
IEEE INFOCOM 2005 1

Analysis of Alternating-priority Queueing Models
with (Cross) Correlated Switchover Times

Robin Groenevelt, Eitan Altman
INRIA Sophia Antipolis, 06902 Sophia Antipolis, France
Email: {robin.groenevelt, eitan.altman}@sophia.inria.fr

Abstract— This paper analyzes a single server queueing system
in which service is alternated between two queues and the server
requires a (finite) switchover time to switch from one queue
to the other. The distinction from classical results is that the
sequence of switchover times from each of the queues need not
be i.i.d. nor independent from each other; each sequence is merely
required to form a stationary ergodic sequence. With the help
of stochastic recursive equations explicit expressions are derived
for a number of performance measures, most notably for the
average delay of a customer and the average queue lengths under
different service disciplines. With these expressions a comparison
is made between the service disciplines and the influence of
correlation is studied. Finally, through a number of examples
it is shown that the correlation can significantly increase the
mean delay and the average queue lengths indicating that the
correlation between switchover times should not be ignored. This
has important implications for communication systems in which
a common communication channel is shared amongst various
users and where the time between consecutive data transfers is
correlated (for example in ad-hoc networks).

Index Terms— Stochastic processes/Queueing theory.

I. INTRODUCTION AND MOTIVATION

SO far only few explicit results have been known in
queueing theory for systems whose evolution is described

by general stationary ergodic processes. One line of research
that allows one to handle stationary ergodic sequences is based
on identifying measures that are insensitive to correlations. For
example, the probability of finding a G/G/1 queue non-empty
is just the ratio between the expected service time and the
expected interarrival time of customers (which follows directly
from Little’s Law). The expected cycle duration in a polling
system (under fairly general conditions) too, depends on the
interarrival, service and vacation times only through their
expectations under general stationary ergodic assumptions (see
e.g. [1]). An example of performance measures that depend
on the whole distribution of service times but is insensitive to
correlations is the growth rate of the number of customers or of
the sojourn time in a (discriminatory) processor sharing queue
in overload [2], [3]. Other insensitivity results on bandwidth
sharing in a network can be found in [4], [5].

The polling models we study do not exhibit insensitivity.
Approximating correlated vacations by independent ones can
result in large errors in the performance, see e.g. [6] in the
context of Bluetooth. To study these systems we make use of
stochastic recursive equations (SRE) introduced in [7] which
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extend branching processes with migration on one hand, and
linear stochastic recursive equations1 on the other. It has
already been shown in [7] that vector valued SRE can be used
to describe some embedded processes appearing in polling
models.2

In this paper we identify one dimensional SRE which we
use in order to compute the expected waiting times and queue
lengths in a system with two queues where a single server
alternates between two queues and requires switch-over times
(modeled as vacations) to move from one queue to the other.
We consider the exhaustive service discipline where the server
serves a queue until it empties before switching to the next
queue as well as the gated discipline where only customers
present upon the arrival of the server are served. Two systems
are studied: one in which both queues are served exhaustively
and one in which one queue is served exhaustively and the
other according to the gated discipline. Our analytical results
are then used to study numerically the impact of correlated
switchover times on the performance, as well as the difference
in performance due to the service discipline used.

The polling system studied in this paper, but without the
correlation, has been used in the past [10] to model communi-
cation systems in which transmission between two stations can
take place only in one direction at a time. The position of the
server then corresponds to the direction data is traveling in. A
similar situation arises in ad-hoc network; there is a common
channel which needs to be shared amongst various users. The
more users there are, the longer one has to wait before being
able to capture the channel necessary to (re)transmit data. In
particular, if one has to wait a long time before being able to
transmit data, then it is very likely that there are many users
around and that the next time one has to wait once again for
a long period of time. For this reason the correlation of the
number of users over time in an ad-hoc network inherently
introduces correlation between the switchover times, and this
in turn leads to an increase in the mean delay and queue
lengths.

The remainder of this document is structured as follows.
In section II the polling system is described in more detail,
notation and some formulas are established, and the one
dimensional SRE is identified. Following that, in section III a
number of performance measures are derived, most notably the

1Linear SRE have been used to study the impact of correlation of the loss
process on TCP throughput [8].

2SRE have also been used recently to study the infinite server queue with
correlated arrivals [9].
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expected waiting times and the average queue lengths. These
performance measures are then used in the examples of section
IV to show the effect of correlated switchover times. Finally,
conclusions are given in section V. To help the reader a list
of the notation used is given in Appendix C.

II. MODEL DESCRIPTION

We examine the polling of two queues, i.e. one queue
is served after which the other queue is served. No limit
is specified for the length of either queue. After serving
queue i (i = 1, 2) for the n-th time, the server requires a
switchover time of duration Vn,i. Assume all Vn,i have the
same distribution as Vi (Vn,i ∼ Vi), where Vi is assumed
to form a general distribution with first and second moment
vi and v

(2)
i , and with variance δ2i := v

(2)
i −v2

i , i = 1, 2. Let
R := v1+v2 and ∆2 := δ21 +δ22 . The sequences of switchover
times are assumed to be stationary ergodic instead of the usual
i.i.d., and possibly dependent on each other. This implies that
there can be a correlation between the switchover times of the
two queues and/or within the sequence of switchover times for
each queue. The arrival of customers at queue i is Poisson with
rate λi and the service times are nonnegative, i.i.d. random
variables with (finite) first and second moments for queue
i given by, respectively, bi and b

(2)
i . The load at queue i is

ρi := λibi and the system is stable [11, page 280] if and
only if the overall load ρ := ρ1 + ρ2 < 1, which we assume
throughout. Furthermore, we will continuously assume that the
queues are operating under stationary regime.

Introduce the covariance functions (i = 1, 2)

ci(n) =IE[V0,iVn,i] − IE[V0,i]IE[Vn,i], n ∈ N,

c12(n) =IE[V0,1Vn,2] − IE[V0,1]IE[Vn,2], n ∈ Z.

Note that c12(n) is defined for n ∈ Z. With this con-
vention it is not necessary to work with c21(n) :=
IE[V0,2Vn,1] − IE[V0,2]IE[Vn,1], since under stationary regime
c21(n) = IE[V0,2Vn,1] − IE[V0,2]IE[Vn,1] = IE[V−n,2V0,1] −
IE[V−n,2]IE[V0,1] = c12(−n). In particular, if for each queue
the sequence of switchover times is uncorrelated, then ci(0) =
δ2i and ci(n) = 0, for n ∈ N. If there is no correlation between
the switchover times of the two queues, then c12(n) = 0, for
n ∈ Z.

Because of the assumption of the queues operating under
stationary regime

IE[V0,iVn,i] = v2
i + ci(n), i = 1, 2, n ∈ N, (1a)

IE[V0,1Vn,2] = v1v2 + c12(n), n ∈ Z. (1b)

In order to establish the SRE, let Dn,i(N) be the duration
of the busy period in the ith queue, initiated by N customers
waiting in that queue when the server arrives at that queue
for the nth time. Similarly, let Nn,i(T ) be the number of
customers arriving at queue i during a period of time T during
the server’s nth visit to queue i.

