On the rod placement theorem of Rybko and Shlosman ${ }^{1}$

Venkat Anantharam ${ }^{2}$

EECS Department
University of California
Berkeley, CA 94720, U.S.A.
ananth@eecs.berkeley.edu
1-510-643-8435(O)
1-510-642-2845(fax)
Short title: Rod placement theorem
Keywords: FCFS queue, FIFO queue, rod placement, symmetric group.

Abstract

Given $n-1$ points $x_{1} \leq x_{2} \leq \ldots \leq x_{n-1}$ on the real line and a set of n rods of strictly positive lengths $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$, we get to choose an n-th point x_{n} anywhere on the real line and to assign the rods to the points according to an arbitrary permutation π. The $\operatorname{rod} \lambda_{\pi(k)}$ is thought of as the workload brought in by a customer arriving at time x_{k} into a first in -first out queue which starts empty at $-\infty$. If any x_{i} equals x_{j} for $i<j$, service is provided to the rod assigned to x_{i} before the rod assigned to x_{j}.

Let $Y_{\pi}\left(x_{n}\right)$ denote the set of departure times of the customers (rods). Let $N_{\pi}\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)$ denote the number of choices for the location of x_{n} for which $0 \in Y_{\pi}\left(x_{n}\right)$. Rybko and Shlosman proved that $$
\sum_{\pi} N_{\pi}\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)=n!
$$ for Lebesgue almost all $\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)$. Let $y_{\pi, k}\left(x_{n}\right)$ denote the departure point of the $\operatorname{rod} \lambda_{k}$. Let $N_{\pi, k}(y)$ denote the number of choices for the location of x_{n} for which $y_{\pi, k}\left(x_{n}\right)=$ y and let $N_{k}(y)=\sum_{\pi} N_{\pi, k}(y)$. In this paper we prove that for every $\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)$ and every k we have $N_{k}(y)=(n-1)$! for all but finitely many y. This implies (and strengthens) the rod placement theorem of Rybko and Shlosman.

^[${ }^{1}$ Version of 17 May 2005 ${ }^{2}$ Research supported by ONR MURI N00014-1-0637, NSF ECS-0123512, Marvell Semiconductor, and the University of California MICRO program.]

Discussion

In this paper we prove a result which implies (and strengthens) the rod placement theorem of Rybko and Shlosman ([2]). For the basic facts we use from the theory of queues see, for instance, Asmussen ([1]).

Theorem:

Given $n-1$ points $x_{1} \leq x_{2} \leq \ldots \leq x_{n-1}$ on the real line and a set of n rods of strictly positive lengths $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$, we get to choose an n-th point x_{n} anywhere on the real line and to assign the rods to the points according to an arbitrary permutation π. The $\operatorname{rod} \lambda_{\pi(k)}$ is thought of as the workload brought in by a customer arriving at time x_{k} into a first in -first out (FIFO) queue which starts empty at $-\infty$. If any x_{i} equals x_{j} for $i<j$, service is provided to the rod assigned to x_{i} before the rod assigned to x_{j}.

Let $y_{\pi, k}\left(x_{n}\right)$ denote the departure point of the $\operatorname{rod} \lambda_{k}$. Let $N_{\pi, k}(y)$ denote the number of choices for the location of x_{n} for which $y_{\pi, k}\left(x_{n}\right)=y$ and let $N_{k}(y)=\sum_{\pi} N_{\pi, k}(y)$. Then for every $\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)$ and every k we have $N_{k}(y)=(n-1)$! for all but finitely many y.

Remark:

Let $N_{\pi}\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)$ denote the number of choices for the location of x_{n} for which $0 \in Y_{\pi}\left(x_{n}\right)=\left\{y_{\pi, 1}\left(x_{n}\right), \ldots, y_{\pi, n}\left(x_{n}\right)\right\}$. Rybko and Shlosman ([2]) proved that

$$
\sum_{\pi} N_{\pi}\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)=n!
$$

for Lebesgue almost all $\left(x_{1}, \ldots, x_{n-1}, \lambda_{1}, \ldots, \lambda_{n}\right)$. To derive this from the theorem, since $0 \notin B$ for Lebesgue almost all ($x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}$), we have

$$
N_{\pi}\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)=\sum_{k=1}^{n} N_{\pi, k}(0)
$$

and so

$$
\sum_{\pi} N_{\pi}\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)=\sum_{k=1}^{n} N_{k}(0)=n!
$$

