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Abstract In this paper we consider nonhomogeneous birth
and death processes (BDP) with periodic rates. Two impor-
tant parameters are studied, which are helpful to describe a
nonhomogeneous BDP X = X(¢), t > 0: the limiting mean
value (namely, the mean length of the queue at a given time t)
and the double mean (i.e. the mean length of the queue for the
whole duration of the BDP). We find conditions of existence
of the means and determine bounds for their values, involving
also the truncated BDP X . Finally we present some exam-
ples where these bounds are used in order to approximate the
double mean.
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1. Introduction

Homogeneous and nonhomogeneous birth and death pro-
cesses have a great importance for many fields of ap-
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plied probability. Nonhomogeneous versions of the birth
and death process have an important role in queueing
theory.

It is extremely difficult to obtain general results for
arbitrary forms of the birth and death rates and therefore
we must content ourselves in obtaining various types of
approximations.

In the literature there exist some papers devoted to the
problem of approximating BDP (see [2] for diffusions
approximations and [6] and [8]). Estimates concerning
the distance between truncated and infinite models for
homogeneous BDP are presented in [9]. Some queueing
applications of periodic BDP are given in [7].

In the case of rates with periodic behavior we study here
two parameters, that is the limiting mean value and the “dou-
ble mean”.

We can interpret the first parameter as the mean value,
at arbitrary time ¢, of the number of customers queueing up
before some device (e.g. bancomat counter).

The second characteristic represents the mean number of
customers in the queue for the whole duration of the service.

Our approach is based on the method introduced by Gne-
denko and Makarov (see [3]) and successively worked out
by one of the authors in [10] and [13].

The method based on the application of the logarith-
mic norm of operators and the corresponding estimates
is dealt with in Daletsky and Krein (see [1]). An im-
portant aspect of the analysis is the choice of the suit-
able transformation of the reduced matrix of the process
rates.

This procedure in the simplest cases is accurately exam-
ined in [4] and its description in the general case of nonho-
mogeneous BDP and the related applications to the study of
queueing systems is presented in [5].
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2. Basic results

Let X = X(¢), t > 0 be a nonhomogeneous birth and death
process (BDP) on the state space E = (0, 1, 2, ...) and with
birth rates A, = 1, (¢),t > 0 and death rates i, = u,(t),n €
E. This means that

P{X(t+h)=jlX@) =i}

Li(t)-h+o(h,t,i), if j=i+1

_ wi(t) -h+o(h,t,i), if j=i—1 e
1— @)+ i) -h+oh), if j=i
o(h,1,i), if |i—j|>1

for h > 0 and with limy, ;¢ ”(hh—”) = 0 uniformly with respect

to i € E. This condition plays an essential role in deriving
the Kolmogorov differential system in the space /;.

The nonstationarity of X depends on the fact that the rates
wi(t)and A; () are functions of time and depend on the current
size of the queue.

Let

pij(s, 1) = Pr{X(r) = j | X(s) = i}

fori,jeE, 0<s<t

be the transition probability function of the process X = X (¢)
and
pi(t) =Pr{X(t) =i} fori e E, t >0
be the state probabilities.
We denote by p(t) = (po(1), pi(t), pa(r),.. )", >0

the column vector of state probabilities and by A(r) =
{aij(t), t = 0} the matrix related to (2.1) where

Ai—1(1), if j=i—1
a;:(t) = Mj+1(l), 1f]:l+] (22)
! a0y, i =i :
0, if otherwise.

The probabilistic dynamics of the process is represented
by the forward Kolmogorov differential system:

d
P _ A()p,

t > 0.
dt -

p = p@), (2.3)

The Cauchy problem formed by (2.3) with the initial con-
ditions p(s) has the following solution

U(t,s) = {pij(t, )} for t>s,
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where p; ;(t,s) = Pr{X () = j|X(s) =1i.}.
Throughout the whole paper we use the /; -norm for vec-
tors X that is [|x|[; = ), |xi| and

IBJ| = sup ) " Iby;] = sup [Ib;]];
E

JEE jcE JjE

where x = (xg, x1,...)7 and B = {bij ) —o-

Let Q ={x: x>0, |x]l; =1}. We shall restrict our-
selves to birth and death processes whose rates have the
following form:

An(t) = vea(t), wa(t) =n,b(), t>0, nek, (24
with the assumptions that the rates are bounded, i.e.
O0<n, <M, n>0 and O0<v, <L, n>0 2.5)

and, obviously, no = 0.

