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Abstract

Fairness is an inherent and fundamental factor of queue service disciplines in a

large variety of queueing applications, ranging from airport and supermarket waiting

lines to computer and communication queueing systems. Recent empirical studies

show that fairness is highly important to queueing customers in actual situations.

Despite this importance, queueing theory has devoted very little effort to this subject

and an agreed upon measure for evaluating the fairness of queueing systems does not

exist. In this work we study a newly proposed Resource Allocation Queueing Fairness

Measure (RAQFM). The measure, first introduced in Raz et al. (2004d), is built under

the understanding that a widely accepted measure must adhere to the common sense

intuition of researchers as well as practitioners and customers, and must also be based

on widely accepted principles of social justice. We analyze the properties of RAQFM

and provide bounds for its values. Both of these serve to intuitively understand the

measure and provide confidence in it. The analysis shows that the measure properly

reacts to both customer seniority and customer service time, and thus appeals to one’s

intuition. The bounds provide a scale of reference on the measure. An Additional

property of the measure, namely “locality of reference”, and how it yields to analysis,

are discussed.

Subject classifications: Queues: quantification of job fairness in queueing systems

Area of review: Stochastic Models
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1 Introduction

Queueing systems are encountered in a wide variety of applications such as supermarkets,

airports, banks, public offices, computer systems, communication systems, web services,

call centers, and many others. Queueing Theory has been used for nearly a century to

study the performance of such systems and how to operate them efficiently.

Why are ordered queues used in all these real life situations? Perhaps the major reason

for using an ordered queue at all is to provide fair service to the customers; in this sense one

can view a queue as a “fairness management facility”. Furthermore, empirical evidence to

the importance of fairness in queues was provided recently in Rafaeli, Barron, and Haber

(2002) and Rafaeli et al. (2003). Their work uses an experimental psychology approach to

study the reaction of humans to waiting in queues and to various queueing and scheduling

policies. These studies revealed that for humans waiting in queues, the issue of fairness is

highly important, perhaps sometimes even more important than the duration of the wait.

The fairness factor associated with waiting in queues has been recognized in many

works and applications; some of them are listed next. Larson (1987) in his discussion paper

on the disutility of waiting, recognizes the central role played by ‘Social Justice’, (which

is another name for fairness), and its perception by customers. This is also addressed by

Rothkopf and Rech (1987) in their paper discussing perceptions in queues. Aspects of

fairness in queues were discussed by quite a number of authors, including Palm (1953)

that deals with judging the annoyance caused by congestion, Mann (1969) that discusses

the queue as a social system and Whitt (1984) that addresses overtaking in queues.

Despite the importance of queue fairness, little has been published on how to quantify

it. As a result, the issue of fairness is not generally understood, and widely agreed upon

measures do not exist. Thus, the fairness of real applications cannot be evaluated and

systems cannot be compared to each other. Some research exceptions are Gordon (1987),

Avi-Itzhak and Levy (2004), Bender, Chakrabarti, and Muthukrishnan (1998), Bansal

and Harchol-Balter (2001), and Wierman and Harchol-Balter (2003). In Gordon (1987)

the number of “skips” and “slips” experienced in the queue by an arbitrary customer is

proposed to reflect the queue injustice (and an analysis of this metrics was carried out for

several systems). In Avi-Itzhak and Levy (2004) measures based on order of service have

been devised. The slowdown (a.k.a. stretch, normalized response time) was proposed as a

metric of unfairness in several works. In Bender, Chakrabarti, and Muthukrishnan (1998)
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the max slowdown is used as indication of unfairness. In Bansal and Harchol-Balter (2001)

the max mean slowdown is used to evaluate the unfairness of the SRPT scheduling policy.

In Wierman and Harchol-Balter (2003), the max mean slowdown is used as a criterion for

evaluating whether a system is fair or unfair.

A large volume of literature exists on weighted fair queueing. However, that work is

outside the scope of this paper. It deals with fairness to streams, fitting communications

systems mainly, rather than with fairness to jobs, which is the subject of this paper.