We start by examining the exhaustive polling of two
queues, i.e. one queue is served until it is empty after which
the other queue is served until emptied. Consider the system
at the moment the server starts serving the first queue for the
nth time with L∗

n,1 customers waiting in the queue. From

here on the following steps take place (see Figure 1 for a
visual representation of this decomposition):

• Exhausting the first queue. The L∗

n,1 customers in the
first queue require a busy period duration of Dn,1 :=
Dn,1(L

∗

n,1) to exhaust.
• Switching to the second queue. After serving the first

queue the server requires a switchover time of Vn,1 units
of time.

• Exhausting the second queue. In the time needed to
switch from the second to the first queue (Vn−1,2), to
exhaust the first queue (Dn,1), and to switch back to
the second queue (Vn,1), there have been3 L∗

n,2 :=
Nn−1,2(Vn−1,2) + Nn,2(Dn,1(L

∗

n,1) + Vn,1) customers
arriving at the second queue. It requires Dn,2 :=
Dn,2(L

∗

n,2) units of time to empty this queue.
• Switching back to the first queue. After serving the

second queue the server requires a switchover time of
Vn,2 units of time.

Busy period
time V
Switchover Busy period

of duration D
Switchover
time Vof duration Dn,1 n,1 n,2 n,2

Fig. 1. Decomposition of the nth cycle into busy periods (Dn,1 and Dn,2)
and switchover times (Vn,1 and Vn,2).

After this the process starts over again and a new cycle
begins. Hence the nth cycle is made up of

Cn =Dn,1 + Vn,1 +Dn,2 + Vn,2.

The time between the server finishing work at queue i and
returning to queue i in the next cycle is the intervisit time In,i

and is given by

In,1 = Vn,1 +Dn,2 + Vn,2, (2a)

In,2 = Vn,2 +Dn+1,1 + Vn+1,1. (2b)

A SRE will be established for this quantity and we will see
that it plays a central role for the derivation of the expected
waiting times and queue lengths. The time Dn+1,i spent at
queue i in the (n+1)th cycle is related to the intervisit time
according to

Dn+1,1 = Dn+1,1(Nn,1(In,1)), (3a)

Dn+1,2 = Dn+1,2

[

Nn,2(Vn,2)+Nn+1,2

(

Vn+1,1

+Dn+1,1(Nn,1(In,1))
)]

. (3b)

The expectation is the sum of the expectation of independent
sub-busy periods [12, p.217] and thus

IE[Dn,1] =
b1IE[Nn,1(In,1)]

1 − ρ1
=
ρ1IE[In,1]

1 − ρ1
. (4a)

3The star is added to L∗

n,i to distinguish it from the average queue length
Ln,i.
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Using the stationarity and the divisibility4 of the arrival process
it can be shown that

IE[Dn,2] =
ρ2IE[In,2]

1 − ρ2
. (4b)

Since the busy periods are sums of service times, the
divisibility property also holds for Dn,i. This means that from
(substitute 3b into 2a)

In+1,1 =Vn+1,1 + Vn+1,2 + Dn+1,2

[

Nn,2(Vn,2)

+ Nn+1,2

(

Vn+1,1 + Dn+1,1(Nn,1(In,1))
)]

,

n ∈ N, we see a SRE (as presented and solved for stationary
ergodic sequences in [7]) arising. Although the system is two
dimensional (as there are two queues), the reduction to a
one dimensional SRE is a key element in obtaining explicit
formulas for the performance measures.

Theorem 1: (SRE for exhaustive/exhaustive system). The
intervisit time of the first queue allows itself to be written
as a one-dimensional SRE,

In+1,1 =An(In,1) + Bn (5)

with

An(·) := Dn+1,2

(

Nn+1,2

(

Dn+1,1(Nn,1(·))
))

,

Bn := Vn+1,1 + Vn+1,2 + Dn+1,2

(

Nn,2(Vn,2)

+ Nn+1,2(Vn+1,1)
)

. (6)

Note that from (4a) and (4b) we have IE[An(In,1)] = αIE[In,1]
where α := ρ1ρ2

(1−ρ1)(1−ρ2)
. �

Now let the first queue be served exhaustively and the
second be served in a gated manner. The time needed to
serve N customers in the second queue in the nth cycle is
denoted by Sn,2(N). Naturally, IE[Sn,2(N)] = b2IE[N ]. The
service time of the second queue, Sn,2, satisfies the following
recursive relationship

Sn+1,2 =Sn+1,2

(

Nn,2

(

Sn,2 + Vn,2

)

+ Nn+1,2

(

Dn+1,1 + Vn+1,1

))

.

At the same time, the time the server works per cycle at the
first queue, Dn,1, satisfies

Dn+1,1 =Dn+1,1

(

Nn,1

(

Vn,1 + Sn,2 + Vn,2

)

)

.

By combining these two expression we obtain the following
theorems.

Theorem 2: (SRE for the exhaustive/gated system). The
SRE for the service time at the gated queue is given by

Sn+1,2 =Xn(Sn,2) + Yn, (7)

4The divisibility property implies that Nn,2(a+b) = N
(1)
n,2(a)+N

(2)
n,2(b),

where N
(1)
n,2(·) and N

(2)
n,2(·) are stochastic processes independent of each

other and each with the same distribution as Nn,2(·).

with

Xn(·) : = Sn+1,2

(

Nn,2

(

·
)

+Nn+1,2

(

Dn+1,1

(

Nn,1(·)
))

)

,

Yn := Sn+1,2

(

Nn,2

(

Vn,2

)

+ Nn+1,2

(

Dn+1,1

(

Nn,1(

Vn,1 + Vn,2)
)

+ Vn+1,1

)

)

. (8)

Note that IE[Xn(Sn,2)] = γIE[Sn,2] where γ := ρ2

1−ρ1

. �

Remark: In systems with both queues served in a gated
manner or with more than two queues the SRE can not be
written in a one-dimensional version. Although still solvable,
the analysis is more involved and will be addressed in the
future.

Before presenting a number of performance measures, a
number of formulas need to be established. First recall that if
Di is a random sequence with IE[Di] = d and IE[D2

i ] = d(2),
independent of a random variable N , and

τ(N) :=

N
∑

i=1

Di, (9)

then

IE[τ2(N)] =

∞
∑

n=1

nIE

[

n
∑

i=1

Di ·
n
∑

i=1

Di|N = n

]

P (N=n)

=d2IE[N2] + (d(2)−d2)IE[N ]. (10)

Similarly,

IE[N 2
n,i(T )] =

∫

∞

0

IE[N 2
n,i(t)|T = t]dT (t)

=λ2
i IE[T 2] + λiIE[T ]. (11)

Next we proceed in a similar manner to obtain the second
moment of the busy period generated by Y customers initially
in the system. First recall that Dn,i(1) is a single busy
period initiated by a single customer in an M/G/1 queue with
Poisson arrivals with rate λi and general service time with
first and second moments bi and b

(2)
i respectively. The first

two moments of a single busy period initiated by a single
customer are given by [12, equations 5.141 and 5.142]

di := IE[Dn,i(1)] =
bi

1 − ρi
, (12a)

d
(2)
i := IE[D2

n,i(1)] =
b
(2)
i

(1 − ρi)3
, i = 1, 2. (12b)

The busy period, Dn,i(Y ), generated by Y customers is
the sum of Y independent single busy periods, each with
distribution Dn,i,k ∼ Dn,i(1). Hence the second moment is

IE[D2
n,i(Y )] =IE

[

Y
∑

k=1

Dn,i,k

]2

= IE

[

Y
∑

k=1

Dn,i(1)

]2

=d2
i IE[Y 2] +

(

d
(2)
i − d2

i

)

IE[Y ]. (13)

By taking Y = Nn,i(T ) we obtain (i = 1, 2)

IE[D2
n,i(Nn,i(T ))] =λ2

i d
2
i IE[T 2] + d

(2)
i λiIE[T ]. (14)
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III. PERFORMANCE MEASURES

Starting with a system in which both of the queues are
served exhaustively, an explicit expression will be given for
the first two moments of the intervisit time in the presence of
correlated switchover times. Based on this a number of per-
formance measures follow, in particular, the expected waiting
times and the average queue lengths. After this the expected
waiting time and average queue length for the exhaustive/gated
service system will be given.