We clearly assume that the functions a = a(¢) and b =
b(t) are non-negative, 1-periodic and bounded, with bounds
a(t) <a, b@{)=<bh. (2.6)

Conditions (2.4)—(2.6) guarantee (see [1]) the bounded-
ness and integrability of the operator function A(z) in the
space of sequences £, where

AN = 2sup(ri(r) + wi(r)) < 2(La + Mb).

We remark that conditions (2.4)—(2.6) are not used in the
proofs of the results below. These conditions are introduced
with the purpose of guaranteeing the integrability of the op-
erator function A(¢) and can be weakened. For example it is
possible to replace (2.4) either with the condition that A(r)
is itself integrable or with the alternative condition that the
rates are linear combinations of a finite number of integrable
functions.

In [1] it is shown that the Cauchy problem for linear dif-
ferential equations in Banach spaces with bounded and inte-
grable operator functions has unique solutions for arbitrary
initial conditions. This means that, under our assumptions,
the existence and uniqueness of the solution do not pose any
problem.

We shall study the following mean values

Epo{X (1)} = Z E{X(t) | X(0) = k}pi(0), 2.7)
keE

and the conditional mean value

E{X()| X(0)=k}. 2.8)
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For our further analysis we need the following quantities. Proof. Equation (2.3) in explicit form reads
Letl =d_y =dy <d; <---and define
dpo
dt
4 dp —(Ao + o) M 0 0 -
d
ar(t) = M (t) + par1(t) — %)‘k-&-l([) ’ L U e VR 0 -
k = 0 A —(A2 + p2) pu3 -+
dr—1 dpu
— —— (1), k =0, 2.9 di
dy
and consequently Do
P1
| x| : (2.12)
— 1 *
a(t) = Iyzlgak(t)’ o —/0 a(t)dt, Pn
t
My = sup / aw)du, M = Mot (2.10)
lt—s|<1Js
o By introducing (see [10-13]), po(t) = 1 — Z?il pi(t), the
W = inf Dizo di second scalar equation
k k

We remark that our aim here is the evaluation of estimates
for the speed of convergence of the means. Therefore the
conditions appearing in the next Theorem are not necessary
but sufficient for the existence of the mean of the limiting
regime.

The results of next theorems are formulated in terms of
the auxiliary sequences d;, i > 1, which do not possess any
probabilistic meaning. A detailed analysis of their properties
is given in [4]. We note that they are a sort of counterpart of
the Lyapunov functions.

Theorem 1. Let a birth and death process with rates A(t)
and ui(t), k > 0 be given. Let us assume that there exists
a sequence {d;} such that the number o* defined above is
strictly positive.
We also assume that the numbers d; grow sufficiently fast
k

so that infy>, d'k—" =w > 0.

Under all these conditions there exists the limit
Tim |E(XO]X(©0) = k} = ¢(0)] =0

for all k and for some I-periodic function ¢(t).
We claim also that, for k = 0, the following upper bound
holds

avoM?

Wa*

|E{X(1) | X(0) =k} — (1) < e 2.11)

dp:

T ropo — (A1 + p1)p1 + p2p2,
becomes

dp =

—— =2—A = (h

P 0 O;pl (A1 +p)p1 + pap2

so that the system (2.12) writes

dp1
di
dps
dt
dpy
dr
—(ho + A1+ 1) u2— Ao —A0 —Ao -
M —(A2 + p2) 3 0 0
= 0 A2 —(A3+u3) muge O
P1 o
P2 0
x +1 (2.13)
P 0
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or otherwise

dz(t)

- (2.14)

= B(t)z(t) + £(¢).