In light of the importance of fairness to queue-based applications, the objective of this

paper is to study a newly proposed methodology and a metric that can be applied to

queueing systems and scheduling policies for evaluating their level of fairness. To properly

devise such a method one should first ask what are the basic physical properties playing

a role in queue fairness. To this end observe that the behavior of a queueing system is

governed by two major physical factors, job seniority and job service requirements (the

terms “job” and “customer” are used interchangeably throughout the paper). In every

queueing analysis they serve, in the form of arrival times and service times, together with

the server policy, to derive the system performance measures (e.g., expected delay). Thus,

a complete fairness measure should account for both1. To demonstrate how seniority

and service times affect fairness, consider the following daily-life scenario, taken from the

supermarket queue setup: Mr. Short arrives to a supermarket queue with a couple of items

and finds in front of him Mrs. Long with an overflowing cart. The question of whether

it is fair to serve Short ahead of Long, and the dilemma associated with this question, is

rooted in the contradicting physical factors of seniority difference (working to the benefit

of Long) and service requirement difference (working to the benefit of Short). The prior

recent work mentioned above focused on one of these physical factors. The “skip and

slip” approach (Gordon (1987)) and order-of-service based measure (Avi-Itzhak and Levy

(2004)) focus on the issue of seniority; the latter has a modification of the measure to

account for service times. The slowdown approach (Wierman and Harchol-Balter (2003))

successfully captures the service time differences between jobs and provides interesting

results regarding which policies are fair in this regard. However, that approach does not

1One may claim that in some applications, such as computer systems or call centers, the issue of

seniority is not important and only size should matter, since the customers anyhow do not see each other.

However, we believe that in most of these applications customers do care about seniority even if they do

not see each other. For example, we believe that customers might be quite upset if they find out that their

phone-accessed bank teller serves them in LCFS order.
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account for seniority differences.

Very intriguing and drastically contradicting results may be obtained if only one of

the factors is accounted for. Thus, a measure that accounts only for seniority differences,

as shown in Avi-Itzhak and Levy (2004), will rank First-Come-First-Served (FCFS) as

the most fair policy and Last-Come-First-Served (LCFS) as the most unfair policy. In

contrast, a criterion that accounts only for service time differences, such as the criterion

developed in Wierman and Harchol-Balter (2003), classifies Preemptive LCFS as always

fair and FCFS as always unfair.

In this work we address a new measure that accounts both for seniority differences and

for service time differences, and is convenient for analysts to work with. To achieve this,

our approach focuses on the server resources and examines how fairly they are allocated

to the jobs. The approach is called a Resource Allocation Queueing Fairness Measure

(RAQFM) and was first introduced in Raz, Levy, and Avi-Itzhak (2004d). This measure

is based on the basic (“axiomatic”) belief, stemming from the widely accepted social justice

principle of equally dividing the “pie”, that at every epoch all jobs present in the system

deserve an equal share of the server’s attention (“pie”). This is the case with Processor

Sharing (see analysis, as early as Kleinrock (1964, 1967), Coffman, Muntz, and Trotter

(1970), followed by many others). Deviations from this principle are assumed to create

customer discriminations (positive or negative). Accounting for these discriminations and

summarizing them yields a measure of unfairness. Detailed description is given in Section

3 (after a short overview of some other work on fairness, given in Section 2).

The main objective of this work is to examine the basic properties of the RAQFM mea-

sure. We believe that three types of properties are desired for such a measure: 1) Agreeing

with one’s intuition in special cases, 2) Having computable bounds on the measure, and 3)

Yielding to analysis. To address the first type of properties, note that a fairness measure is

somewhat an “abstract” entity that is “hard to feel”; thus, the evaluation of the measure

in simple and widely agreed upon cases, and the examination of how it fits one’s intuition

(queueing experts as well as “plain customers”), can assist in examining the credibility of

the measure and building confidence in it. Such confidence is important for the measure

to be used in evaluating complex and subtle cases. The first case for which we examine

RAQFM is where preemption is not allowed and all service times are identical, either de-

terministically or stochastically, that is, only seniority matters. In this case we show that

serving a senior ahead of a junior increases fairness, which fits with intuition. The second
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case is where all arrival times are identical (thus only service time matters). In this case

we show that serving a short job ahead of a long job increases fairness, again fitting one’s

intuition. Third, we show that Processor Sharing (PS) is the most fair policy and that

this optimality is unique to PS and its precise imitators. These properties are derived in

Section 4.

