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Abstract

Given n − 1 points x1 ≤ x2 ≤ . . . ≤ xn−1 on the real line and a set of
n rods of strictly positive lengths λ1 ≤ λ2 ≤ . . . ≤ λn, we get to choose an
n-th point xn anywhere on the real line and to assign the rods to the points
according to an arbitrary permutation π. The rod λπ(k) is thought of as the
workload brought in by a customer arriving at time xk into a first in -first
out queue which starts empty at −∞. If any xi equals xj for i < j, service
is provided to the rod assigned to xi before the rod assigned to xj.

Let Yπ(xn) denote the set of departure times of the customers (rods). Let
Nπ(x1, . . . , xn−1; λ1, . . . , λn) denote the number of choices for the location of
xn for which 0 ∈ Yπ(xn). Rybko and Shlosman proved that

∑

π

Nπ(x1, . . . , xn−1; λ1, . . . , λn) = n!

for Lebesgue almost all (x1, . . . , xn−1; λ1, . . . , λn).
Let yπ,k(xn) denote the departure point of the rod λk. Let Nπ,k(y) de-

note the number of choices for the location of xn for which yπ,k(xn) =
y and let Nk(y) =

∑
π Nπ,k(y). In this paper we prove that for every

(x1, . . . , xn−1; λ1, . . . , λn) and every k we have Nk(y) = (n − 1)! for all but
finitely many y. This implies (and strengthens) the rod placement theorem
of Rybko and Shlosman.
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Discussion

In this paper we prove a result which implies (and strengthens) the rod
placement theorem of Rybko and Shlosman ([2]). For the basic facts we use
from the theory of queues see, for instance, Asmussen ([1]).

Theorem :

Given n − 1 points x1 ≤ x2 ≤ . . . ≤ xn−1 on the real line and a set of n
rods of strictly positive lengths λ1 ≤ λ2 ≤ . . . ≤ λn, we get to choose an
n-th point xn anywhere on the real line and to assign the rods to the points
according to an arbitrary permutation π. The rod λπ(k) is thought of as the
workload brought in by a customer arriving at time xk into a first in -first
out (FIFO) queue which starts empty at −∞. If any xi equals xj for i < j,
service is provided to the rod assigned to xi before the rod assigned to xj .

Let yπ,k(xn) denote the departure point of the rod λk. Let Nπ,k(y) denote
the number of choices for the location of xn for which yπ,k(xn) = y and let
Nk(y) =

∑
π Nπ,k(y). Then for every (x1, . . . , xn−1; λ1, . . . , λn) and every k

we have Nk(y) = (n − 1)! for all but finitely many y.

Remark :

Let Nπ(x1, . . . , xn−1; λ1, . . . , λn) denote the number of choices for the lo-
cation of xn for which 0 ∈ Yπ(xn) = {yπ,1(xn), . . . , yπ,n(xn)}. Rybko and
Shlosman ([2]) proved that

∑

π

Nπ(x1, . . . , xn−1; λ1, . . . , λn) = n!

for Lebesgue almost all (x1, . . . , xn−1, λ1, . . . , λn). To derive this from the
theorem, since 0 /∈ B for Lebesgue almost all (x1, . . . , xn−1; λ1, . . . , λn), we
have

Nπ(x1, . . . , xn−1; λ1, . . . , λn) =
n∑

k=1

Nπ,k(0) ,

and so
∑

π

Nπ(x1, . . . , xn−1; λ1, . . . , λn) =
n∑

k=1

Nk(0) = n! .

Proof of the theorem :
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Call (x1, x2, . . . , xn−1) the rigid points and xn the free point. Define a
finite set B = B(x1, . . . , xn−1; λ1, . . . , λn) of “bad” points as follows : for a
rigid point xi and a subset Σ ⊆ {1, . . . n}, consider the point xi +

∑
k∈Σ λk; B

is comprised of all such points, as i ranges over 1 ≤ i ≤ n − 1 and Σ ranges
over the subsets of {1, . . . , n} 3. The theorem will be shown to apply to all
y /∈ B.

We prove the theorem by induction on n. Start with n = 1. There are
no rigid points, so B = B(; λ1) is empty. For every y there is exactly one
choice for the free point, namely y − λ1, such that the rod λ1, which must
necessarily be assigned to the free point, departs at y.