This is a linear nonhomogeneous differential system the so-
lution of which can be written as

2(t) = V{1, 0)2(0) + / V(. D) de. (2.15)
0

where V(t, z) is the Cauchy operator of (2.14). The corre-
sponding theory is treated in detail in the book by Daletsky
and Krein. We furthermore remark that, if B does not depend
on ¢, then the Cauchy operator possesses the explicit simple
form V(z, s) = "5,

There is the following simple relationship between pairs,
2P =29(), t >0, i =1, 2,0fsolutions of (2.14) and pairs
of solutions of (2.3), p’ = p¥(1), t >0, i =1,2:

[ =,
= |ps’ ="l + 2" = 7
i>1
s (o)
i>1 i>1

+[2" =27, =

> (7 =)

i>1

1 =2, = 1 - )

i>1

=), =2 =], 120,

Consequently,

1 2 1 2 1 2
12" — 22| < [pP — pPIly < 2012 — 22|,

t >0, (2.16)

which will be used in the study of stability and ergodicity.
Consider the matrix

d() d() d()

0 d d
D = 0 0 & .17
and the space of sequences
tip=1{z" =(p1,p2,..) s llzllip = [ Dzl < o0}, (2.18)

as in [13].
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We have
dy' a7’ 0
0 d7' -4' o
D= 0 ;!

By applying this transformation to the matrix B(¢) in (2.14),
we arrive at the matrix DB(z)D !

DB(t)D™!
—(o+ 1) do-dit - 0
d-dy' i —n+p) didy s 0
= 0 dy-di' o
0

(2.19)

We recall the definition of the logarithmic norm that was
proposed for finite-dimensional spaces by Lozinskij and gen-
eralized to Banach spaces by Daletsky and Krein, see for
instance [13].

Definition 1. Let B(t), t > 0 be a one-parameter family of
bounded linear operators on a Banach space B and let /
denote the identity operator. For each ¢t > 0, the number

I +hB@)| -1

; (2.20)

v(B®) = hlirgo
is called the logarithmic norm of the operator B(¢).

The logarithmic norm of the matrix B(t) = {b;;(t)},t = 0
corresponding to a linear operator on the vector space B
equipped with £;-norm, is

y(B(1)) = sup (bjj(t) +> |bij(t)|>a t>0. (2.21)
j i#]

Let B(t) be an operator function corresponding to Eq. (2.13).
Then the logarithmic norm of the operator B(?) is related to



Queueing Syst (2006) 52: 139-151

143

the Cauchy operator V (¢, s), 0 < s <t of the system

B Bk, 150 (2.22)
— = X, > .
dt
by
Vi +h,t)]—1
y(B(t)) = lim w, t>0. (2.23)
h—>+0 h

From the latter one can deduce the following bounds on the
B-norm of the Cauchy operator V(¢,5),0 <s < 1t:

e~ LB iy )| < el VEONT g < g <4,

(2.24)
Moreover, for any solution x(¢) € B, ¢ > 0 of (2.22) we have

Ix(t)]| = e~ VB ATy (2.25)

We will also make use of the fact that if B is a vector space
with norm ¢, and all diagonal elements of B are non-negative
then, by (2.21)

y(B() =sup ) _by(), 1=0,
J i

and, a fortiori, for any solution x(¢), t > 0 of (2.22), s.t.
x(s) > 0, we have

Ix(r)]| > el X bi® dTxce)), 0 <5 <t

(2.26)

If B is endowed with norm £, p, from (2.24) we have that

IV s)lhp < eXp{/ J/(B(T))zmdf} (2.27)

and, by (2.26)
y (B, = y(DBMOD™") = —infoy(t) = —a(r). (228)