The importance of the second type of properties, namely bounds, is to provide some

scale of reference. Such scale of reference is useful when the measure is used to evaluate

a system and some intuitive meaning of the fairness numbers is needed. Bounds on the

discrimination values according to RAQFM are derived in Section 5; these bounds were

stated in Raz et al. (2004d) and are first proved in this work.

The third desired property of a measure is to yield to analysis. To this end first note

that an important property of RAQFM is that it is based on first accounting for the

individual discriminations attributed to each job in the system and then summarizing

them; this allows one to use RAQFM for several purposes: i) Measuring individual job

discrimination in a specific sample path, ii) Evaluating the overall unfairness of a scenario

(a sample path), and iii) Evaluating the unfairness of systems and service policies (by

evaluating the unfairness in steady state). These allow practitioners and customers to get

a feel of the fairness they encounter in the system. Second, in Section 6 we demonstrate

a method by which RAQFM can be derived for Markovian systems in steady state. This

is demonstrated for the FCFS service discipline.

An additional important property of RAQFM is that the discrimination function used

by RAQFM possess a “locality of reference” property, namely, that its variance over all

customers is identical to its variance over the customers of a busy period. This property

is important for proper fairness evaluation. In Section 7 we briefly discuss this property,

whose full analysis is postponed to a forthcoming paper, due to lack of space.

Lastly (Section 8) we provide numerical results that further demonstrate the sensitivity

of RAQFM to service time and seniority. The results seem to fit intuition and thus provide

additional confidence in the measure.

Concluding remarks are given in Section 9.
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2 Short Overview of Some Other Work on Fairness

One area where several fairness measures were proposed is flow control. Two well known

notions in this area are those of Max-Min Fairness (Starting with Jaffe (1981) and used by

many afterwards) and Proportional Fairness (Kelly (1997)). These notions deal with fair

allocation of rates (or bandwidth) to customers, and are not applicable to fair scheduling

of customers in a queue.

Another related area where there has been research on the matter of fairness is fair

queueing. The measures mostly used in this area are Absolute Fairness Bound (AFB)

and Relative Fairness Bound (RFB). AFB (first used probably in Greenberg and Madras

(1992)) is based on the maximum difference between the service received by a flow under

the discipline being measured, and that it would have received under the ideal PS policy.

As AFB is frequently hard to obtain (see Keshav (1997, ch. 9 pp. 209-261)) RFB was

proposed (first used probably by Golestani (1994)), based on the maximum difference

between the service received by any two flows under the policy being measured. See

Zhou and Sethu (2002) for relations between AFB and RFB. Both of these measures were

originally meant to be used in studying flows and not specific jobs, although they can be

applied to jobs as well. For example, for AFB one can compute the maximum difference

between the departure time of each job and the departure time it would have received

under PS. However, when either of these measures is used for evaluating job fairness, the

following emerges:

1. If job sizes are unbounded, these measures are unbounded (i.e. infinitely unfair)

for all non-preemptive policies. In fact, the tightest bound possible for any non-

preemptive policy is the size of the largest job (achieved by the Fair Queueing policy

proposed by Demers, Keshav, and Shenker (1989, 1990)).

2. Even if job sizes are bounded, it is easy to see that these measures do not differentiate

between many non-preemptive service policies. For example, both FCFS and LCFS

are equally and infinitely unfair, and so are Shortest Job First (SJB), Longest Job

First (LJB) and Random Order of Service (ROS).

