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cases depending on whether the GPS weights are above or below the average rate at which
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the logarithmic asymptotics, and finally we show that the decay rates of the upper and lower
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process and the fractional Brownian motion. Finally we derive the logarithmic large-buffer
asymptotics for the case where a Gaussian flow interacts with an on-off flow.
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Large buffer asymptotics
for Generalized Processor Sharing queues

with Gaussian inputs

Krzysztof Debicki and Miranda van Uitert *

Abstract
In this paper we derive large-buffer asymptotics for a two-class Generalized Processor
Sharing (GPS) model. We assume both classes to have Gaussian characteristics. We
distinguish three cases depending on whether the GPS weights are above or below the
average rate at which traffic is sent. First, we calculate exact asymptotic upper and
lower bounds, then we calculate the logarithmic asymptotics, and finally we show that
the decay rates of the upper and lower bound match. We apply our results to two special
Gaussian models: the integrated Gaussian process and the fractional Brownian motion.
Finally we derive the logarithmic large-buffer asymptotics for the case where a Gaussian

flow interacts with an on-off flow.

Key words: large-buffer asymptotics — Gaussian traffic — Generalized Processor Sharing

— communication networks — differentiated services

1 Introduction

In this paper we analyze the well-known Generalized Processor Sharing (GPS) mechanism.
GPS has received a lot of attention over the last decade, mainly due to its isolation property.
When the link capacity in a network is shared between two flows using GPS, then both classes
are offered a fixed amount of the capacity. On top of this guaranteed capacity they can enjoy
the capacity that is not needed by the other flow.

We choose to work with Gaussian processes in this paper. As both long-range dependent

and short-range dependent characteristics can be modeled through Gaussian processes, they
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provide a versatile framework for modeling a broad variety of traffic types. Moreover, the
Gaussian model arises as a limiting process when considering the superposition of many on-off
sources, see e.g. Taqqu et al. [25] and Debicki & Palmowski [8]. We also refer to Fraleigh
et al. [11] and Kilpi & Norros [12] who give arguments in favor of Gaussian models when
aggregating flows, possibly using TCP, in networks.

Until so far many authors have worked on large-buffer asymptotics for GPS. We mention
the work by Borst et al. [1, 3, 4, 27] and Kotopoulos et al. [13] who derived results for
heavy-tailed input processes, and Zhang [28, 29] who established results for light-tailed inputs.
More recently, Mannersalo & Norros [20] and Mandjes & Van Uitert [18] have considered
many-sources asymptotics for GPS with Gaussian inputs. We refer to Van Uitert [26] for a
complete overview of the work that has been done on GPS. Most recent work on GPS involves
calculating the optimal guaranteed rate [17] and many-sources delay asymptotics [16] with
Gaussian inputs. However, results for large-buffer asymptotics with Gaussian inputs have
remained unknown until this paper.

In this paper we first consider the asymptotic behavior of two Gaussian flows that share the
network capacity using GPS. We distinguish three scenarios, depending on whether one of the
flows sends on average above or below its guaranteed capacity. First calculating the exact
asymptotic upper and lower bounds, and then taking the logarithm, we obtain the decay rate
of the probability that one of the flows has a large backlog. We apply these results to two
special cases of Gaussian processes: integrated Gaussian process, see e.g. [8, 9] and fractional
Brownian motion, see for instance [22]. In the last part of this paper we derive the logarithmic
large-buffer asymptotics for the situation where a Gaussian flow interacts with an on-off flow
under the GPS discipline.

This paper is organized as follows. In Section 2 we describe the GPS mechanism in more detail,
give the necessary notation, and discuss the specific details of the input models. We present
the main results, without proof, for two Gaussian flows sharing a GPS queue in Section 3.
Important applications are discussed in Section 4. Then in Section 5 we give the proofs of
the results in Section 3. In Section 6 we derive the asymptotic behavior for a Gaussian flow

sharing a GPS queue with an on-off process.