In view of (2.26) and having in mind (2.28) we obtain the
following inequality

Ip® - p®Pm],,

< e_fxra(u)du “p(l)(s) _

p?©)],, 0<s<t

(2.29)
for all p?'(s) € £,p, i =1, 2. Now, periodicity of () and

estimate (2.29) imply the exponential stability of Eq. (2.14)
and the existence of a 1-periodic solution of this equation

q(#) € £,p. Hence, the respective 7(t) = (I*Z(i‘(zt‘)q"(’)) €lip

represents the limiting 1-periodic regime of X (¢), where X (¢)
is the BDP considered.
Let ¢ be the space of sequences

bip = {z = (p1. p2. - )t lzlhe =Y nipal< oo}.
(2.30)

We have for any vector z = (py, p2,...)" €lip the fol-

lowing bound:

lelle =3 nlpal =) 2

dur|pal < @Y dui|pal

n>1 n>1 n>1
=o' ) di| D pi= D p
n>1 i>n i>n+1
Ew—lzdn_l( S+ T p,-)
n>1 i>n i>n+1
<207 ) d| ) pi| < 207 zllip. (2.31)
n>0 i>n

Therefore, as q(t) € £1p, there exists the limit 1-periodic
mean ¢(t) = Y nw,(t) < oo.

Let p(0) = (po(0), p1(0), ..., pa(0), .. )" =eo = (1,0,
0,...7, and put z(0) = (r;(0) — p;(0), ...)". Then z(0) >
0, and if v(t) = Dz(t), then one has v(0) > 0. We have that
v(t) satisfies the homogeneous differential system

d
d_: — DB()D"'v, t>0. (2.32)

All non-diagonal elements of the matrix DB (t)D~! are non-
negative for all + > 0 according to (2.19). Then v(¢) > 0 for
allt > 0.

Therefore, Zi>k z;(t) > 0 for any ¢ > 0 and any k. Now,
the following estimate holds:

k odk

lzll1 o =de Y opi= Zzp,

k=0 i>k+1

Zk 0 dy
> inf ;hp n= Wizl (233)
Then, by (2.29) and (2.33) we obtain
|E{X(1)|X(0) = 0} — ¢(1)]
< llz®)lhe < W' lw@) — pOllip = W z0)lp
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<W lexp ( - / Ot(S)dS) 120)[l1p
0

= Wlexp( —fo Ol(S)dS> [7(0) —pO)lip.  (2.34)

By writing

t L] t
/ a(s)ds =/ a(s)ds—i—/ a(s)ds (by periodicity)
0 0 L]

13

1 t
= LIJ/ oz(s)ds—l—/ a(s)ds
0 lt]

= |t]a® +/ a(s)ds =a™(t —t + |1])
7]

+ / a(s)ds (2.35)
L]

we get

t
/ a(s)ds — a’t
0

<a*|t —|t]|+ sup

zi|t—z|<1

1]

t
/ als)ds —a*(t — Ltj)‘
L
1
f a(s)ds < My + o*. (2.36)
Z
From the above inequality we have

t
—a* — My +a't < / a(s)ds < o™t + o™ + My,
0
and

t
—/ a(s)ds < —ao™t + a* + M.
0

We have finally the inequality

t
exp (—/ oe(s)ds) < e YT tMo — ppe—at, (2.37)
0

By taking into account that p(0) = (1,0, 0, .. )T and the
form of the 1 D-norm, where only elements of index equal or
larger than 1 appear, we have that

[7(0) = pO)llip = I (O)llip < limsup [|7(@)]l1p. (2.38)

=00

Moreover, by (2.15) we can write
lxOllip = la®llip < IV (E, 0) - q(O0)]l1p

+

/ Vi, of(t)dt
0

1D
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< 19Ol V(. 0)lhp
t

+ / IDEOIL IV DlhpdT by 227)
0

< I O)llpels 7 Vand

! 't
+ dpavy / el YBWhpduge by (2.28)
0

A

t
1O pe 5“4 4 doavy / e et
0

t
< Me™ ||z (0)]l1p + Mavy / e 0,
0
(2.39)
because of (2.37).
Passing to the limit as # — oo we get
. Mavo
limsup [|7(®)[lip < (2.40)
t—>00 o*

Finally using (2.34), (2.37), (2.38) and (2.40), we obtain
(2.11).

