Skip to main content
Log in

Estimation for queues from queue length data

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider the estimation of arrival and service rates for queues based on queue length data collected at successive, not necessarily equally spaced, time points. In particular, we consider the M/M/c queue, for c large, but application of the method to the repairman problem is almost identical, and the general approach presented should extend to other queue types. The estimation procedure makes use of an Ornstein-Uhlenbeck diffusion approximation to the Markov process description of the queue. We demonstrate the approach through simulation studies and discuss situations in which the approximation works best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Acharya, On normal approximation for maximum likelihood estimation from single server queues. Queueing Systems 31 (1999) 207–216.

    Article  Google Scholar 

  2. C. Armero, Bayesian inference in Markovian queues. Queueing Systems 15 (1994) 419–426.

    Article  Google Scholar 

  3. C. Armero and M.J. Bayarri, Bayesian prediction in M/M/1 queues. Queueing Systems 15 (1994) 401–417.

    Article  Google Scholar 

  4. A.D. Barbour, On a functional central limit theorem for Markov population processes. Adv. Appl. Probab. 6 (1974) 21–39.

    Article  Google Scholar 

  5. A.D. Barbour, Quasi-stationary distributions in Markov population processes. Adv. Appl. Probab. 8 (1976) 296–314.

    Article  Google Scholar 

  6. A.D. Barbour, Equilibrium distributions Markov population processes. Adv. Appl. Probab. 12 (1980) 591–614.

    Article  Google Scholar 

  7. A.D. Barbour, Density-dependent Markov population processes. In W. Jäger, H. Rost and P. Tautu (eds.), Biological growth and spread Lecture Notes in Biomathematics (Springer, Berlin, 1980) vol. 38, pp. 36–49.

  8. I.V. Basawa and N.U. Prabhu, Large sample inference from single server queues. Queueing Systems 3 (1988) 289–304.

    Article  Google Scholar 

  9. I.V. Basawa, U.N. Bhat, and R. Lund, Maximum likelihood estimation for single server queues from waiting time data. Queueing Systems 24 (1997) 155–167.

    Article  Google Scholar 

  10. U.N. Bhat and S.S. Rao, Statistical analysis of queueing systems. Queueing Systems 1 (1987) 217–247.

    Article  Google Scholar 

  11. N.H. Bingham and S.M. Pitts, Non-parametric estimation for the M/G/∞ queue. Ann. Inst. Statist. Math. 1 (1999) 71–97.

    Article  Google Scholar 

  12. A.B. Clarke, Maximum likelihood estimates in a simple queue. Ann. Math. Statist. 28 (1957) 1036–1040.

    Google Scholar 

  13. P.D. Feigin, Maximum likelihood estimation for continuous-time stochastic processes. Adv. Appl. Probab. 8 (1976) 712–736.

    Article  Google Scholar 

  14. D.L. Iglehart, Limiting diffusion approximations for the many server queue and the repairman problem. J. Appl. Probab. 2 (1965) 429–441.

    Article  Google Scholar 

  15. T. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7 (1970) 49–58.

    Article  Google Scholar 

  16. T. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8 (1971) 344–356.

    Article  Google Scholar 

  17. D.R. McNeil and G.H. Weiss, A large population approach to estimation of parameters in Markov population models. Biometrika 64 (1977) 553–558.

    Article  Google Scholar 

  18. P.K. Pollett, On a model for interference between searching insect parasites. J. Austral. Math. Soc. Ser. B 32 (1990) 133–150.

    Article  Google Scholar 

  19. J.V. Ross, T. Taimre, and P.K. Pollett, On parameter estimation in population models. Theor. Popul. Biol. 70 (2006) 498–510.

    Article  Google Scholar 

  20. R.Y. Rubinstein and D.P. Kroese, The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning (Springer-Verlag, New York, 2004).

    Google Scholar 

  21. G.B. Rybicki, Unpublished Notes: Notes on gaussian random functions with exponential correlation functions (Ornstein-Uhlenbeck Process) from http://www.lanl.gov/DLDSTP/fast/. (1994).

  22. G.B. Rybicki and W.H. Press, A class of fast methods for processing irregularly sampled or otherwise inhomogeneous one-dimensional data. Phys. Rev. Lett. 74 (1995) 1060–1063.

    Article  Google Scholar 

  23. A.R. Ward and P.W. Glynn, A diffusion approximation for a Markovian queue with reneging. Queueing Systems 43 (2003) 103–128.

    Article  Google Scholar 

  24. A.R. Ward and P.W. Glynn, Properties of the reflected Ornstein-Uhlenbeck process. Queueing Systems 44 (2003) 109–123.

    Article  Google Scholar 

  25. A.R. Ward and P.W. Glynn, A diffusion approximation for a GI/GI/1 queue with balking or reneging. Queueing Systems 50 (2005) 371–400.

    Article  Google Scholar 

  26. R.W. Wolff, Problems of statistical inference for birth and death queueing models. Operat. Res. 13 (1965) 343–357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Ross.

Additional information

AMS Subject Classifications 60J20, 60J60, 60K25, 62M05, 62F10

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, J.V., Taimre, T. & Pollett, P.K. Estimation for queues from queue length data. Queueing Syst 55, 131–138 (2007). https://doi.org/10.1007/s11134-006-9009-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-006-9009-2

Keywords

Navigation