A. Exhaustive/Exhaustive Service Discipline

Central to the derivation of a number of performance
measures is Theorem 1. This allows the derivation of the
following theorem of which the proof is given in Appendix
A. Because of the symmetry for this service discipline the
results will be presented for only the first queue.

Theorem 3: (Intervisit time in exhaustive/exhaustive sys-
tem). Under the stationary regime the expected intervisit time
of the first queue is given by

E[In,1] =
R(1 − ρ1)

1 − ρ
, ρ := ρ1 + ρ2, (15)

The second moment is given by

βIE[I2
n,1] =

R

1 − ρ

(

λ1ρ
2
2b

(2)
1

(1 − ρ1)2
+ λ2b

(2)
2

)

+ δ21 + 2K

+

(

1 −
2ρ2(1 − ρ)

1 − ρ1

)

δ22 +

(

1 − ρ+ 2ρ1ρ2

1 − ρ

)

R2 (16)

where

α :=
ρ1ρ2

(1 − ρ1)(1 − ρ2)
, β :=

(1 − ρ)(1 − ρ+ 2ρ1ρ2)

(1 − ρ1)2
.

and

K :=

∞
∑

j=1

[

c1(j)+c2(j)+
(1−ρ)2

ρ1(1−ρ1)
c2(j) (17)

+
1−ρ2

ρ1
c12(−j)+

1−ρ2(1−α)

α
c12(j−1)

]

αj

is the addition to the intervisit time due to the correlation
between the switchover times. �

On the basis of this theorem the first two moments of a
number of performance measures quickly follow.

Number of Customers Waiting. The exhaustive nature of the
server implies that the number of customers building up at the
first queue is exactly the number of customers that arrived at
that queue during its intervisit time. Thus,

L∗

n+1,1 = Nn,1(In,1).

From this we immediately obtain

IE[L∗

n+1,1] =λ1IE[In,1] =
Rλ1(1 − ρ1)

1 − ρ

as the expected length of the queue, under stationary regime,
at the moment the server arrives at the first queue. The second
moment follows through squaring,

IE[(L∗

n+1,1)
2] =IE[N 2

n,1(In,1)] = λ2
1IE[I2

n,1] + λ1IE[In,1],

which leads to

IE[(L∗

n,1)
2] :=λ2

1IE[I2
n,1] +

Rλ1(1 − ρ1)

1 − ρ
. (18)

Duration of Busy Periods. The expected time per cycle, in
steady state, for the server to work on the first queue is given
by

IE[Dn,1] =
Rρ1

1 − ρ
.

This follows directly from IE[Dn,1] = IE[Dn,1(L
∗

n,1)] =
b1IE[L∗

n,1]

1−ρi
. Since IE[D2

n,1] = IE[D2
n,1(Nn,1(In,1))], the second

moment follows with (14) and is given by

IE[D2
n,1] =

ρ2
1IE[I2

n,1]

(1 − ρ1)2
+

Rλ1b
(2)
1

(1 − ρ1)2(1 − ρ)
.

Number Served per Cycle. To derive the first and second
moments of the number of customers served per cycle, con-
sider an M/G/1 queue with arrival rate λ1, average service
time b1, and the second moment of the service time b(2)1 . Then
the expectation and the variance of the number of customers
served in a single busy period are known to be [12, equations
(5.153) and (5.154)]

IE[Γ1] =
1

1 − ρ1
, Var[Γ1] =

ρ1(1 − ρ1) + λ2
1b

(2)
1

(1 − ρ1)3
.

Let Tn,1(N) be the number of customers served at the first
queue during the nth cycle if there are N customers in
the queue at the moment of polling. Note that Tn,1(N) is
the number of customers served starting with N customers,
whereas Γ1 is the number of customers served starting with
just one customer. A different notation is used for these two
quantities to reflect the dependency on the n-th cycle and the
queue number. Since the number served is the sum of the
number served during N busy periods, (9) tells us that the
expected number of customers served, per cycle, at the first
queue is

IE[Tn,1] =IE[Tn,1(L
∗

n,1)] =
IE[L∗

n,1]

1 − ρ1
=

λ1R

1 − ρ
. (19)

To derive the second moment note that

IE[T 2
n,1] =IE[T 2

n,1(L
∗

n,1)]

=(IE[Γ1])
2IE[(L∗

n,1)
2] + Var[Γn,1]IE[L∗

n,1]

=
IE[(L∗

n,1)
2]

(1 − ρ1)2
+
Rλ1

(

ρ1(1 − ρ1) + λ2
i b

(2)
1

)

(1 − ρ1)2(1 − ρ)
.

Using equation (18) gives

IE[T 2
n,1] =

1

(1−ρ1)2

(

λ2
1IE[I2

n,1]+
Rλ1

(

1−ρ2
1+λ2

1b
(2)
1

)

1−ρ

)

.
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Theorem 4: (Expected waiting time and queue length for
the exhaustive/exhaustive service discipline). The expected
waiting time (total time in system minus service time) of a
customer going through the first queue is decomposed of two
parts, namely

IE[Wq,1] =
λib

(2)
1

2(1 − ρ1)
+

(1 − ρ)IE[I2
n,1]

2R(1 − ρ1)
. (20)

This gives

IE[Wq,1] =
λ1b

(2)
1

2(1−ρ1)
+

λ1ρ
2
2b

(2)
1 +λ2(1 − ρ1)

2b
(2)
2

2(1−ρ1)(1−ρ)(1−ρ+2ρ1ρ2)

+
(1−ρ1)R

2(1−ρ)
+

(

∆2

2
−
ρ2(1−ρ)

1−ρ1
δ22+K

)

ψ, (21)

where ψ := 1−ρ1

R(1−ρ+2ρ1ρ2)
and K (defined in (17)) is

the increase in the expected waiting time due to correlated
switchover times.

The average number of customers at the first queue (in
service and in the queue) follows directly from Little and is

IE[Ls,1] =λ1IE[Wq,1] + ρ1. �
The proof can be found in Appendix B. In the uncorrelated
case (K = 0) this is in correspondence with [11, formula5

(3.12)].

B. Exhaustive/Gated Service Discipline

Now let the second queue be served with a gated discipline
instead of an exhaustive one. We obtain the following theorem.

Theorem 5: (Expected waiting time and queue length for
the exhaustive/gated service discipline).
The expected time a customer waits in queue i (i = 1, 2)

until being served is given by (22) where K1 and K2 are
the increases in the expected waiting time due to correlated
switchover times.