We now consider the family of truncated BDPs Xy =
Xn(t), t >0 on the state space Ey ={0,1,2,..., N},
where birth rates are A, (¢), n € Ey_; and death rates u,(t),
n € Ey (and with intensity matrix Ay).

The truncated process has the vector of probabilities gov-
erned by the forward Kolmogorov differential system

d
PN _ An(@)pn.

. (2.41)

We will identify below the finite vector with entries
(ay, ...,ay) and the infinite vector with the same first N
coordinates and the others equal to zero. The same identifi-
cation will be assumed also for the rate matrix Ay .

Theorem 2. Assume there exists a sequence {d;} such that
o > 0. Then forany t > 0

[E{X()|X(0) = 0} — E{Xn()|Xn(0) = O}
- 3tMavo(La + Mb)

) 2.42
< oo (2.42)
where
) ZI-{_OdNAH
Wy = inf ==——— 2.43
N /gzlo N +k ( )
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Proof: Write the system (2.3) in the form and
d Un(A—A
P = ANOP+ (AW — Ay 244y ~ Un(A-Avp
upn(—AN PN + UN+1PN+1)
Then UM (—=AN PN + UN+1PN+1)
t =
p(?) = Un(z, 0)p(0) +/ Un(t, T)(A(T) Uy (=AN PN + AN+1PN+1)
0
A — (A
— Ay(r)p(r)dr. (2.45) NPN = N1+ UN+ 1PN+ UN2PNA2
Hence (2.50)
[E{X(1)|X(0) =0} — E{Xn()|Xn(0) = 0} Inequalities ufy(t, 7) > 0 for all i, j, f, T and equalities
! > ulN(t, 7) = 1 for all j, t, T imply the bound
= [lp(®) —pnDlhe = f IUn(z, T)(A(T) !
0
—Apn(T T dr. 2.46
wENRE iz @40 U = Awpllig = I=Awpw + i paarl Yl
n<N
‘We have that
+ Z(k + DIAg pr — (A1 + Mks1) Pt 1+ kg2 Prs2 |
k=N
ul .uly 0 O B
?\? ?\,N < (Lapy + Mbpy1)
u .. u 0 0
10 IN N1 ' N
x(Z(k—(k+ D)y uly +NZuf\1’V>
Uy=|uly . . uky 0 0 -], (2.47) k=0 i=0 i=0
o . . 0 1 0 + > (k4 D(La(pe + pis1)
0 k>N
+MbB(pis1 + prs2))
< La(Npy + (N + D(py + pn+1) + (N 4+ 2)(pn41
and +pns2) + )+ MB(Npy 11 + (N + D(py-
-0 Wi 0 --- 0 0o 0 --- +pn2) + (N +2)(pyi2 + pyy3) +-+0) <
M —Ai4m) gp - 00 0 - < (La+ Mb) > (2k + p < 3(La+ Mb) Y kpy.
k>N k>N
2.51)
Ay =
0 0 0 -+ Ayt —pty O -
By (2.39) (with 7 (¢) replaced by z(¢)) and assuming that
0 0 e 0 0
z(0) = 0 we get
Mal)o
(2.48) lzH)llip < e (2.52)
Then On the other hand,

(A—Ayp=0Q,...,0, =Aypy + UN+1PN+1; ANDN
—(AN41 + UNADPN+ + N2 PN42s )
(2.49)

dv_1(py + pns1+ .. ) +Hdv(PNs1 + P2+ )+
= pydn_1 + pyy1(dy_1 +dn) + prny2(dy-1
+dy +dyi) + -
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dy_1 dy_1 +dy
= N — (N +1
N PN+ Nl (N + Dpn1
4> Wy Z kpr (2.53)
k>N
Then
kak < wy' de—l (ZPi) < Wy'lzlho
k>N k>N i~k
Mavy
< —. 2.54
= Wya (2.54)

Finally from (2.46), (2.51), (2.52) and (2.54) we obtain
(2.42). O

As a consequence of Theorem 1 and Theorem 2 we obtain
the following statement.