2 Model and preliminaries

2.1 Generalized Processor Sharing

We consider a GPS server with service rate ¢, which is fed by two classes that both have their
own queue. Both classes are assigned a positive weight ¢;, ¢ = 1,2, and we assume without
loss of gemnerality that ¢; + ¢2 = 1. If both classes are backlogged, then class i is served at



rate ¢;c, which we call the guaranteed rate of class ¢. If one of the classes has no backlog then
the other class gets the excess service rate (note that a class can send traffic at a rate smaller
than its guaranteed rate and is not backlogged). We denote by Q;(t),t € R the stationary
workload process of class i at time ¢, and let @; = Q;(0). The probability of interest is

P(Q1 > u), with u — cc. (1)

Note that the analysis for @2 is completely symmetric. We denote by A;(s,t) the amount of
traffic that is put into class ¢ during the interval (s,t], with s < ¢t and s,t € R. The amount
of service that is obtained by class i in the interval (s, ] is defined by B;(s,t). The following
identity is straightforward,

Qi(t) = Qi(s) + Ai(s,t) — Bi(s,t), Vs <t, ,s,t € R (2)
Following Reich’s representation [24] we can also write

Qi(t) = sup{Ai(s,t) — Bi(s, 1)},
s<t
where the optimizing s denotes the beginning of the busy period that contains time ¢. Similar

to [18, 19], we use this result to obtain
Q1 =@1(0) = @1(0) +@2(0) — @2(0)

= sup{ A1(—s,0) + Ay(—s,0) —cs — sup {A42(—t,0) — B2(—t,0)} 7,
>0 telo,s)

with the negative of the optimizing s (respectively t) denoting the beginning of the busy period

in the total queue (respectively queue 2) containing time epoch 0. Obviously,

s>0 tel0,s)

@1(0) > sup {Al(—s, 0) + Az(—s,0) —cs — sup {A2(—t,0) — ¢2ct}} . (3)

We use the following additional notation. We denote by Q§ the stationary workload of flow ¢
served in isolation at rate ¢. For any two real functions g(-) and h(-), we use g(u) ~ h(u) to
denote

lim 9(w) =1, or equivalently, g(u) = h(u)(1+0(1)) as u — oo.
u—oo h(u)
Similarly we use 2 and < to denote an asymptotic lower respectively upper bound for v — cc.

We use < to denote equality in distribution.



2.2 Input processes

We assume the inputs of both classes to be Gaussian processes with stationary increments.
When we use the notation 7 in the remainder of this section, we mean i = 1, 2. We define p;(t —
s) := [E[A; (s, t)] to be the mean amount of traffic that arrived in the interval (s, t]. The variance
over an interval (s,t] is defined by wg,(t — s) := Var[A4;(s,t)]. For convenience we define
A;(t) :== Ai(t,0) for t < 0 and analogously A4;(t) := A;(0,t) for ¢ > 0. We use the additional
notation A;(t) := A;(t) — p,t for the centered version, and define the total input process by

A; = {A4i(t),t € R}. We make the following assumptions on the variance function v, (+):
C1 vy, (t) € C([0,00)) is ultimately strictly increasing;

C2 wy,(t) is regularly varying at 0 with index 3; € (0,2] and vy, (t) is regularly varying at
oo with index a; € (0,2);

C3 wy,(t) is ultimately convex.

When referring to either C1, C2 or C3 for a Gaussian process in the remainder of this
paper, we mean that the variance function of this process satisfies the corresponding regularity
condition as defined above. In particular, given the applications in Gaussian fluid models, we

focus on the following special cases of the input processes.

e Integrated Gaussian (IG): fo s)+ pi)ds, where Z;(t) is a stationary centered
Gaussian process with contlnuous covariance function R;(t) = Cov(Z;(s+t), Z;(s)) such
that R;(t) > 0 for each ¢t > 0 and pu; > 0.

e Fractional Brownian motion (FBM): A;(t) = By, (t)+u;t, where By, (t) is the fractional
Brownian motion with Hurst parameter H; > 1/2. In particular, for H; = 1/2 we have

that By /,(t) = W(t) is a standard Brownian motion.