The average queue lengths,

IE[Ls,i] =λiIE[Wq,i] + ρi, i = 1, 2.

follow immediately because of Little. �
If all of the switchover times are independent of each other,

then K1 = 0 = K2 and we obtain the results given in [13,
formulas (25) and (28)] or [11, formula6 4.1].
Proof: The proof, although slightly more involved, runs
along the same lines as the proofs of Theorems 3 and 4 and
is omitted due to space constraints. The reader is referred to
[14] for the full proof.

Although not shown here, it can be verified that for any
choice of parameters K2 ≥ K1. From (22) we can see that
if δ21 is sufficiently large, if 1 − 2(1 − ρ)(1 + ρ2) > 0, and
if K1 = 0 = K2, then it may very well be possible that the

5The last term in [11, formula (3.12)] is missing a factor two and
there is a mix up between δ1 and δ2. The expression should read · · · +
[1−ρ1−2ρ2(1−ρ)]δ2

2
+(1−ρ1)2δ2

1

2R(1−ρ+2ρ1ρ2)
.

6The formula presented in this reference is copied incorrectly from [13].
The first term for the waiting time for customers arriving at the second queue
should contain (1 + ρ2) instead of (1 + ρ1).

expected waiting time at the gated queue is smaller than the
expected waiting time at the exhaustive queue! However, the
range of parameter settings for which this is the case is fairly
small. In particular, it can be shown [14] that this does not
happen when the parameters for both queues are equal, if the
switchover times or equal to zero, or if the system is heavily
loaded.

IV. EXAMPLES

In the following paragraphs a number of examples will
be considered in which the sequences of switchover times
are correlated. The covariance functions will be calculated
explicitly after which the impact of the correlation on the
waiting times will be studied. In all of the examples the
expected waiting time of a customer arriving at the first queue
of an exhaustive/exhaustive served system is given by (21)
whereas in the exhaustive/gated served system the expected
waiting times are given by (22). The difference between each
of the examples is that K, K1, and K2 take on different values.
The first example studies a single server queue with correlated
vacations (by turning off one of the queues), whereas in the
subsequent examples explicit expressions are derived for the
expected waiting times and these are compared to the expected
waiting times if there would be no correlation.

A. Single Server Queue with Correlated Vacations

By turning off one of the queues one obtains an M/G/1
queue with multiple correlated vacations. Let us start by
turning off the second queue (by setting λ2 = 0, ρ2 = 0,
v2 = 0, and v(2)

2 = 0, which leads to c2(j) = 0, c12(j) = 0,
and γ = 0) to end up with an exhaustively served M/G/1
queue where the expected waiting time

IE[Wq,1] =
λ1b

(2)
1

2(1 − ρ1)
+
v
(2)
1

2v1
(Exhaustive M/G/1)

is independent of the correlation between the vacations! This
result was previously pointed out in [7, paragraph 3.6] which
causes it to correspond to the expression for the expected
waiting time but with i.i.d. vacation times [15, page 123].

On the other hand, by turning off the first queue in the
exhaustive/gated system, we are left with an M/G/1 queue
with a gated service discipline. After setting the appropriate
parameters to zero we obtain

IE[Wq,2] =
λ2b

(2)
2

2(1 − ρ2)
+
v
(2)
2

2v2
+

ρ2v2
1 − ρ2

+
1

v2

∞
∑

j=1

c2(j)ρ
j
2

(Gated M/G/1)

as the waiting time of a customer arriving at a gated M/G/1
queue with correlated vacations. If there is no correlation
then this expression is in agreement with the result previously
obtained in [7, Theorem 5] and [15, equation (5.24a)].

It is interesting to compare the difference between these two
waiting times due to the server behaving differently. Assuming
queues with identical parameters (by dropping the indices of
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IE[Wq,1] =
(1 − ρ1)R

2(1 − ρ)
+
ρ2(1 − ρ)(1 + ρ2)δ

2
1

R(1 − ρ1 + ρ2)
+

1 − ρ1

2(1 − ρ1 + ρ2)

[

λ1b
(2)
1 + λ2b

(2)
2

1 − ρ
+

∆2 + 2K1

R

]

(22a)

IE[Wq,2] =
(1 + ρ2)R

2(1 − ρ)
−
ρ1(1 − ρ)(1 + ρ2)δ

2
1

R(1 − ρ1 + ρ2)
+

1 + ρ2

2(1 − ρ1 + ρ2)

[

λ1b
(2)
1 + λ2b

(2)
2

1 − ρ
+

∆2 + 2K2

R

]

(22b)

where γ := ρ2

1−ρ1

and

K1 :=

∞
∑

j=1

[

c2(j)+ρc12(j) +

(

1+
ρ2(1 − ρ)

1 − ρ1

)

(

c12(−j)+ρc1(j)
)

]

γj +
ρ2(1 − ρ1(2 − ρ))

(1 − ρ1)2
c12(0) (23a)

K2 :=

∞
∑

j=1

[

c2(j) + ρc12(j) +
1 − ρ1(2 − ρ)

ρ2

(

c12(−j) + ρc1(j)
)

]

γj + 2ρc12(0) (23b)

ones and twos and setting ρ̂ := ρ1 = ρ2) we see that

IE[W ]gated M/G/1 − IE[W ]exhaustive M/G/1

=
ρ̂v

1 − ρ̂
+

1

v

∞
∑

j=1

c(j)ρ̂j , (24)

where the first term on the right hand side is the mean length
of a service period (which is the same for the exhaustive and
the gated service systems). If there is no correlation, then it is
well known that the expected waiting time in an exhaustively
served queue is less than that in a gated serviced queue. In the
presence of correlated vacation times this difference is larger
but remains a surprisingly simple expression.

B. Correlated Switchover Times

Consider a sequence of switchover times where there is no
correlation between the switchover times of the two queues
(this gives c12(j) = 0, for j ∈ Z). Let the individual sequence
of switchover times per queue satisfy

Vn+1,i = xiVn,i + (1 − xi)εn,i, i = 1, 2, (25)

where xi ∈ [0, 1) is a constant and εn,i are positive i.i.d.
variables with finite expectation IE[εn,i] =: ε̄i and second
moment IE[ε2n,i] =: ε

(2)
i . The parameter xi determines the

amount of correlation in the sequence; with xi = 0 the
sequence is i.i.d., whereas when xi tends to one the correlation
is maximal. Notice that there exists a stationary ergodic se-
quence of switchover times which satisfies (25). By taking the
expectation it follows that IE[Vn+1,i] = xiIE[Vn,i]+(1−xn

i )ε̄i.
Due to the stationarity of the process IE[V0,i] = IE[Vn,i] =
vi is independent of xi, and therefore vi = ε̄i. A similar
relationship can be derived for the second moments by taking
the expectation over the square of (25) to give

IE[V 2
n+1,i] =x2

i IE[V 2
n,1] + (1 − xi)

2IE[ε2n,i]

+ 2xi(1 − xi)IE[εn,i]IE[Vn,i].

Due to the stationarity (IE[V 2
n+1,i] = IE[V 2

n,i] = v
(2)
i ) this

implies that

v
(2)
i =

(1 − xi)ε
(2)
i + 2xiε̄ivi

1 + xi
,

which gives a second relationship (since ε̄i = vi),

δ
(2)
i =

1 − xi

1 + xi
V ar(εn,i).