Corollary 1. Let {d;} be a sequence such that o® > 0. Then
foranyt >0

Mzavo —a*t
lp(r) — E{Xn()|X(0) =0.}] < Vo €
o
+3tMav0(La + Mb). (2.55)
WNO[*

Remark 1. Here the first expression of the right-hand side
of (2.55) tends to zero as t — oo, and the second expres-
sion tends to zero as N — oo (for any fixed ¢, provided that
Wy — 0o as N — oo). Hence, Theorem 2 gives us a tool
for calculating the limiting mean, as shown in the examples
below.

Let now introduce the following important characteristic
of the nonhomogeneous BDP.

Definition 2. The double mean of the BDP X = X(¢), t > 0
is defined by

E = lim ; E{Xu)|X(0) = k} du, (2.56)
11— 00 0

provided that the limit exists and does not depend on k.

Theorem 3. Let {d;} be a sequence such that «* > 0 and

assume also that infy>, dkk—’l = w > 0. Then the double mean

of the BDP X exists and the following inequalities hold:

1+1 M2 .
E—/ E{X@)|X(0) = 0} du| < ~ 0ot (2.57)
t

@ Springer

and
2
M avy e_a*t

t+1
E - f E{Xn ()| Xn(0) = 0} du| <
: Wa*

n 3(t + DMavo(La + Mb)
W/\/Oﬁ‘< ’

(2.58)

Proof: The existence of the double mean follows from
Theorem 1 which gives the bound

zavo

< .
W *2

l t
‘;/0 (E{X(u)|X(0) = 0} — ¢p(u)) du (2.59)

Convergence to zero of (2.59) and 1-periodicity of ¢, im-
ply that

' 1
E = lim l/ o(u)du =/ o) du. (2.60)
t—00 0 0
By applying again Theorem 1, we obtain
t+1 t+1
E- [ Exwix©=0di|=| [ @w
t t
Mzal)() —att
—E{XW)|X0)=0Hdu| < ———e*". (2.61)
o
Corollary 1 gives (2.58):
1+1
E - / E{Xnu)|Xn(0) =0}du
t
1+1
= / (p(u) — E{Xn(u)|Xn(0) = 0}) du
t
M?avy .,  3(t + DMavy(La + Mb)
“ . (262
= Wa* ¢ + Wya* (2.62)
O

Remark 2. If the basic functions a(t), b(t) are T-periodic
with T # 1, then all the bounds of the theorems above must
be changed according to

of = — a(t)dt,
T Jo

_ _My+a*T
M =™ ,

t
My = sup /a(u)du,
lt—s|<T Js
(2.63)

in place of (2.11).
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3. Some examples

We consider the simplest nonhomogeneous queueing sys-
tems, with periodic rates.

We show how the limiting mean length of the queue (a pe-
riodic function of time ¢) is obtained. The same construction
for the double mean is also presented.

In our examples we choose some values of the period
T corresponding to different situations: the case 7 =1 is
related to the standard situation examined above, the case
of a short period T = 0.01 corresponds to rapidly vary-
ing processes and the case of a long period (T = 100)
approximates the situation where the intensity of arrivals
of customers and the duration of services significantly
differ.

It is interesting to remark that the behaviour of the
limiting averages in the models M(¢)/M(t)/1 and M(t)/
M(t)/2 is simpler for small and intermediate values of the
period.

In these cases only negligible oscillations of the mean
values are perceived during the period.

For large values of T in the arrival and service rates the
oscillations in the limiting mean values are instead extremely
significant.

The choice of the weights d; considerably influences the
different estimates of the speed of convergence.

The optimal choice of the sequence {d;} in the general case
is a difficult problem which will be examined in a separate
paper.