Proof of the theorem :

Call $\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ the rigid points and x_{n} the free point. Define a finite set $B=B\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)$ of "bad" points as follows: for a rigid point x_{i} and a subset $\Sigma \subseteq\{1, \ldots n\}$, consider the point $x_{i}+\sum_{k \in \Sigma} \lambda_{k} ; B$ is comprised of all such points, as i ranges over $1 \leq i \leq n-1$ and Σ ranges over the subsets of $\{1, \ldots, n\}^{3}$. The theorem will be shown to apply to all $y \notin B$.

We prove the theorem by induction on n. Start with $n=1$. There are no rigid points, so $B=B\left(; \lambda_{1}\right)$ is empty. For every y there is exactly one choice for the free point, namely $y-\lambda_{1}$, such that the rod λ_{1}, which must necessarily be assigned to the free point, departs at y.

To propagate the induction, suppose the theorem has been proved for all configurations of $m-1$ rigid points and m positive rod lengths for all $1 \leq m \leq n-1$. We will now prove the theorem for ($x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}$).

Let $y \notin B$. We first claim that it suffices to consider $y>x_{n-1}$. Indeed, if $y<x_{1}$ then $y_{\pi, k}=y$ iff we set $x_{n}=y-\lambda_{k}$ and the permutation π assigns $\operatorname{rod} \lambda_{k}$ to x_{n} and the other $n-1$ rods to the rigid points in some order, and there are exactly $(n-1)$! ways of doing this. Also, if $x_{m}<y<x_{m+1}$ for some $1 \leq m \leq n-2$, for each of the $(n-1)(n-2) \ldots(m+1)$ ways of assigning $n-m-1$ of the rods other than λ_{k} to the rigid points $x_{m+1} \leq \ldots \leq x_{n-1}$, by inductive hypothesis there are exactly m ! choices for the location of the free point and assignments of the remaining rods to the remaining points (the free point and the remaining rigid points) which result in rod λ_{k} departing at time y^{4}, so the claim is proved.

Consider now $y \notin B$ with $y>x_{n-1}$. For $l \neq k$, consider the configuration $\left(x_{1}, \ldots, x_{n-2} ; \lambda_{1}, \ldots, \lambda_{l-1}, \lambda_{l+1}, \ldots, \lambda_{n}\right)$. By inductive hypothesis there are exactly ($n-2$)! choices for the location of the free point, which we will denote x_{F}, and for the assignment of rods other than λ_{l} to x_{F} and the points $x_{1} \leq \ldots \leq x_{n-2}$, which assignment we will denote by η, such that rod λ_{k} departs at y.

For such x_{F} and η, suppose the $\operatorname{rod} \lambda_{k}$ was assigned to one of the rigid points $x_{i}, 1 \leq i \leq n-2$, under η. Then the busy cycle of the FIFO queue that was in effect at time x_{i} continues to be in effect throughout the interval $\left(x_{i}, y\right)$, which includes x_{n-1}. Thus, in the original problem $\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)$,

[^1]choosing $x_{n}=x_{F}$ and assigning rods to points according to π which extends η by assigning rod λ_{l} to x_{n-1}, will also have rod λ_{k} departing at time y.

Next, for such x_{F} and η, suppose the rod λ_{k} was assigned to x_{F} and had to wait before beginning service. Then there must be some $x_{i}, 1 \leq i \leq n-2$, which initiated the busy cycle in which the $\operatorname{rod} \lambda_{k}$, which arrives at x_{F}, begins waiting. This would then mean that $y \in B$, which we have explicitly disallowed. Thus this case cannot occur.

It remains to consider those choices of x_{F} and η for which the rod λ_{k} was assigned to x_{F} and began to be served immediately on arrival at time x_{F}. This means $x_{F}=y-\lambda_{k}$.

In such a case, suppose $x_{F}<x_{n-1}$. Then x_{n-1} arrives during the service period $\left(x_{F}, x_{F}+\lambda_{k}=y\right)$ of $\operatorname{rod} \lambda_{k}$. Once again, in the original problem $\left(x_{1}, \ldots, x_{n-1} ; \lambda_{1}, \ldots, \lambda_{n}\right)$, choosing $x_{n}=x_{F}$ and assigning rods to points according to π which extends η by assigning $\operatorname{rod} \lambda_{l}$ to x_{n-1}, will have rod λ_{k} departing at time y.