Thus we see that for xi ∈ [0, 1) there exists a εn,i such that
any desired values of vi and δ2i can be obtained. Now we will
derive the covariance functions and the expected waiting time.

By iterating (25) a number of times it is quickly seen that

Vn,i =xn
i V0,i + (1 − xi)

n−1
∑

k=0

εn−1−k,ix
k
i . (26)

From this we obtain

IE[V0,iVj,i] =xj
i IE[V 2

0,i] + (1 − xj
i )ε̄iIE[V0,i]

=xj
iv

(2)
i + (1 − xj

i )ε̄ivi.

This means that the covariance functions, ci(j) =
IE[V0,iVj,i] − IE[V0,i]IE[Vj,i], are given by

ci(j) =xj
iv

(2)
i + (1 − xj

i )ε̄ivi − vi

(

xj
ivi + (1 − xj

i )ε̄i

)

=xj
i

(

v
(2)
i − v2

i

)

= xj
i δ

2
i . (27)

Since
∞
∑

j=1

ci(j)α
j =δ2i

∞
∑

j=1

(αxi)
j =

αxiδ
2
i

1 − αxi
, (28)

we have from Theorem 4 that the expected waiting time in
the exhaustive/exhaustive system is given by (21) with

K :=
αx1δ

2
1

1 − αx1
+

αx2δ
2
2

1 − αx2

(

1 +
(1 − ρ)2

ρ1(1 − ρ1)

)

and α = ρ1ρ2

(1−ρ1)(1−ρ2)
.

Equivalently, in the exhaustive/gated system we have from
equation (28) and from Theorem 5 that the expected waiting
times are given by (22) where γ = ρ2

1−ρ1

and

K1 =
γx1δ

2
1

1 − γx1

(

1 +
ρ2(1 − ρ)

1 − ρ1

)

ρ+
γx2δ

2
2

1 − γx2

K2 =
γx1δ

2
1

1 − γx1

(

1 +
ρ1

ρ2
(1 − ρ)2

)

+
γx2δ

2
2

1 − γx2
.

Numerical examples of the influence of the correlation on
the expected waiting times can be found in Figure 2. Shown
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in each of the figures is the expected waiting time divided
by the expected waiting time for uncorrelated sequences of
switchover times. There are Poisson arrivals with λi = 0.4.
The first two moments of the switchover times are always
kept fixed (first moment for each of the switchover time
distributions is fixed at vi = 3) and the service times are
taken to be exponential with bi = 0.4 or bi = 1.2.

Based on the figures and equations above the following
important conclusions can be made:

• If x1 = x2 = 0 then there is no correlation between the
sequences of switchover times and K = 0, K1 = 0, and
K2 = 0;

• The increase in expected waiting times due to correlated
switchover times can be up to several times (3.5 times in
the example) the expected waiting times if there would
be uncorrelated switchover times.

• The increase in the expected waiting times due to correla-
tion grows linearly with the variance δ2i of the switchover
times;

• Under light traffic (α and γ are small and so) the increase
in the expected waiting time is (approximately) linear in
xi.

• Under heavy traffic α and γ are close to one and, due
to the factor 1 − αxi or 1 − γxi in the denominators,
the increase in waiting time due to correlated switchover
times can be significant. Hence the presence of correla-
tion has the biggest impact on the waiting time if the
system has a heavy load (and the switching times have a
high variance). This can be seen clearly in Figure 2.

• In can be shown that, under identical parameter setting,
in the exhaustive/gated system the expected waiting time
at the exhaustive queue is always larger than at the gated
queue. In addition to this, we see from Figure 2 that
in lightly loaded systems the gated queue (Q2) suffers
most from correlated switchover times whereas in heavily
loaded traffic both queues are effected (relatively) equally
by the correlated switchover times.

C. Identical Switchover Times

Set Vn,2 = Vn,1. This introduces cross-correlation between
the two sequences of switchover times and it gives v2 = v1 and
δ22 = δ21 . In addition to this let Vn+1,1 = xVn,1 + (1 − x)εn,1

just as in the previous example. From (27) we have c1(j) =
xjδ21 after which

c2(j) =IE[V0,2Vn,2] − IE[V0,2]IE[Vn,2]

=IE[V0,1Vn,1] − IE[V0,1]IE[Vn,1] = c1(j) = xjδ21

c12(j) =IE[V0,1Vn,2] − IE[V0,1]IE[Vn,2]

=IE[V0,1Vn,1] − IE[V0,1]IE[Vn,1] = c1(j) = xjδ21

c12(−j) =IE[V0,2Vn,1] − IE[V0,2]IE[Vn,1]

=IE[V0,1Vn,1] − IE[V0,1]IE[Vn,1] = c1(j) = xjδ21

immediately follow. This means that (i = 1, 2)
∞
∑

j=1

ci(j)α
j =

∞
∑

j=1

c12(j)α
j =

∞
∑

j=1

c12(−j)α
j =

αxδ21
1 − αx

can all be plugged into Theorem 4 so that the expected waiting
time in the exhaustive/exhaustive system is given by (21) with

K =
αxδ21

1 − αx

(

1−ρ2(1−α)

αx
+ 2 +

(1 − ρ)2

ρ1(1 − ρ1)
+

1 − ρ2

ρ1

)

,

ψ := 1−ρ1

2v1(1−ρ+2ρ1ρ2)
, and α = ρ1ρ2

(1−ρ1)(1−ρ2)
.

Equivalently, the expected waiting times in the exhaus-
tive/gated system are given by (22) with

K1 =
γxδ21
1−γx

(

2+
ρ2(1−ρ)

1−ρ1

)

(1−ρ)+
ρ2(1−ρ1(2−ρ))

(1−ρ1)2
δ21 ,

K2 =
γxδ21

1 − γx

(

1 +
1 − ρ1(2 − ρ)

ρ2

)

(1 − ρ) + 2ρδ21 .

To get a feeling of the impact of the cross correlation, the
expected waiting times are plotted in Figure 3 for various
switchover time distributions and traffic loads. Shown in each
of the figures is the expected waiting time divided by the ex-
pected waiting time for uncorrelated sequences of switchover
times. There are Poisson arrivals with λi = 0.4. The first two
moments of the switchover times are always kept fixed (first
moment for each of the switchover time distributions is fixed
at vi = 3) and the service times are taken to be exponential
with bi = 0.4 or bi = 1.2.

Striking is the impact of the cross correlation on the waiting
times. For example, if there is no correlation within each
sequence of switchover times (x = 0), then there is still
an increase in the expected waiting time due to the cross-
correlation. For the exhaustive/exhaustive system this increase
is (1 − ρ2(1 − α))ψδ21 and for the exhaustive/gated system
this increase is given by ρ2(1−ρ1(2−ρ))

(1−ρ1)2
δ21 and 2ρδ21 for, respec-

tively, the exhaustive and the gated queue. For exponentially
distributed switchover times this can mean an increase of tens
of percents in the expected waiting time. Besides this, all of
the conclusions made in the first example also hold here, with
the exception that the increase in expected waiting time can
up to a factor 5.