The program used for the calculation of the limiting aver-
ages and the limiting mean was written in Delphi 6, while the
calculations have been carried out with a processor Celeron
2400.

Example 1. (Queue-length process for the M(t)/M(t)/1
queue). We present different examples of periodic func-

Fig. 1 E{Xy(®)|Xy(0) =0},
for t € [24, 25].

wit)

tions a(t) and b(t). () a(t) =1+ sin 2xt and b(t) =
4+ 2cos 2nt (period T =1). We have v, =1, =1,
L=M=1 and a=2, b=6. Set d, =2, k>0.
Then a(r) = 1 — sin 277 + cos 21, o* = [} a(t)dt =1,
Mo =sup,_-; [l a)du =1+ and M = M+
Yid

e*7 < 10. Moreover, W = inf, £20% =1 and Wy =
. 1_:0 ON=1+i oN-1
infi-0 N = N

Hence by Theorem 1, Theorem 2 and Corollary 1, we have
that

|E{X(1)|X(0) = 0} — ¢(r)| <200e~"

480N
|E{X()|X(0) = 0} — E{Xx(1)]|Xy(0) = 0}] < ZN_J

and

480Nt

lp(t) — E{Xn ()| Xn(0) = 0}| <200e™" + SN

Theorem 3 implies that |E — [ E{X(u)|X(0) = 0} du| <
200¢~!, and |E — ff“ E{Xyw)|Xy(0)=0}du| <200
ot 4 ABONG+D)
oN-1 .

For t =24, N =50, the above inequality writes |E —
0.38305460| < 1073.

In figure 1 the mean E{X y(#)| X y(0) = 0} when ¢ ranges
from 24 to 25 is drawn.
@ii) a(t) = 1+ sin 200rt, b(t) = 4 4+ 2 cos 2007t (period
T=001).v,=n,=1=L=M,a=2 and b =6. For
diy =2, k > 0,0(t) = 1 — sin 20077 + 2 cos 2007 t; a* =

0.01

100 [ a(t)dt = 1, My = SUP) /<0 01 [ a@u)du = 0.01
and M = eMotTe" — 002455 [ 1. W = inf,

Z:c:oz/v—lﬁ _ oN-1
N+k - N °

1
+k2(1)07'r
g, .
Z’:T“ = 1 and Wy = infy>¢

06

0,56

0,52

0,48

0,44

04

0,36

0,32

0,28

0,24
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Fig. 2 E{Xy(®)|Xn(0) = 0}, wt)
for ¢ € [20,20.01].

0,336

0,3355

0,335

0,3345

0,334

03335

0,333

0,3325

0,332

03315

0,331

Hence

|E{X(1)|X(0) = 0} — ¢(1)| < 3e™"

53N
~EXn(0|Xy(©0) =0} = 271,

[E{X()|X(0) = 0}

t+0.01
E— 100/ E{Xy@)|Xn(0) = 0}du| <3e”"
t

S3N(t+ 1)
N1

Then, for t = 20, N = 45, we have that
|E —0.33354528] < 1078

In figure 2 the mean E{X y(¢)| X y(0) = 0}, for ¢ belonging
to the interval [20, 20.01] is pictured.

Fig.3 E{Xy(®)|Xy(0) =0}, W)
for t € [455, 555].

t
20 20,001 20002 20003 20,004 20,005 20006 20007 20,008 20,009 20,01

(i)  a(®)=145sin 0.027t, b(t) =4+ 2cos 0.027¢.
With the same choice for {d;} we get the estimates
|E{X(1)|X(0) = 0} — ¢p(t)| <227, |E{X(1)|X(0) = 0}
— E{Xy()|Xy(0) = 0}] < BN and |E—0.01 [
E{XN(u)IXN(O) — 0} du| < 2e4327t + 48-6216N(f+1).

ZN—]
Fort =455, N = 365, the above yields

|E — 0.60725144| < 1078,

Figure 3 represents the mean E{Xy(#)|Xy(0) = 0} for
t € [455, 555].