Next, suppose $x_{F}>x_{n-1}$. Let z denote the end of the most recent busy cycle before x_{F}. If $\left(z \vee x_{n-1}\right)+\lambda_{l}<x_{F}$ the choice, in the original problem, of $x_{n}=x_{F}$ and the assignment of rods to points by π which extends η by assigning rod λ_{l} to x_{n-1} will again have rod λ_{k} departing at time y, because the service of $\operatorname{rod} \lambda_{l}$ will begin at $z \vee x_{n-1}$ and be completed before x_{F}. Note that this case can occur only if x_{F} and η are such that

$$
y>\left(z \vee x_{n-1}\right)+\lambda_{l}+\lambda_{k}
$$

We are finally left with one case for x_{F} and η : the $\operatorname{rod} \lambda_{k}$ was assigned to x_{F} under η, began service immediately on arrival, and

$$
\left(z \vee x_{n-1}\right)<x_{F}<\left(z \vee x_{n-1}\right)+\lambda_{l}
$$

where z denotes the end of the most recent busy cycle before x_{F}. Note that $x_{F}=y-\lambda_{k}$ in this case. Also note that this case can occur only if x_{F} and η are such that

$$
y<\left(z \vee x_{n-1}\right)+\lambda_{l}+\lambda_{k}
$$

Thus, for any y either this case or the preceding case occurs, but not both.
In this case, in the original problem, we assign the rods to points according to π which equals η for all rods other than λ_{k} and λ_{l}, and assigns λ_{k} to x_{n-1}
and λ_{l} to the free point. Note that

$$
\begin{aligned}
\left(z \vee x_{n-1}\right)+\lambda_{k} & <y \text { and } \\
y-\left[\left(z \vee x_{n-1}\right)+\lambda_{k}\right] & <\lambda_{l} .
\end{aligned}
$$

We place the free point, in the original problem, at the point $x_{n}<x_{n-1}$ such that

$$
I\left(x_{n}, x_{n-1}\right)+y-\left[\left(z \vee x_{n-1}\right)+\lambda_{k}\right]=\lambda_{l}
$$

where $I\left(x_{n}, x_{n-1}\right)$ denotes the total idle time of the FIFO queue associated to x_{F} and η over the interval $\left(x_{n}, x_{n-1}\right)$. With this choice of free point x_{n} and assignment π in the original problem, the rod λ_{k} departs at y.

We have now shown that, in the original problem, for each $l \neq k$ there are at least $(n-2)$! choices for x_{n} and an assignment π of rods to points such that rod λ_{k} departs at time y and either (1-l) x_{n-1} is assigned $\operatorname{rod} \lambda_{l}$ or (2-l) x_{n-1} is assigned $\operatorname{rod} \lambda_{k}$ and x_{n} is assigned rod λ_{l}. We will now prove that for each $l \neq k$ there are exactly $(n-2)$! choices for x_{n} and an assignment π of rods to points such that " $(1-1)$ or $(2-1)$ and rod λ_{k} departs at time y " holds. Since the assignments satisfying "(1-l) or (2-l)" are disjoint as l ranges over $l \neq k$ and cover all possible assignments, this would complete the inductive step and the proof of the theorem.

Fix $l \neq k$ and a choice of x_{n} and an assignment π of rods to points such that " $(1-1)$ or (2-1) and rod λ_{k} departs at time y " holds. We show that each such x_{n} and π corresponds to a distinct choice of free point, which we denote x_{F}, and assignment, which we denote η, in the configuration $\left(x_{1}, \ldots, x_{n-2} ; \lambda_{1}, \ldots, \lambda_{l-1}, \lambda_{l+1}, \ldots, \lambda_{n}\right)$, which we call the reduced configuration, such that rod λ_{k} departs at time y in the reduced configuration. By the inductive hypothesis it would follow that there at most $(n-2)$! such assignments, which would complete the proof of the theorem.