The relevance of FBM input is discussed in e.g. [22]. The importance of IG input in the
theory of fluid models is shown in e.g. [8] and [9].

3 Main results

In this section we present the main results of the paper, that is, the logarithmic asymptotics
of the probability that queue 1 reaches a large workload (1). Since most of the proofs is rather
technical, we first present the results without proof in this section. The proofs will be given in
Section 5, after the next section where we apply our results to two important special cases: 1G
and FBM. Although the asymptotic behavior in Theorem 3.1 is equal to that in Theorem 3.3,

we present it separately as it requires a different approach in the proof. Throughout the



paper we assume that flow 1 sends on average at a rate smaller than the guaranteed rate, i.e.,
p1 < ¢1e, and we say that flow 1 is in underload. For flow 2 we distinguish between underload,
ie., po < ¢oc, and owverload, i.e., ps > ¢oc. The following scenarios, corresponding with the
theorems are considered:

S1 (flow 2 in overload): ps > ¢ac;

S2 (flow 2 in underload and flow 1 dominant): ps < ¢2c and limg_, o, va(t

=0:
U1 (t ’
S3 (flow 2 in underload and flow 2 dominant): ps < ¢oc and limg_, o % =

We remark that we do not consider the scenario with flow 1 in overload and flow 2 in underload.

N3

NN

For this scenario a completely different approach is needed, which is not within the scope of
this paper. To ensure the stability of the system in the remainder of the paper we tacitly
assume that

pr+pe <coopa > 0,p2 2 0.

We start the analysis with scenario S1. In this regime, flow 2 is not stable if it would only
obtain service rate ¢-c; it needs the remaining service capacity of flow 1 for stability. The

logarithmic asymptotics for this regime are as follows.

Theorem 3.1 (S1) If A: and A, satisfy C1-C2 then

logP (@1 >u) ~ logP (Q‘f” > u)

1 a1 (5] Tt 2 2 U2
~ —§(¢>1c—,u1) (2—a1> 2— o va, (u)

Intuitively, the result states that in order for flow 1 to have a large workload, it has to send at

a rate higher than its guaranteed rate ¢yc. As ¢;cis larger than the rate at which flow 1 sends
on average, we say that flow 1 has to show abnormal behavior. That is, on average flow 1
is likely to send at a smaller rate. Note that the behavior of flow 2 does not show up in the
asymptotics. That is because flow 2 already uses its guaranteed capacity ¢sc just by sending
on its average rate ps.

The results for scenario S2 are different. In this scenario flow 2 remains stable, even if it
only receives service at its guaranteed rate ¢2c. Recall that in this regime, the variance func-
tion of flow 1 dominates that of flow 2. The logarithmic asymptotics for this regime are as

follows.
Theorem 3.2 (S2) If A1 and A, satisfy C1-C2 then
logP(Q1 >u) ~ logP(Qi™"* > u)

N _l(c_ yon Q1 -1 2 2 .2
2 a 2 - 2—ay;/) wva(u)




The result is a so-called reduced-load equivalent, as the workload asymptotics of flow 1 are sim-
ilar to the workload asymptotics of this flow if it were served in isolation at service rate ¢ — po.
Intuitively two scenarios may lead to a large workload of flow 1 in this regime. One is the
reduced-load equivalence, where flow 2 behaves normal in the sense that it sends on average
at rate uo, and flow 1 takes all capacity it can get. In the other scenario, flow 2 behaves
‘abnormal’ as well. That is, flow 2 takes its reserved capacity ¢oc during the epoch that flow 1
needs to build up a large workload with service rate ¢;c. Because of the assumption on the
variance functions, the reduced-load equivalence result turns out to be the most likely scenario
in this regime. Not surprisingly, the other scenario is most likely in the regime S3, where we

assume the variance function of flow 2 to dominate that of flow 1.