Both cases above imply that these measures, based on a maximal-difference approach

are not accurate enough to differentiate between many popular scheduling policies which

drastically differ from each other.
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A similar criterion, with similar properties, was suggested by Friedman and Henderson

(2003). According to that criterion, a protocol p is considered fair if it weakly dominates

PS, namely no job completes later under p than under PS, on any sample path. This

criterion is similar to AFB in that it compares the protocol against PS, and it considers

the worst case scenario, though it only classifies the protocol as fair or unfair. Again, all

non-preemptive policies are unfair, as well as most preemptive policies.

Another work worth mentioning is Wang and Morris (1985), where the Q-factor is

proposed for measuring the performance of load sharing algorithms. It measures the per-

formance, relative to multi-server FCFS, as observed by the customer source treated worst,

under the worst possible combination of loads. While the measure is mainly introduced

to detect inefficiencies in the load sharing algorithm it also has some fairness aspects.

3 Introducing RAQFM in a Single Server System

3.1 Model and Notation

Consider a queueing system with one server. The system is subject to the arrival of a

stream of customers, C1, C2, . . . , who arrive at the system at this order. Let ai and di

denote the arrival and departure epochs of Ci respectively. Let si denote the service

requirement (measured in time units) of Ci. A specific series of values {ai}i=1,2,...,L is

called an arrival pattern. A specific series of values {ai, si}i=1,2,...,L is called an arrival and

service pattern. A specific series of values {ai, si, di}i=1,2,...,L is called a scenario.

At each epoch t the server grants service at rate si(t) ≥ 0 to Ci. Let N(t) denote

the number of customers in the system at epoch t. The system is work-conserving, i.e.
∫ di

ai
si(t)dt = si. The server has a service rate of one unit and is non-idling, i.e. ∀t,N(t) >

0 ⇒
∑

i si(t) = 1.

All customers are “born equal”, and thus no weights are assigned to them. In an

ongoing research we deal with a weighted version of the measure, meant to be used in

cases where customers are not equal.

3.2 Individual Customer Discrimination

The fundamental principle underlying RAQFM is the belief that at every epoch t, all

customers present in the system deserve an equal share of the system resources. This

principle implies that the share of the server resources a customer deserves at t is simply
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given by 1/N(t). We call this quantity the warranted service rate of Ci at epoch t, and

denote it Ri(t). Integrating this for Ci yields Ri
def
=
∫ di

ai
dt/N(t), the warranted service of

Ci. The (overall) discrimination of Ci, denoted Di, is the difference between the warranted

service and the granted service, i.e.

Di = si − Ri = si −

∫ di

ai

dt/N(t). (1)

A positive (negative) value of Di means that a customer receives better (worse) treatment

than it fairly deserves, and therefore it is positively (negatively) discriminated.

An alternative way to define Di is to define the discrimination rate of Ci at epoch t,

δi(t)
def
= si(t) − 1/N(t), (2)

and then the overall discrimination of Ci is:

Di =

∫ di

ai

δi(t)dt. (3)

An important property of this measure is that it obeys, for every non-idling work-

conserving system, and for every t:
∑

i δi(t) = 0, that is, every positive discrimination is

balanced by negative discrimination. This results from the fact that when the system is

non-empty
∑

i si(t) = 1 (due to non-idling) and
∑

i Ri(t) = N(t)(1/N(t)) = 1. An impor-

tant outcome of this property is that if D is a random variable denoting the discrimination

of an arbitrary customer when the system is in steady state, then E[D] = 0, namely the

expected discrimination is zero. A complete proof is given in Raz, Avi-Itzhak, and Levy

(2004b).

3.3 Unfairness of a Scenario

To evaluate the unfairness of a scenario one can compute the set of individual discrimina-

tions Di, i = 1, . . . , L using Eq.(1) or Eq.(3).

One would then choose some summary statistics measure over the values Di. Since

fairness inherently deals with differences in treatment of customers a natural choice is the

statistical variance of customer discrimination. Since the average of Di is zero, this equals
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the statistical second moment, that is 1
L

∑L
i=1(Di)

2. We denote this measure FD2 . An-

other optional measure is the average distances 1
L

∑L
i=1|Di| (denoted F|D|) or the average

absolute value of negative discrimination (denoted FD<0).