D. Stochastic Recursive Switchover Times

Consider a sequence of switchover times which satisfy the
following stochastic recursive relationship

Vn+1,i =Fn,i(Vn,i) + En,i, (29)

where Fn,i(·) are independent, infinitely divisible stochastic
processes with IE[Fn,i(T )] = xiIE[T ] and IE[F2

n,i(T )] =

x
(2)
i IE[T 2] + yiIE[T ]. Here xi ∈ [0, 1), yi ≥ 0 and x(2)

i ≥ x2
i .

The sequence En,i is a sequence of independent variables with
IE[En,i] = ε̄i and IE[E2

n,i] = ε
(2)
i . Iterating gives

Vn,i =

(

n−1
∏

k=0

Fk,i

)

V0,i +

n−1
∑

k=0

(

n−1
∏

l=k+1

Fl,i

)

En−k,i,

and so

IE[Vn,i] =xn
i vi + ε̄i

n−1
∑

k=0

xk
i = xn

i vi +
1 − xn

i

1 − xi
ε̄i.
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Fig. 2. Example: Correlated Switchover Times. The expected waiting time divided by the expected waiting time with uncorrelated switchover times. The
different lines correspond to different switchover time distributions, all with mean vi = 3. Here x := x1 = x2 determines the level of correlation, there is no
cross correlation, the service times are exponential, and λi = 0.4. The top figures are with mean service times bi = 0.4 (ρ = 0.32) whereas the second row
of figures are under heavy traffic with bi = 1.2 (ρ = 0.96). The first column of figures correspond to the exhaustive/exhaustive system, whereas the second
and third column of figures show the normalized waiting times for, respectively, the exhaustive queue (Q1) and the gated queue (Q2) in the exhaustive/gated
system.

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

x

E
W

1] /
 E

[W
1|n

o 
co

rr
el

at
io

n]

Normalized Expected Waiting Time at Q1 in Exh/Exh

Light  
traffic

V
i
∼ LogNorm(0,ln(3))

V
i
∼ exp(1/3)

V
i
∼ Poisson(3)

V
i
∼ Gamma(5,3/5)

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

x

E
[W

1] /
 E

[W
1|n

o 
co

rr
el

at
io

n]

Normalized Expected Waiting Time at Q1 in Exh/Gated

Light  
traffic

V
i
∼ LogNorm(0,ln(3))

V
i
∼ exp(1/3)

V
i
∼ Poisson(3)

V
i
∼ Gamma(5,3/5)

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

x

E
[W

2] /
 E

[W
2|n

o 
co

rr
el

at
io

n]

Normalized Expected Waiting Time at Q2 in Exh/Gated

Light  
traffic

V
i
∼ LogNorm(0,ln(3))

V
i
∼ exp(1/3)

V
i
∼ Poisson(3)

V
i
∼ Gamma(5,3/5)

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

x

E
W

1] /
 E

[W
1|n

o 
co

rr
el

at
io

n]

Normalized Expected Waiting Time at Q1 in Exh/Exh

Heavy  
traffic

V
i
∼ LogNorm(0,ln(3))

V
i
∼ exp(1/3)

V
i
∼ Poisson(3)

V
i
∼ Gamma(5,3/5)

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

x

E
[W

1] /
 E

[W
1|n

o 
co

rr
el

at
io

n]

Normalized Expected Waiting Time at Q1 in Exh/Gated

Heavy  
traffic

V
i
∼ LogNorm(0,ln(3))

V
i
∼ exp(1/3)

V
i
∼ Poisson(3)

V
i
∼ Gamma(5,3/5)

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

x

E
[W

2] /
 E

[W
2|n

o 
co

rr
el

at
io

n]

Normalized Expected Waiting Time at Q2 in Exh/Gated

Heavy  
traffic

V
i
∼ LogNorm(0,ln(3))

V
i
∼ exp(1/3)

V
i
∼ Poisson(3)

V
i
∼ Gamma(5,3/5)

Fig. 3. Example: Identical Switchover Times. The expected waiting time divided by the expected waiting time if there would be no correlation between
the switchover times. The different lines correspond to different switchover time distributions. Here x determines the level of correlation, cross correlation is
introduced by setting Vn,2 = Vn,1, the service times are exponential, and λi = 0.4. The figures in the first row are with mean service time bi = 0.4 (ρ = 0.32)
and the figures on the bottom row are under heavy traffic with bi = 1.2 (ρ = 0.96). The first column of figures correspond to the exhaustive/exhaustive
system, whereas the second and third column of figures show the normalized waiting times for, respectively, the exhaustive queue (Q1) and the gated queue
(Q2) in the exhaustive/gated system.
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This leads to the condition vi = ε̄i

1−xi
. The second moment of

the switchover times is found by taking the expectation over
the square of (29). Doing this produces

IE[V 2
n+1,i] =IE[F2

n,i(Vn,i)]+IE[E2
n,i]+2IE[Fn,i(Vn,i)·En,i]

=x
(2)
i v

(2)
i + yivi + ε

(2)
i + 2xiviε̄i.

Since, by definition, IE[V 2
n+1,i] also equals v(2)

i , we have

v
(2)
i =

ε
(2)
i + (yi + 2xiε̄i)vi

1 − x
(2)
i

.

Thus we see that there exists a En,i which generates a sequence
Vn,i with arbitrary correlation and any desired values of vi and
v
(2)
i . Similarly, it is easy to show that

IE[V0,iVn,i] =xn
i v

(2)
i +

1 − xn
i

1 − xi
ε̄ivi.

This gives the covariance functions

ci(j) =IE[V0,iVj,i] − IE[V0,i]IE[Vj,i]

=xj
iv

(2)
i +

1−xj
i

1−xi
ε̄ivi−vi

(

xj
ivi+

1−xj
i

1−xi
ε̄i

)

= xj
i δ

2
i

which are completely identical to (27)! This means that if the
first two moments of the switchover times are kept fixed while
varying x ∈ [0, 1), that the expected waiting times are once
again given by (21) and (22) with K, K1, and K2 as given
in the first example. Furthermore, the conclusions of the first
example also hold here.

As a special case of (29) we can take Vn+1,i = xiVn + εn,i

where xi ∈ [0, 1) is a constant and εn,i is a positive sequence
of i.i.d. variables.

V. CONCLUSIONS

We have studied the performance of alternating-priority
queues with very weak assumptions on the switchover time
sequences; all we assume is that these sequences are stationary
ergodic. In spite of this generality we were able to derive
explicit expressions for the expected waiting times and number
of customers in each queue. The expressions obtained involve
the weighted sum of all correlations where the weights de-
crease exponentially fast to zero. With the help of our explicit
expressions, we studied numerically the role of correlation and
gave examples where they add up to 400% to the expected
waiting times. This has important implications for (ad-hoc)
networks where a common communication channel is shared
amongst a number of users and the number of users between
consecutive data transfers are correlated.
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APPENDIX

A. Proof of Theorem 3:

Taking the expectation on both sides of equation (5) gives

IE[In+1,1] =R+
ρ2

1 − ρ2

(

R+
ρ1IE[In,1]

1 − ρ1

)

.

Under the stationary regime IE[In+1,1] = IE[In,1] which
immediately leads to the first moment

E[In,1] =
R(1 − ρ1)

1 − ρ
. (30)
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To obtain the second moment we take the expectation of the
square of (5) to give

IE[I2
n+1,1] =IE[An(In,1)]

2 + IE[B2
n] + 2IE[An(In,1)Bn].