Example 2. (Queue-length process for the M(¢)/M(t)/2
queue). We consider now the same periodic functions of Ex-
ample 1.

(i) a(t) =1+4sin 2wt, b(t) =4+ 2cos 2wt (1l-periodic
functions). In this case we have v, = =1 > 1), n, =

18

16

14

12

08 \

06 \

04 \

02 N

4335 465
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Fig.4 E{Xy@®)|Xn(0) =0}, o) 4

fort € [11, 12].

1 14

2 m=>2), hence L=1, M=2 and a=2, b=6. If
di = 2%, k > 0, then a(¢) = 3 — sin 27t + 2 cos 27t, a* =
Jy aydt =3, My = sup;,_ <, [/ au)du =3+ 5=, M =

k—1
eMta’ — o6+3 < 500, W = inf} Z’:Tod =1 and Wy =

. Zl_f: ON=I+i oN-1
infyzo =5 — = TF

we have that

. Hence by the results proved above

|E{X(1)]X(0) = 0} — ¢(1)| <2-10%™™

3. 10*Nt
[E{X(1IX(0) = 0} — E{Xn()IXn(0) = O}] < ——5—,

3-10*N
lp(t) — E{Xn()IXn(0) =0} <2-10% + 40N 2t’

and, by Theorem 3

t+1
E-— / E{Xu)|X(©0)=0}du| <2-10°¢~,
t

t+1
E —f E{XyW)|Xn(0)=0}du| <2-10°e
t

3-10°N(t + 1)
4.2N-2

Put r =11, N =54. The last bound then becomes
|E —0.29456925| <1078, In figure 4 the function
E{XxN()|Xyn(0) = 0} for ¢ inside [11, 12] is drawn.

(ii) a(t) =1+ sin 200z, b(t) =4+ 2cos 200rt. Then
vi=m=1m=>1),n=2m=>2),L=1, M=2, a=
2, b=6. For d, =2, k> 1, we obtain the following
bounds

|E{X()IX(0) = 0} — ¢(1)] < 6e™,

72N
|E{X ()] X(0) = 0} — E{Xn()|Xn(0) =0}| = ZN—_II

12 M3 M4 M5 M6 M7 M3 119

t+0.01
E-— 100/ E{Xny@)|Xn(0) =0} du| < 6e™
t

T2N(t + 1)
IN-1

Sett =7, N = 44. Then the last inequality becomes
|E —0.25434930] < 10®

Figure 5 shows the mean E{Xy(#)|Xy(0) = 0} in the in-
terval [7, 7.01].
(iii)a(t) = 1 + sin 0.027¢,b(t) = 4 4+ 2 cos 0.027¢ (period
T = 100). In this case we obtain (for the same sequence
di = 2F) the bounds:

|E{X(1)|X(0) = 0} — p(1)] < '#*7,
|E{X(1)|X(0) = 0} — E{Xn()|Xn(0) = 0}]
- 40Nt 010

= 2N71 ’

14100
E —0.01 / E{Xy@)|Xn(0)=0}du| < 12323
t

40N(t + 1)e®1°
N-1 >

which, for t = 418 and N = 945 yields

|E — 0.31032003| < 1078,
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Fig. 5 E{Xn(t)|Xn(0) =0}, )
fort € [7,7.01]. 0257
0,2565
0,256
0,2555 P
0,255 / \
0,2545
0,254 / \
0,2535 / \
0,253
\"‘-H_;—"
0,2525
0,252
' 7 7001 7002 7003 7004 7005 7006 7007 7008 7009 7Od
Fig. 6 E{Xy([®)I|Xy(0) =0}, ot 4
for 7 € [418, 518].
03
0,51
I
0,72 /
0,63 e \
/1
0,54 / \
n4s |/ \
yd
0,36 \ /
0,27 ‘\ /
0,18 \ //’
0,09 AN [
[ -
0 Tt

418 428 438

The function E{X y(#)| X y(0) = 0}, fort € [418, 518], is
represented in figure 6.
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