3.4 System Measure of Unfairness

To measure the unfairness of a system and of a service policy across all customers, that

is, to measure the system unfairness, one would choose some summary statistics measure

over D, where D is a random variable denoting the discrimination of an arbitrary customer

when the system is in steady state.

Again, one can naturally choose the variance of customer discrimination, and since

E[D] = 0, this equals the second moment. Similarly, another option is the mean of

distances E[|D|]. We use FD2 , F|D|, FD<0 to denote these too, the meaning being obvious

from the context. Throughout this paper, the term “unfairness” refers to FD2 since the

paper focuses on this measure. In some instances we also mention F|D|.

Remark 3.1 (The connection between scenario fairness and system fairness). Note that

system fairness deals with the expectation over all scenarios, while scenario fairness deals

with the realization of a specific scenario. Thus, if for all arrival and service patterns policy

φ1 is more fair than policy φ2 then this property is true also for the system unfairness.

4 Properties of RAQFM

4.1 Reaction to Differences in Seniority

In this section we show that for a commonly encountered class of policies RAQFM reacts

well to seniority differences. We do this by showing that in the special case where service

times are identical, either deterministically or stochastically, RAQFM “prefers” serving in

order of seniority. In the deterministic case we show that providing preferential service to

senior customers yields lower unfairness values for every sample path. That is, RAQFM

assigns lower unfairness values to schedules in which senior customers get preferential

service over junior customers. In the stochastic case, we show that providing preferential

service to senior customers yields lower value of expected unfairness. In both cases we deal

with non-preemptive policies exclusively. More specifically, define Φ to be the class of non-

preemptive, non-divisible service polices (i.e. service policies where once the server started
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serving a customer it will not stop doing so until the customer’s service requirement is

fulfilled, and at most one customer is served at any epoch), where the scheduler does not

know the actual values of the service times, or does not account for them in the service

decisions. We deal with policies in Φ.

Consider two customers Cj and Ck that are adjacently served, with arrival times

aj < ak and service requirements sj, sk. Observe the two possible scenarios: In scenario

(a), (Figure 1(a), seniority preserving schedule), the order of seniority is preserved, i.e. Cj

is served before Ck. In scenario (b), (Figure 1(b), seniority violating schedule), the order

of service of Cj and Ck is interchanged and thus the order of seniority is violated. For

every other customer, the arrival time, service requirement, and departure time are the

same across the two scenarios. We assume that both of the schedules are possible , i.e.

that Cj and Ck reside in the queue together for some time, and thus are interchangeable.

Service

time

�
�

�
�

1 2 3

Waiting

54

E1 E2 E3 E4 E5 E6

(a) Seniority Preserving Schedule

Service

time

�
�

�
�

1 2 3

Waiting

54

E1 E2 E3 E4 E5 E6

(b) Seniority Violating Schedule

Figure 1: Two Adjacently Served Customers

We now present some general notation that is used in this section.

Let Da
i denote the discrimination of Ci under scenario (a) and Db

i the discrimination

under scenario (b). Let F a
D2 , F b

D2 denote the unfairness in the respective scenarios, and

let Na(t), N b(t) denote the number of customers in the system at epoch t, respectively.

Observe that for every customer Ci, Di is determined by ai, si, di, and N(t) in the

interval (ai, di), i = 1, 2, . . . , L. The interchange of Cj and Ck affects only dj , dk, and

N(t).

Let F̃ denote the total unfairness to all customers other than Cj and Ck, and let F̂

denote the total unfairness to Cj and Ck. Then FD2 = F̂ + F̃ .

Define ∆FD2 , ∆F̂ , and ∆F̃ to be the change due to the interchange in the values of
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FD2 , F̂ , and F̃ respectively. Then

∆FD2 = ∆F̂ +∆F̃ =
1

L

[

(Db
j)

2+(Db
k)

2−(Da
j )2−(Da

k)2
]

+
1

L

[ L
∑

i6=j,k

(Db
i )

2−

L
∑

i 6=j,k

(Da
i )2
]

. (4)

We assume now that sj = τ1 and sk = τ2, and denote τmin = min(τ1, τ2) and τmax =

max(τ1, τ2). We note that the time interval from the arrival of Cj (aj in Figure 1) and

max(dj , dk) (namely until both Cj and Ck depart) is of equal length in the two scenarios.