(31)

This expression is central to proof in this section and each
of the terms will be derived piece by piece. First of all,
IE[A2

n(In,1)] =

=IE
[

D2
n+1,2

(

Nn+1,2

(

Dn+1,1(Nn,1(In,1))
))]

=λ2
2d

2
2IE[D2

n+1,1(Nn,1(In,1))]

+ λ2d
(2)
2 IE[Dn+1,1(Nn,1(In,1))]

=λ2
2d

2
2

(

λ2
1d

2
1IE[I2

n,1]

+ λ1d
(2)
1 IE[In,1]

)

+ λ1d1λ2d
(2)
2 IE[In,1].

Plugging equation (12) and (15) into this results in

IE[A2
n(In,1)] =

ρ2
1ρ

2
2IE[I2

n,1]

(1 − ρ1)2(1 − ρ2)2

+
R

(1 − ρ2)2(1 − ρ)

(

λ1ρ
2
2b

(2)
1

(1 − ρ1)2
+ λ2ρ1b

(2)
2

)

. (32)

Next we proceed with the second unknown of expression
(31), IE[B2

n], where we recall that Bn is defined in equation
(6). We have

IE[B2
n] = IE

[

Vn+1,1+Vn+1,2

+Dn+1,2

(

Nn,2(Vn,2)+Nn+1,2(Vn+1,1)
)]2

=v
(2)
1 + v

(2)
2 + 2v1v2 + 2c12(0)

+ 2λ2d2

(

v
(2)
1 +v2

2+2v1v2+c2(1)+c12(−1)+c12(0)
)

+ λ2
2d

2
2

(

v
(2)
1 + v

(2)
2 + 2v1v2 + 2c12(−1)

)

+ λ2d
(2)
2 R

=
∆2 +R2

(1 − ρ2)2
−

2ρ2δ
2
2

1 − ρ2
+

Rλ2b
(2)
2

(1 − ρ2)3

+
2ρ2c2(1) + 2c12(0)

1 − ρ2
+

2ρ2c12(−1)

(1 − ρ2)2
. (33)

To solve the last part first notice that the processes Nn,1(·),
Nn,2(·), Nn+1,1(·), Nn+1,2(·), Dn+1,1(·), and Dn+1,1(·) are
all independent of each other, and each of them is independent
of In,1, Vn,2, Vn+1,1, and Vn+1,2. This means that

IE[An(In,1)Bn] =αIE[In,1Bn], (34)

with once again α := ρ1ρ2

(1−ρ1)(1−ρ2)
. The last piece of the

puzzle can be derived with the help of Theorem 2 in [7] which
states that

In,1 =
∞
∑

j=0

( n−1
∏

i=n−j

A
(n−j)
i

)

(Bn−j−1), n ∈ Z,

where for each integer i, {A(−j)
i }j are independent of each

other and have the same distribution as Ai(·). To apply the
theorem it is sufficient to have α < 1, which turns out to be

equivalent to ρ < 1, and that IE[Bn] < ∞ (see Lemma 1 in
[7]). The latter indeed holds as IE[Bn] = R

1−ρ2

.

Applying the theorem gives IE[In,1Bn] =

=

∞
∑

j=0

IE
[

n−1
∏

i=n−j

(

Di+1,2

(

Ni+1,2

(

Di+1,1(Ni,1(Bn−j−1))
)

))

Bn

]

=

∞
∑

j=0

αjIE [Bn−j−1Bn] =

∞
∑

j=0

αjIE [B0Bj+1] . (35)

because of the independence of the processes Di,1(·), Dn,2(·),
Ni,1(·), and Ni,2(·), for all i ∈ Z. Writing out the last term
yields IE [B0Bj+1] =

=IE

[

(

V1,1 + V1,2 + D1,2

(

N0,2(V0,2) + N1,2(V1,1)
))

·
(

Vj+2,1 + Vj+2,2

+ Dj+2,2

(

Nj+1,2(Vj+1,2) + Nj+2,2(Vj+2,1)
))

]

=
R2

(1 − ρ2)2
+
c1(j+1) + c2(j+1)

(1 − ρ2)2
(36)

+
ρ2(c2(j) − 2c2(j+1) + c2(j+2))

1 − ρ2

+
c12(−j−1) + c12(j+1)

1 − ρ2
+
ρ2(c12(−j−2) + c12(j))

(1 − ρ2)2
.

Putting (34)-(36) together and re-indexing the summa-
tion (for example,

∑

∞

j=0 α
j+1c2(j) =

∑

∞

j=1 α
jc2(j−1) =

αc2(0) +
∑

∞

j=1 α
jαc2(j)) produces IE[An(In,1)Bn] =

=

∞
∑

j=1

[

R2 + c1(j) + c2(j)

(1 − ρ2)2
+
ρ2

(

α− 2 + 1
α

)

c2(j)

1 − ρ2

+
c12(−j)

1−ρ2

(

1+
ρ2

α(1−ρ2)

)

+
c12(j)

1−ρ2

(

1+
αρ2

1−ρ2

)

]

αj

+
ρ2(αc2(0) − c2(1))

1 − ρ2
+
ρ2(−c12(−1) + αc12(0))

(1 − ρ2)2
.

All of the terms with v1 and v2 can be pulled out of the
summation and under stationary regime c2(0) = δ22 . This gives

IE[An(In,1)Bn] =
ρ1ρ2R

2

(1−ρ2)2(1−ρ)
+

ρ1ρ
2
2δ

2
2

(1−ρ1)(1−ρ2)2

−
ρ2c2(1)

1 − ρ2
+
ρ2(−c12(−1) + αc12(0))

(1 − ρ2)2

+
1 − ρ2(1 − α)

(1 − ρ2)2

∞
∑

j=1

c12(j)α
j +

1

(1 − ρ2)2

∞
∑

j=1

[

c1(j)

+ c2(j) +
(1 − ρ)2c2(j)

ρ1(1 − ρ1)
+

(1 − ρ2)c12(−j)

ρ1

]

αj (37)

Putting equations (32),(33), and (37) into (31) and collecting
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terms gives

IE[I2
n+1,1] =

ρ2
1ρ

2
2IE[I2

n,1]

(1 − ρ1)2(1 − ρ2)2

+
R

(1 − ρ2)2(1 − ρ)

(

λ1ρ
2
2b

(2)
1

(1 − ρ1)2
+ λ2b

(2)
2

)

+
1

(1−ρ2)2

(

∆2−
2ρ2(1−ρ)δ

2
2

1−ρ1
+

(

1−ρ+2ρ1ρ2

1−ρ

)

R2
)

+
2(1−ρ2(1−α))

(1 − ρ2)2

∞
∑

j=0

c12(j)α
j +

2

(1−ρ2)2

∞
∑

j=1

[

c1(j)

+ c2(j) +
(1 − ρ)2c2(j)

ρ1(1 − ρ1)
+

(1 − ρ2)c12(−j)

ρ1

]

αj .

Under stationary regime IE[I2
n+1,1] = IE[I2

n,1]. The Theorem
follows by putting these terms on the same side and by making
use of the identity

1 −

(

ρ1

1 − ρ1

)2(
ρ2

1 − ρ2

)2

=
(1 − ρ)(1 − ρ+ 2ρ1ρ2)

(1 − ρ1)2(1 − ρ2)2
.