Suppose x_{n} and π are such that (1-l) holds and rod λ_{k} departs at time y in the original configuration. If π assigns rod λ_{k} to one of the original rigid points $x_{i}, 1 \leq i \leq n-2$, the busy cycle containing x_{i} must last through the interval $\left(x_{i}, y\right)$, which contains x_{n-1}, so in the reduced configuration we could take $x_{F}=x_{n}$ and η to be the restriction of π that ignores the assignment of $\operatorname{rod} \lambda_{l}$ to x_{n-1}, and we would then have rod λ_{k} departing at time y in the reduced configuration.

Suppose x_{n} and π are such that (1-1) holds and rod λ_{k} departs at time y in the original configuration. If π assigns $\operatorname{rod} \lambda_{k}$ to x_{n}, it must be the
case that $\operatorname{rod} \lambda_{k}$ does not have to wait before beginning service. Indeed, if it did have to wait before beginning service, this would have been because it arrived in some busy cycle which was initiated by some one of the rigid points $x_{i}, 1 \leq i \leq n-1$, but that would then mean that $y \in B$, which we have explicitly disallowed. Thus, we have $x_{n}=y-\lambda_{k}$. This then means that in the reduced configuration we could take $x_{F}=x_{n}$ and η to be the restriction of π that ignores the assignment of $\operatorname{rod} \lambda_{l}$ to x_{n-1}, and we would then have $\operatorname{rod} \lambda_{k}$ departing at time y in the reduced configuration.

Note that there are two ways in which the case just discussed could have occured in the original configuration : either (a) $x_{n}<x_{n-1}$ or (b) $x_{n}>x_{n-1}$. In the former case our choice of x_{F} and η results in $x_{F}<x_{n-1}$. In the latter case, the fact that the $\operatorname{rod} \lambda_{k}$, which was assigned to x_{n}, does not have to wait before beginning service means that

$$
x_{n}>x_{n-1}+\lambda_{l}
$$

and also

$$
x_{n}>z+\lambda_{l}
$$

where z denotes the departure time of the rod assigned to x_{n-2}. Recall that $x_{n}=y-\lambda_{k}$. Thus, this case can only occur if we had

$$
y>\left(z \vee x_{n-1}\right)+\lambda_{k}+\lambda_{l}
$$

Also note that z can be computed based purely on the restriction of the assignment π (or equivalently η) to the rigid points $x_{i}, 1 \leq i \leq n-2$.

Finally, suppose x_{n} and π are such that (2-l) holds and rod λ_{k} departs at time y in the original configuration. Then, because rod λ_{k} begins service at $y-\lambda_{k}$ and $y \notin B$, it must be the case that x_{n-1} lies in a busy cycle initiated by x_{n}. In the reduced configuration consider the assignment η that assigns rods to the rigid points $x_{i}, 1 \leq i \leq n-2$, exactly as π does, and assigns rod λ_{k} to the free point $x_{F}=y-\lambda_{k}$. We then have rod λ_{k} departing at time y in the reduced configuration.

The choice of x_{F} and η we have created from x_{n} and π in this case is identical to that in sub-case (b) of the preceding case. However, recall that this case could only have occured if x_{n-1} lies in the busy cycle initiated by x_{n}. Let z denote the departure time of the rod assigned to x_{n-2} when one considers only the rods assigned to the rigid points $x_{i}, 1 \leq i \leq n-2$,
according to the restriction of the assignment π (or equivalently η). The work remaining in the system at time x_{n-1} in the original configuration is then strictly less than $\left(z \vee x_{n-1}\right)-x_{n-1}+\lambda_{l}$. It follows that

$$
y-\lambda_{k}-x_{n-1}<\left(z \vee x_{n-1}\right)-x_{n-1}+\lambda_{l},
$$

which is to say that

$$
y<\left(z \vee x_{n-1}\right)+\lambda_{k}+\lambda_{l} .
$$

Thus, this case cannot occur for the same values of y for which sub-case (b) of the preceding case occurs. This completes the proof of the theorem.

References

[1] S. Asmussen, Applied Probability and Queues, John Wiley and Sons, 1987.
[2] A. Rybko and S. Shlosman, Poisson hypothesis for information networks. I : Domain of validity, Math Arxiv, paper No. math PR/0406110.

[^1]: ${ }^{3}$ While it is not really necessary to include $\Sigma=\emptyset$ in the definition of B, it is convenient to not allow y in the theorem to be one of the rigid points.
 ${ }^{4}$ The bad set for the configuration of the remaining rigid points and the remaining rod lengths is contained in the original bad set B.