For scenario S3 the logarithmic asymptotics are as follows.
Theorem 3.3 (S3) If A; and A, satisfy C1-C3 then
logP(Q >u) ~ logP(Q?" > u)

) ™ 2 \? w?
~ —5(de— ) (2—@1) <2—a1) v, (w)’

Qualitatively the result is the same as that of Theorem 3.1, covering regime S1 where flow 2

sends on average at a rate higher than ¢oc. Again the workload of flow 1 reaches a large level

only because it does something extraordinary itself.

4 Examples

In this section we analyze the asymptotic behavior of the probability that @; gets large for
two important applications: IG and FBM processes.

4.1 Integrated Gaussian input

When a large number of sources shares a queue then the integrated Gaussian process can
be used to model the accumulated input. See for instance Debicki & Palmowski [8] and
Kulkarni & Rolski [14], who show that IG appears as the limit approximation, in a heavy
traffic environment, of a superposition of a large number of integrated on-off processes. In
the case of single fluid queueing models, this class of processes was intensively investigated by
many authors; see e.g. [7, 14] and references therein.

In Propostion 4.1 we present the results for scenarios S1, S2 and S3 when the IG process
exhibits a short-range dependent structure. Results for long-range dependent IG processes

are then given in Proposition 4.2.



Proposition 4.1 Let Ay satisfy C1-C3 and A;(t) = fg Z(s) + pds with Z(t) a centered
stationary Gaussian process with continuous covariance function R(t) such that R(t) > 0 for
all t >0 and [° R(t)dt < oo, then

prc—pm

[S].] logP(Ql > U) ~ —WU,

c— I )

[SZ] logP(Ql > U) ~ —WU,
p1c—

[S3] IOgHD(Ql > U) ~ —WU.

Proof Observe that

va,(t) = 2/; ds /Os R(v)dv,

meaning that vy, (t) satisfies C1-C2 with a3 = 1 and 81 = 2. Moreover C3 is fulfilled due
to the nonnegativity of R(-). Applying Theorems 3.2, 3.3 and 3.1 respectively completes the
proof. a

Proposition 4.2 Let Ay satisfy C1-C3 and A (t) = fot Z(s)ds + pit with Z(t) a centered
stationary Gaussian process with continuous covariance function R(t) such that R(t) > 0 for
all t > 0 and R(t) = 1(t)t*2 for a € (1,2) with I(-) slowly varying at oo, then

2 )2 a(a2— 1) 1;2;;

[S1] logP(Q1 > u) ~ —%(¢1c—u1)a <2fa>"‘ <2

— @

T ) I Gy [ e Lt

53] logP@1 >0~ —3ie—m)* (72=) (52 )2“(“2‘ e

Proof The proof is analogous to that of Proposition 4.1. |

—Q

4.2 Fractional Brownian motion input

In this section we focus on the case, where the input process of the first queue is given by
a fractional Brownian motion with Hurst parameter H > 1/2. The idea of using FBM as
input process was motivated by some measurements of internet traffic, see e.g. [15], where the
presence of long-range dependency and self similarity was statistically verified. The theoretical
justification of FBM as an appropriate approximation for input traffic can be found in Taqqu
et al. [25] and Mikosch et al. [21].

In the following proposition we give the results for the scenarios S1, S2 and S3 when flow 1

is an FBM process.



Proposition 4.3 Let Ay satisfy C1-C3 and A, (t) = By (t) + pat, an FBM with H > 1/2,
then

—2H 2
[S1] logP(Q1 > u) ~ —%(¢1c—,u1)2H <%) < 1 ) u?—2H.