To propagate the induction, suppose the theorem has been proved for
all configurations of m − 1 rigid points and m positive rod lengths for all
1 ≤ m ≤ n−1. We will now prove the theorem for (x1, . . . , xn−1; λ1, . . . , λn).

Let y /∈ B. We first claim that it suffices to consider y > xn−1. Indeed,
if y < x1 then yπ,k = y iff we set xn = y − λk and the permutation π assigns
rod λk to xn and the other n − 1 rods to the rigid points in some order, and
there are exactly (n−1)! ways of doing this. Also, if xm < y < xm+1 for some
1 ≤ m ≤ n − 2, for each of the (n − 1)(n − 2) . . . (m + 1) ways of assigning
n−m−1 of the rods other than λk to the rigid points xm+1 ≤ . . . ≤ xn−1, by
inductive hypothesis there are exactly m! choices for the location of the free
point and assignments of the remaining rods to the remaining points (the
free point and the remaining rigid points) which result in rod λk departing
at time y 4, so the claim is proved.

Consider now y /∈ B with y > xn−1. For l 6= k, consider the configuration
(x1, . . . , xn−2; λ1, . . . , λl−1, λl+1, . . . , λn). By inductive hypothesis there are
exactly (n − 2)! choices for the location of the free point, which we will
denote xF , and for the assignment of rods other than λl to xF and the points
x1 ≤ . . . ≤ xn−2, which assignment we will denote by η, such that rod λk

departs at y.
For such xF and η, suppose the rod λk was assigned to one of the rigid

points xi, 1 ≤ i ≤ n−2, under η. Then the busy cycle of the FIFO queue that
was in effect at time xi continues to be in effect throughout the interval (xi, y),
which includes xn−1. Thus, in the original problem (x1, . . . , xn−1; λ1, . . . , λn),

3While it is not really necessary to include Σ = ∅ in the definition of B, it is convenient

to not allow y in the theorem to be one of the rigid points.
4The bad set for the configuration of the remaining rigid points and the remaining rod

lengths is contained in the original bad set B.
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choosing xn = xF and assigning rods to points according to π which extends
η by assigning rod λl to xn−1, will also have rod λk departing at time y.

Next, for such xF and η, suppose the rod λk was assigned to xF and had
to wait before beginning service. Then there must be some xi, 1 ≤ i ≤ n−2,
which initiated the busy cycle in which the rod λk, which arrives at xF ,
begins waiting. This would then mean that y ∈ B, which we have explicitly
disallowed. Thus this case cannot occur.

It remains to consider those choices of xF and η for which the rod λk was
assigned to xF and began to be served immediately on arrival at time xF .
This means xF = y − λk.

In such a case, suppose xF < xn−1. Then xn−1 arrives during the service
period (xF , xF + λk = y) of rod λk. Once again, in the original problem
(x1, . . . , xn−1; λ1, . . . , λn), choosing xn = xF and assigning rods to points
according to π which extends η by assigning rod λl to xn−1, will have rod λk

departing at time y.
Next, suppose xF > xn−1. Let z denote the end of the most recent busy

cycle before xF . If (z ∨ xn−1) + λl < xF the choice, in the original problem,
of xn = xF and the assignment of rods to points by π which extends η by
assigning rod λl to xn−1 will again have rod λk departing at time y, because
the service of rod λl will begin at z∨xn−1 and be completed before xF . Note
that this case can occur only if xF and η are such that

y > (z ∨ xn−1) + λl + λk .

We are finally left with one case for xF and η : the rod λk was assigned
to xF under η, began service immediately on arrival, and

(z ∨ xn−1) < xF < (z ∨ xn−1) + λl ,

where z denotes the end of the most recent busy cycle before xF . Note that
xF = y − λk in this case. Also note that this case can occur only if xF and
η are such that

y < (z ∨ xn−1) + λl + λk .

Thus, for any y either this case or the preceding case occurs, but not both.
In this case, in the original problem, we assign the rods to points according

to π which equals η for all rods other than λk and λl, and assigns λk to xn−1
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and λl to the free point. Note that

(z ∨ xn−1) + λk < y and

y − [(z ∨ xn−1) + λk] < λl .