B. Proof of Theorem 4:

For a customer arriving at the first queue the system behaves
as an M/G/1 queue where the server goes on vacation as
soon as the queue is empty. The random variable for the nth

”vacation” from the first queue is exactly I n,1. Conditioning
the waiting time in the queue on whether or not a customer
arrives when the server is busy or on vacation produces

IE[Wq,1] =
IE[In,1]

IE[Cn,1]
IE[Wq,1|vac] +

IE[Dn,1]

IE[Cn,1]
IE[Wq,1|busy].

(38)

A tagged customer that arrives during a vacation has to
wait for the vacation to finish plus the time needed to serve
the customers that arrived before him/her in the vacation. The
expected remaining vacation time is IE[I2

n,1]/2IE[In,1] and the
expected number of customer that arrived before the tagged
customer is λ1IE[I2

n,1]/2IE[In,1]. This means that

IE[Wq,1|vac] =
IE[I2

n,1]

2IE[In,1]
(1 + λ1b1) . (39)

A tagged customer that arrives when the server is busy has
to wait for the current customer in service to finish plus the
expected time needed to serve the Lq,1 customers that arrived
at (and still are in) the queue before the tagged customer did.
This gives

IE[Wq,1|busy] =
b
(2)
1

2b1
+ b1IE[Lq,1|busy]. (40)

To obtain the number of customers in the queue, first realize
that the expected waiting time of a customer in the system is
IE[Ws,1] = b1 +IE[Wq,1]. Little [19] tells us that the expected
number of customers, Ls,1, at the first queue (in service and
in the queue) is

IE[Ls,1] := λ1IE[Ws,1] = ρ1 + λ1IE[Wq,1].

On the other hand,

IE[Ls,1] =
IE[Dn,1]

IE[Cn,1]
IE[Ls,1|busy] +

IE[In,1]

IE[Cn,1]
IE[Ls,1|vac]

=ρ1(1 + IE[Lq,1|busy]) + (1 − ρ1)
λ1IE[I2

n,1]

2IE[In,1]
.

Combining these last two equations gives

IE[Lq,1|busy] =
1

b1

(

IE[Wq,1] −
(1 − ρ1)IE[I2

n,1]

2IE[In,1]

)

. (41)

Putting together equations (38)-(41) gives

IE[Wq,1] =(1 − ρ1)
IE[I2

n,1]

2IE[In,1]
(1 + λ1b1)

+ ρ1

(

b
(2)
1

2bi
+ IE[Wq,1] −

(1 − ρ1)IE[I2
n,1]

2IE[In,1]

)

=
λ1b

(2)
1

2(1 − ρ1)
+

IE[I2
n,1]

2IE[In,1]
. (42)

The theorem follows by plugging in the values of IE[In,1] and
IE[I2

n,1]. Notice that not once have we assumed the switchover
times and the busy periods to be uncorrelated!

C. List of Notations
An(·) = A nested combination of stochastic processes de-

fined in (6).
Bn = A nested combination of stochastic processes de-

fined in (6).
Dn,i(N) = Total busy period generated by N customers in

queue i with arrival rate λi and first and second
moment of the service time bi and b

(2)
i , respec-

tively.
Dn,i,k = Single busy period generated by the k-th customer

in queue i with arrival rate λi and first and
second moment of the service time bi and b

(2)
i ,

respectively.
Sn,i(N) = Service time of N customers at queue i with first

and second moment of the service time bi and b(2)i ,
respectively.

Nn,i(T ) = Number of arrivals at queue i in time T in the
nth cycle (cycle starting from the polling instant
of the first queue).

Tn,i(N) = The number of customers served at queue i during
the nth cycle if there are N customers in the queue
at the moment of polling.

Xn(·) = A nested combination of stochastic processes de-
fined in (8).

Yn = A nested combination of stochastic processes de-
fined in (8).
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Cn,i = Duration of the nth cycle starting from the polling
instant of the ith queue.

Dn,i = Duration of the busy period at queue i in the nth

cycle.
In,i = Intervisit of the ith queue in the nth cycle. This

is the time between the server switching away
from queue i until the time that the server comes
back to queue i. ( In,1 = Vn,1 +Dn,2 + Vn,2 for
exhaustive/exhaustive queues and In,1 = Vn,1 +
Sn,2 + Vn,2 for exhaustive/gated queues).

K = Some constant used in the expressions for the
intervisit time and the waiting times. Sometimes
K1 or K2 is used if there is a difference between
the two queues.

L∗

n,i = Number of customers in queue i in the nth cycle
at the moment the queue is polled.

Lq,i = Average number of customers in queue i. This
is also the number of customers that arrived at
queue i during a vacation, and are still in the
queue, before a tag customer arrived in that same
vacation.

Ls,i = Average number of customers at queue i (in-
cluding the customer in service). This is also
the number of customers that arrived at queue
i during a vacation (and are in the queue or in
service) before a tag customer arrived in that same
vacation.

Sn,i = Service time at queue i in the nth cycle (=similar
to the duration Dn,i of the busy period but then
with no arrivals).

Tn,i = The number of customers served, per cycle, at
queue i.

Vn,i = Switching time from queue i to the other queue
in the nth cycle.

Wq,i = Random variable for the waiting time of a cus-
tomer in queue i (not including service).

Ws,i = Random variable for the total sojourn time of a
customer at queue i (waiting time plus service
time).

Γi = The number of customers served during a busy
period, where the arrival rate is λi, average service
time is bi, and the second moment of the service
time is b(2)i .

α = ρ1ρ2

(1−ρ1)(1−ρ2)
= Central quantity in the exhaus-

tive/exhaustive queueing system. Comes forth
from IE[An(I)] = αIE[I], with An(·) defined in
(6).

bi = IE[Bi] = Expected service time at queue i.

b
(2)
i = IE[Bi]

2 = Second moment of the service time at
queue i.

ci(n) = IE[V0,iVn,i] − IE[V0,i]IE[Vn,i] = Covariance func-
tion for the vacation sequences at queue i.

c12(n) = IE[V0,1Vn,2]− IE[V0,1]IE[Vn,2] = Covariance func-
tion for the vacation sequences between the two
queues.

di = ρi/(1 − ρi) = The expected duration of a single
busy period, where the arrival rate is λi and the
average service time is bi.

d
(2)
i = b

(2)
i /(1 − ρi)

3 = Second moment of the duration
of a single busy period, where the arrival rate is
λi, the average service time is bi, and the second
moment of the service time is b(2)i .

δ2i = v
(2)
i − v2

i = Variance of the switching time from
queue i to the other queue.

γ = ρ2

1−ρ1

= Central quantity in the exhaustive/gated
queueing system. Comes forth from IE[Xn(I)] =
γIE[I], with Xn(·) defined in (8).

λi = (Poisson) arrival rate at queue i.
ρi = λidi = load at queue i.
ρ = ρ1 + ρ2 = load of the system. The assumption is

made throughout that ρ < 1/2.
ρ̂ = ρ1 = ρ2 if the parameter settings for the two

queues are equal.
R = v1 + v2.
vi = E[Vn,i] = Expected switching time from queue i

to the other queue.

v
(2)
i = E[V 2

n,i] = Expected second moment of the switch-
ing time from queue i to the other queue.