821 15P(Qs > ) ~ —5(c~ 0 (2 - (L)uff

1-— 1-H
1 ‘ H N\ 1\ ,.
[S3] logP(Q1 > u) ~ —5(drc— ) <m) <m> w2,
Proof The proof is analogous to that of Proposition 4.1. |

5 Proofs

In this section we give the proofs of Theorems 3.1, 3.2 and 3.3. Before presenting the proofs
we need some technical lemmas.

We use the notation X := {X(t),t € R} to denote a centered Gaussian process. The following
lemma, which was proved in [2], gives an upper bound for the supremum of a centered Gaussian

process over a finite interval. The lemma will be used in the proofs of Theorems 3.1 and 3.2.

Lemma 5.1 Let X be a centered Gaussian stochastic process with stationary increments. If
X satisfies conditions C1-C2, then there ewxist constants K > 0 and q > 0 such that for t

large enough and every u > q/vx(t),
)
P( sup X(s) >u) < Ke vx () . (4)
s€[0,t]

In the next lemma the logarithmic asymptotics are given for the supremum of a centered
Gaussian process over an infinite interval, i.e., for the stationary version of a queue with input

process X and service rate ¢. We use this lemma in the proofs of Theorem 3.1, 3.2 and 3.3.

Lemma 5.2 Let X be a centered Gaussian stochastic process with stationary increments. If

X satisfies conditions C1-C2 with regularity indezes «, 8 respectively, then, for ¢ > 0,

(i) logP (iglg{X(t) —et) > u) ~ —%ca (2 f‘a>a (2 2 a>2 U;‘(zu);

(it) loglP <sup{X(t) —ct} > u) ~logP (/\/ S M) 7
>0

Vx (tu)

2
(;;;Cft)) . Moreover t, is regularly varying at co with index 1, as u — 0.

for t, = arginf;>g



Proof The proof of (i) straightforwardly follows from Proposition 1 in [10].

In order to prove (ii) it is enough to combine Theorem 2.1 in [6] with the observation that

2
log P N> A ) (utct)” )
vx (ty) >0 2vx(t)
Moreover the combination of Theorem 1 in [10] with (5.14) and (5.15) in [31] gives that
ty ~ %nu as u — oo which shows that ¢, is regularly varying at oo with index 1. |

The following lemma is used in the lower bound of Theorem 3.3. It provides an asymptotic
lower bound for the infimum of a centered Gaussian process over a finite interval. In terms
of queues we give an asymptotic lower bound for the probability that the queue is backlogged

during a finite interval.

Lemma 5.3 If X satisfies conditions C1-C3, then for each ¢ € (0,1),

u?
log P f {X(t)—ct 0)z2 ——.
°8 (tel[?u u]{ () =t} > ) ~ 2vux(eu)

Proof Note that for sufficiently large u

]P’( inf {X()—ct}>0> > ( inf X(¢ >cu>
teleu,u] teleu,u]
= P| sup X(¢t) < —cu
teleu,u]
> P < sup W(vx(t)) < —cu) (5)
teleu,u]

( sup W(t) < —cu) ,
telvx (eu),vx (u)]

where W is a standard Brownian motion, and (5) follows from Slepian’s inequality (see e.g.
Theorem C.1 in [23]) combined with the fact that vx (¢) is convex. Because W has independent

increments, we obtain

P sup W(t) < —cu
telvx (ew),vx (u)]

= P (W(Ux(eu)) + sup {W(t) — W(vx(eu))} < —cu>

telvx (eu),vx (u)]

= P <W1 (vx (eu)) + sup Wa(t) < —cu> ,
te[0,vx (u)—vx (eu)]



where both W, and W5 are independent copies of W. For v > 0, such that 1 > v > «/2,