We place the free point, in the original problem, at the point xn < xn−1 such
that

I(xn, xn−1) + y − [(z ∨ xn−1) + λk] = λl ,

where I(xn, xn−1) denotes the total idle time of the FIFO queue associated
to xF and η over the interval (xn, xn−1). With this choice of free point xn

and assignment π in the original problem, the rod λk departs at y.
We have now shown that, in the original problem, for each l 6= k there

are at least (n−2)! choices for xn and an assignment π of rods to points such
that rod λk departs at time y and either (1-l) xn−1 is assigned rod λl or (2-l)
xn−1 is assigned rod λk and xn is assigned rod λl. We will now prove that for
each l 6= k there are exactly (n − 2)! choices for xn and an assignment π of
rods to points such that “(1-l) or (2-l) and rod λk departs at time y” holds.
Since the assignments satisfying “(1-l) or (2-l)” are disjoint as l ranges over
l 6= k and cover all possible assignments, this would complete the inductive
step and the proof of the theorem.

Fix l 6= k and a choice of xn and an assignment π of rods to points
such that “(1-l) or (2-l) and rod λk departs at time y” holds. We show that
each such xn and π corresponds to a distinct choice of free point, which
we denote xF , and assignment, which we denote η, in the configuration
(x1, . . . , xn−2; λ1, . . . , λl−1, λl+1, . . . , λn), which we call the reduced configu-
ration, such that rod λk departs at time y in the reduced configuration. By
the inductive hypothesis it would follow that there at most (n − 2)! such
assignments, which would complete the proof of the theorem.

Suppose xn and π are such that (1-l) holds and rod λk departs at time y
in the original configuration. If π assigns rod λk to one of the original rigid
points xi, 1 ≤ i ≤ n − 2, the busy cycle containing xi must last through the
interval (xi, y), which contains xn−1, so in the reduced configuration we could
take xF = xn and η to be the restriction of π that ignores the assignment of
rod λl to xn−1, and we would then have rod λk departing at time y in the
reduced configuration.

Suppose xn and π are such that (1-l) holds and rod λk departs at time
y in the original configuration. If π assigns rod λk to xn, it must be the
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case that rod λk does not have to wait before beginning service. Indeed, if
it did have to wait before beginning service, this would have been because
it arrived in some busy cycle which was initiated by some one of the rigid
points xi, 1 ≤ i ≤ n − 1, but that would then mean that y ∈ B, which we
have explicitly disallowed. Thus, we have xn = y − λk. This then means
that in the reduced configuration we could take xF = xn and η to be the
restriction of π that ignores the assignment of rod λl to xn−1, and we would
then have rod λk departing at time y in the reduced configuration.

Note that there are two ways in which the case just discussed could have
occured in the original configuration : either (a) xn < xn−1 or (b) xn > xn−1.
In the former case our choice of xF and η results in xF < xn−1. In the latter
case, the fact that the rod λk, which was assigned to xn, does not have to
wait before beginning service means that

xn > xn−1 + λl

and also
xn > z + λl

where z denotes the departure time of the rod assigned to xn−2. Recall that
xn = y − λk. Thus, this case can only occur if we had

y > (z ∨ xn−1) + λk + λl .

Also note that z can be computed based purely on the restriction of the
assignment π (or equivalently η) to the rigid points xi, 1 ≤ i ≤ n − 2.

Finally, suppose xn and π are such that (2-l) holds and rod λk departs at
time y in the original configuration. Then, because rod λk begins service at
y− λk and y /∈ B, it must be the case that xn−1 lies in a busy cycle initiated
by xn. In the reduced configuration consider the assignment η that assigns
rods to the rigid points xi, 1 ≤ i ≤ n− 2, exactly as π does, and assigns rod
λk to the free point xF = y − λk. We then have rod λk departing at time y
in the reduced configuration.

The choice of xF and η we have created from xn and π in this case is
identical to that in sub-case (b) of the preceding case. However, recall that
this case could only have occured if xn−1 lies in the busy cycle initiated
by xn. Let z denote the departure time of the rod assigned to xn−2 when
one considers only the rods assigned to the rigid points xi, 1 ≤ i ≤ n − 2,
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according to the restriction of the assignment π (or equivalently η). The
work remaining in the system at time xn−1 in the original configuration is
then strictly less than (z ∨ xn−1) − xn−1 + λl. It follows that

y − λk − xn−1 < (z ∨ xn−1) − xn−1 + λl ,

which is to say that
y < (z ∨ xn−1) + λk + λl .

Thus, this case cannot occur for the same values of y for which sub-case (b)
of the preceding case occurs. This completes the proof of the theorem.
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