
k = α

(2)
2 + α

(2)
1 Gk + 2α

(1)
1 G

(1)
k + α1G

(2)
k

+α
(2)
0 GkGk + 2α

(1)
0 (G

(1)
k Gk + GkG

(1)
k) + α0(G

(2)
k Gk + 2G

(1)
k G

(1)
k + GkG

(2)
k) (5)

and matrixG(3)
k is obtained by iterating

G
(3)
k = α

(3)
2 + α

(3)
1 Gk + 3α

(2)
1 G

(1)
k + 3α

(1)
1 G

(2)
k + α1G

(3)
k

+α
(3)
0 GkGk + 3α

(2)
0 (G

(1)
k Gk + GkG

(1)
k) + 3α

(1)
0 (G

(2)
k Gk + 2G

(1)
k G

(1)
k + GkG

(2)
k)

+α0(G
(3)
k Gk + 3G

(2)
k G

(1)
k + 3G

(1)
k G

(2)
k + GkG

(3)
k). (6)

We now give intuition behind expressions (4)-(6). The righthand side of (4) can be divided into three

parts: [0]α(1)
2 , [1] α

(1)
1 Gk + α1G

(1)
k , and [2]α(1)

0 GkGk + α0G
(1)
k Gk + α0GkG

(1)
k . Forh = 0, 1, 2,

the (s, t) element of part [h] gives “the first moment of the distribution of the time to getfrom state(k, s)

to state(k − 1, t) given that the first transition out of state(k, s) is to levelk + h − 1 and the first state

reached in levelk − 1 is (k − 1, t)” multiplied by “the probability that the first transition out of state(k, s)

is to levelk + h − 1 and the first state reached in levelk − 1 is (k − 1, t).” Part [1] consists of two terms.

The first term,α(1)
1 Gk, is the contribution of the time to the first transition, and the second term,α1G

(1)
k ,

is the contribution of the time it takes to reach(k − 1, t) after the first transition. Similarly, part [2] consists

25

of three terms. The first term,α(1)
0 GkGk, is the contribution of the time to the first transition, the second

term,α0G
(1)
k Gk, is the contribution of the time it takes to come back from level k + 1 to levelk after the

first transition, and the third term,α0GkG
(1)
k , is the contribution of the time it takes to go from levelk to

levelk − 1.

The right hand sides of (5) and (6) can similarly be divided into three parts: part [0] consists of terms

containingα2 or α
(r)
2 ; part [1] consists of terms containingα1 or α

(r)
1 ; part [2] consists of terms containing

α0 or α
(r)
0 . The three parts of (5) and (6) can be interpreted exactly thesame way as the three parts of (4)

except that “the first moment” in (4) must be replaced by “the second moment” and “the third moment” in

(5) and (6), respectively. The three terms in part [1] of (5) can be interpreted as follows. LetTα be the time

to the first transition and letTG be the time it takes from levelk to levelk − 1. Then, the second moment of

the distribution of these two times is

E[(Tα + TG)2] = E[(Tα)2] + 2E[Tα]E[TG] + E[(TG)2],

sinceTα andTG are independent. Roughly speaking,α
(2)
1 Gk corresponds toE[(Tα)2], 2α

(1)
1 G

(1)
k corre-

sponds to2E[Tα]E[TG], andα1G
(2)
k corresponds toE[(TG)2]. The other terms can be interpreted in the

same way.

A.3 Extension to nonrepeating part

For l < k, G(r)
l is calculated recursively.

G
(1)
l = α

(1)
l,2 + α

(1)
l,1 Gl + αl,1G

(1)
l + α

(1)
l,0 Gl+1Gl + αl,0G

(1)
l+1Gl + αl,0Gl+1G

(1)
l

= (I − αl,1 − αl,0Gl+1)
−1
(

α
(1)
l,2 + α

(1)
l,1 Gl + α

(1)
l,0 Gl+1Gl + αl,0G

(1)
l+1Gl

)

G
(2)
l = α

(2)
l,2 + α

(2)
l,1 Gl + 2α

(1)
l,1 G

(1)
l + αl,1G

(2)
l

+α
(2)
l,0 Gl+1Gl + 2α

(1)
l,0 (G

(1)
l+1Gl + Gl+1G

(1)
l) + αl,0(G

(2)
l+1Gl + 2G

(1)
l+1G

(1)
l + Gl+1G

(2)
l)

= (I − αl,1 − αl,0Gl+1)−1

(

α
(2)
l,2 + α

(2)
l,1 Gl + 2α

(1)
l,1 G

(1)
l

+ α
(2)
l,0 Gl+1Gl + 2α

(1)
l,0 (G

(1)
l+1Gl + Gl+1G

(1)
l) + αl,0(G

(2)
l+1Gl + 2G

(1)
l+1G

(1)
l)
)

26

G
(3)
l = α

(3)
l,2 + α

(3)
l,1 Gl + 3α

(2)
l,1 G

(1)
l + 3α

(1)
l,1 G

(2)
l + αl,1G

(3)
l

+α
(3)
l,0 Gl+1Gl + 3α

(2)
l,0 (G

(1)
l+1Gl + Gl+1G

(1)
l) + 3α

(1)
l,0 (G

(2)
l+1Gl + 2G

(1)
l+1G

(1)
l + Gl+1G

(2)
l)

+αl,0(G
(3)
l+1Gl + 3G

(2)
l+1G

(1)
l + 3G

(1)
l+1Gl

(2)
+ Gl+1G

(3)
l).

= (I − αl,1 − αl,0Gl+1)−1

(

α
(3)
l,2 + α

(3)
l,1 Gl + 3α

(2)
l,1 G

(1)
l + 3α

(1)
l,1 G

(2)
l

+α
(3)
l,0 Gl+1Gl + 3α

(2)
l,0 (G

(1)
l+1Gl + Gl+1G

(1)
l) + 3α

(1)
l,0 (G

(2)
l+1Gl + 2G

(1)
l+1G

(1)
l + Gl+1G

(2)
l)

+αl,0(G
(3)
l+1Gl + 3G

(2)
l+1G

(1)
l + 3G

(1)
l+1G

(2)
l)
)

A.4 Generalization allowed

Finally, we mention some generalizations that Neuts’ algorithm allows. (1) We restricted ourselves to the

first three moments, but this can be generalized to any highermoments. (2) We restricted ourselves to the

first passage time from levell to level l − 1, but this can be generalized to levell from level l − i. (3)

We restricted to QBD processes, but this can be generalized to M/G/1 type semi-Markov processes. (4)

We restricted ourselves to the moments of the distribution of the duration of busy periods, but this can be

generalized to the moments of the joint distribution of the duration of a busy period and the number of

transitions during the busy period.

27