P (Wl (vx (eu)) + sup Wa(t) < —cu)
te0,vx (u)—vx (ew)]
> P (Wl (vx (eu)) + sup Wa(t) < —cu; sup Wa(t) < u”)
te[0,vx (u)—vx (eu)] te[0,vx (u)—vx (eu)]
> P(Wi(vx(ew)) +u” < —cu)P < sup Wa(t) < u”)
te0,vx (u)—vx (eu)]

v v

= p(nvs 2 ) (1-2p (N> = , (6)
Vux (eu) Vux (u) — vx (Au)

where (6) follows from the fact that P(supcp,q W(t) > z) = 2P(N > z/VT).
Finally, combining (6) with the fact that

v 2,2
10g]P<./\/'>7cu+u >~ cu

vx (eu)  2ux(euw)’
and
u?
PN > — 0, as u — oo,
vx (u) — vy (eu)
the proof is completed. O

5.1 Proof of Theorem 3.1

Upper bound. This follows straightforwardly from the fact that
P(Q1 > u) <P(QV >u) =P (sup(Al (t) — prct) > u)
t>0
and Lemma 5.2 (3).

Lower bound. Defining

gt (gre— pi1)t)?
0 2U1 (t) ’

t, := argin
u th

10



we use (3) to obtain

P(Q1 > u)
> P (Al(—tu,O) + Aa(—ty,0) —cty, — sup {A2(—t,0) — gact} > u)
te[0,ty)
- P (Aloru) +Aa(ta) = (o= o = p {Aa(6) + (s = a0t} > u)
> P (Al(tu) —(c— ity — (p2 — ¢20)t, — tes{hllt) ){Az(t) — Ay (t)} > U)
= P (Al(tu) — (¢1C — ,ul)tu — teS[})lIt) )Ag(t) > U) y (7)

where (7) follows from the fact that sup,epg,){A2(t) — A2(t.)} 4 SUPyefo 4, A2(t). Adding
an additional constraint, the probability in line (7) is bounded below by

P<A1(tu>+(m—¢1c>tu— sup Aat) >, sup A2(t><(vA2<tu>>“e>
t€[0,ty) t€[0,ty)

R e P( sup (1) < (uAZ(tu»“e) ,

t€[0,ty)

with € > 0 such that (% + €)as < 1. Applying Lemma 5.1 we obtain

P(Q: >u)>P [N > 2T (Gre = )t + (0 (0)) 41 (1 - Kew«mz(tu))tqf) 7
B va, (tu)

with AV a standard Gaussian random variable, and K, x and q some positive constants. Because

t, — 00 as u — 0o and (% + €)ay < 1, we obtain consecutively, as u — oo,

(U + ((lslc — ul)tu + (UA2 (tu))%+€)2 (U + ((lslc — ,Ul)tu)z
log P(Q1 > u) 2 — 20, () - 204, (ty)

Hence combining the fact that

(u+ (prc— p)t)’ u+ (prc— pr)ty
20 (0) ~logP (N > o) )

with Lemma 5.2 we obtain

1 (051 o 2 P
log P 2 —5(fre—p)™
og (Ql >U)N 2(¢1C ,ufl) (2—@1) <2—a1) UAI(U)7

which completes the proof. |

11



5.2 Proof of Theorem 3.2

Upper bound. Note that
P(Q1 >u) <P(Q1+Q2>u)=P <supA1(t) + As(t) — ct > u) .
t>0

Then applying Lemma 5.2 (i) and using that va, 44, (t) = va, (t) + va,(t) is regularly varying
at oo with index «;, we obtain

1 a1 aq o 2 : U2
logP(Q1 >u) S —E(C_:“) (2—a1> <2—a1) va, (1) +va,(u)

N _l(c e Q1 -1 2 2 .2
2 2 - 2—ay1/) wva,(u)’
with ~ due to S2.

Lower bound. Defining (note that this ¢, differs in a subtle way from the ¢, defined in the

previous section)

(u+ (c— w)*
TR T

)

we obtain, using (3),
P(Q1 > u) = P(Q1(0) > v)

> P (Al(—tu,O) + Aa(—ty,0) —cty, — sup {A2(—t,0) — gact} > u)
te[0,ty)

t€[0,ty,)

- P(l ~ (910 = )t —tes[lolfu){f%(t)—AZ(tu)+(¢20—M2)(tu—t)}>U>
= H"( 1(ta) = (dr6 = )ty _tesihlfu){AQ(t)H%C_’”)t}>u>

> ]P’( u)tu—tesEEE)A2(t)>u>

> P (A(t) - =t - (tu>>%+€>u)r?( sup A2(t><(%<tu>>%+ﬁ>

for some € > 0 such that (1 + €)as < 1. The remainder of the proof is analogous to that of
the lower bound of Theorem 3.1. a

5.3 Proof of Theorem 3.3

Upper bound. Goes line by line the same as the corresponding part of the proof of Theorem 3.1.

12



Lower bound. Let

(u+ (¢rc— p)t)?
21]1 (t) ’

t, = arg g(f)

which is the same definition as in the proof of Theorem 3.1. Following (2) we have

P(Q1 > u) = P(Q1(tu) > u)
= P(Q1(0) + A1(0,tu) — B1(0,t,) > u)
> P(A(0,t,) — B1(0,ty) > u). (8)

Hence for € € (0,1)

P(Q1 > u) >
> B (40.0) - BO0) >u_f Qu(0)>0)
t€[etu ta]
=P <A1(0,tu) — B1(0,t,) > u;, [ilrtlft ]Qz(t) > 0; B2(0,ety,) > ¢ac(l — E)tu)
Eletu tu
=P <A1(0,tu) — B1(0,ety,) — By(ety,ty) > u;, [i?ft ]Qg(t) > 0; B2(0,ty,) > ¢ac(l — s)tu)
Eleturty
> P <A1(0,tu) —cety — Pp1e(l —e)ty, > U3, [i?ft ]Qg(t) > 0) 9)
Eletutu
> P <A1(0,tu) —cety — P1e(l —e)ty, > u; [i?ft ]Ag(t) —ct > 0) (10)
teletu,tu
= P(A1(0,t,) —cety — p1c(1 — )ty > u) P (t [i?ft ]Ag(t) —ct> 0) (11)
Eletutu

where (9) follows from the fact that By (0,¢et,,) < cety, and By (ety, ty) + B2(ety, ty) < cty(1—¢),
and (10) follows from the trivial inequality (1 (t) > QS$(¢) V¢t € R. Applying Lemma 5.3 we
infer that

st (die—m +edro)tu)? (e — p2)?t,
~ 2vy, (ty) 204, (ety)
(u+ (prc— p1 + eda0)ty)?
2v4, (tu)

Now putting € | 0 we apply Lemma 5.2 to obtain

_ 2
logP(Q1 >u) = — (u+ (2¢;1:1 (tf)l)tu)

]. a1 (5] — 2 2 U2
~ _§(¢1c_l’l‘1) (2_a1> 2_a1 ’UAI('U/)7

which completes the proof. |

logP(Q1 > u)

~ —
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6 Mixing a Gaussian flow with an on-off flow

In this section we consider the same model as in the previous sections, but we now assume
{A42(t),t € R} to be an on-off process with regularly varying residual on times. Recall that
we assume the system to be stable, i.e., u; + ps < ¢. We introduce some additional notation.
The on periods of flow 2 are denoted by Ton, the fraction of time the process is off by p,g,
and the on rate by ron. We define the indicator function I{ g} returning 1 in case of event F
and 0 otherwise, and we define d;A,(t) to be the input rate of flow 2 at time ¢t. We need two
additional lemmas to derive the result in Theorem 6.1. The first result is well-known, it gives
the asymptotic behavior of the residual busy period, denoted by P!, in an ordinary queue
with service rate ¢ fed by an on-off process, say process Y. Let us denote the on periods of Y
by Yon, the on rate by ry, the average rate by puy and the fraction of on time by py. Then
the lemma, which is due to [5, 30], is as follows.

Lemma 6.1 If Yyp is intermediately reqularly varying, and py < ¢ < ry, then

P (Yg},> M)

P(P">u) ~(1—
( u) ~ (1 =py) Y — 1y

C— py

The second result is proved in [31] (Theorem 5.1). It shows that an ordinary queue fed by
a centered Gaussian process X and an on-off process Y as described above, but now with
regularly varying residual on times, reaches a large value because of atypical behavior of both

processes.

Lemma 6.2 Let X satisfy C1-C2 with regularity index o, and let Y, be regularly varying

at oo with ry < c, then

e 1 a
P(Qx+y >u) ~pyP (QY " >u)IP’<an> — u).
c—Try2—«

Using these lemmas we obtain the following result.

Theorem 6.1 If T}, is reqularly varying, u; < ¢1c, and A; satisfies C1-C2, then

log P(Q1 > u) ~ logP (QflC > u) .

Qualitatively we have a result similar to that of Theorems 3.1 (S1) and 3.3 (S3). The workload
of the Gaussian flow, flow 1, gets large if it shows atypical behavior itself. Flow 2 does not
show up in the asymptotics, as it only takes its guaranteed rate in the interval that flow 1
needs to build up a large queue. This is due to the long-range dependent behavior of flow 2.
As its residual on times are regularly varying, it easily takes its guaranteed rate ¢oc for the

necessary amount of time.

14



Proof Trivially,
t
P(@Q>u) = P (sup {Al (t) — ¢rct — / I, (s)=0} (P2¢ — dsAz(s))ds} > u)
0

>0
t t
=P <51>1p {Al (t) — ¢rct — qbzc/ I, (s)=0yds +/ dsAg(s)I{QZ(s)_o}ds} > u)
>0 0 0
Observe that the event {Q2(s) = 0} implies that flow 2 is off at time s. Hence,
t
P(Ql > U) =P (Sl>1p {Al(t) —ct + (2520/ I{Q2(3)>0}d8} > u) .
>0 0
We now proceed to derive an upper and a lower bound for P(€); > ), which will appear to
logarithmically coincide.
Upper bound. Observing that fg I, (s)>03ds is the amount of time that ()2 was busy in [0, ],
it holds that
t
P(Q>u) <P (sup {Al(t) —ct+ ¢2c/0 I{Q§2°(s)>0}d8} > u> ,

>0

where ¢2c fot I{Q¢2c(s)>0}ds is an on-off process: the on times are the busy periods of a queue
2

with service rate ¢oc that is fed only by flow 2, the on rate is equal to ¢,c, and we denote the

fraction of time that the process is on by pup. Applying first Lemma 6.2, for which we need

to assume that p; < ¢1¢, and then Lemma 6.1 we obtain
¢ P2c r 1 o1 u(gec— p2)
P(Q) > u) < ]P( ¢1>u) —2 _p(TF, > — .
(Q1>w) < pupF (@1 Pott g, — s $p1c2—o1 ron — p2
Lower bound. Observe that the event {Q»(t) > 0} is implied by the event that flow 2 is in the
on state at time ¢. Hence,

t
P(Q, >u)>P (sup {Al (t) —ct + (;Sgc/ I{dsA2(5)>0}ds} > u) ,
0

t>0

where ¢oc fg Itq,A,(s)>0) is an on-off process with on times Ton and on rate ¢ac. Again

applying Lemma 6.2 results in

2 om0 e (i)

Logarithmic asymptotics. Because T5, is regularly varying, it is easily seen that in the upper

bound, for any v > 0,

' 1 e r 1 ar u(pac — p2)
o L 2 _pr > — =0
i s (movorzz 2 (15> St S0 ) ) <o

and that similarly in the lower bound, for any v > 0,

. 1 r 1 (651 -
ulgglo u—wlog <(1 _poff) g <Ton > @2 "o u)) =0,

which completes the proof. |
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