We divide this interval into five sub-intervals (Ei, Ei+1), i = 1, 2, 3, 4, 5, where

1. E1 = aj

2. E2 = ak

3. E3 is the first point in time where service, to either Cj or Ck, starts.

4. E4 = E3 + τmin

5. E5 = E3 + τmax

6. E6 = max(dj , dk)

We note that Na(t) = N b(t) for every t except in the fourth interval (E4, E5) (specif-

ically, in the fourth interval N b(t) = Na(t) + 1 if τ1 < τ2 and N b(t) = Na(t) − 1 if

τ1 > τ2). Therefore, the warranted service rate over interval i (of any customer), Ra
(i) and

Rb
(i) in scenario (a) and (b) respectively, is the same except for i = 4. Namely Ra

(i) = Rb
(i),

i = 1, 2, 3, 5 always and Ra
(4) 6= Rb

(4) for τ1 6= τ2.

4.1.1 Deterministically Equal Service Requirement

We start our discussion with the case where the two adjacently served customers have

equal service requirement. We do not impose any restriction on the service requirements

of other customers.

Theorem 4.1 (Preference of Seniority Between Adjacently Served Customers

with Equal Service Requirement). Let Cj and Ck be adjacently served customers,

where aj < ak and sj = sk. Then the scenario unfairness (measured either as FD2 or as

F|D|) of the seniority preserving schedule (a) is smaller than that of the seniority violating

schedule (b), for every arrival and service pattern.
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Proof. We prove the theorem for FD2 . The proof for F|D| is similar, and is not shown for

conciseness.

Using Eq.(4), we need to prove that if sj = sk then ∆FD2 ≥ 0. Suppose τ1 = τ2 = τ . In

this case E4 = E5 (the fourth interval is of length zero) and Db
i = Da

i ,∀i 6= j, k. Therefore

∆F̃ = 0 and, from Eq.(4), we have

∆FD2 = ∆F̂ =
1

L

[

(Db
j)

2 + (Db
k)2 − (Da

j )2 − (Da
k)2
]

=
1

L

[(

τ − (Ra
(1) + Ra

(2) + Ra
(3) + Ra

(5))
)2

+
(

τ − (Ra
(2) + Ra

(3))
)2

−
(

τ − (Ra
(1) + Ra

(2) + Ra
(3))
)2

−
(

τ − (Ra
(2) + Ra

(3) + Ra
(5))
)2]

=
2

L
R(1)R(5) > 0. (5)

Note that we use the fact that for τ1 = τ2 we have Ra
(i) = Rb

(i), i = 1, 2, 3, 4, 5.

We also note that if aj = ak (the two customers arrive concurrently), ∆FD2 = 0, as

expected.

Theorem 4.2 (Preference of Seniority Between Any Two Customers with Equal

Service Requirement). Let Cj and Ck be any two customers, where aj < ak and sj =

sk. Then the scenario unfairness (measured either as FD2 or as F|D|) of the seniority

preserving schedule (a) is smaller than that of the seniority violating schedule (b), for

every arrival and service pattern.

Proof. The same proof holds, where the fifth interval now includes the interval between

the epoch where the first customer (either Cj or Ck) departs, and the other customer

begins service.

Theorem 4.3 (Fairness of FCFS and LCFS for G/D/1). If the service requirements

of all customers are identical (e.g. in the G/D/1 model), then for every arrival pattern,

FCFS is the least unfair service policy in Φ and LCFS is the most unfair one. In other

words, FCFS is the policy with the lowest system unfairness in Φ, and LCFS is the one

with the highest one.

Proof. Assume for the contradiction that there exist an arrival pattern and a service policy

φ ∈ Φ, φ 6= FCFS, which is the least unfair policy in Φ for this arrival pattern. Then the

order of service created by φ for this arrival pattern is different than the order of service

created by FCFS, otherwise φ is indistinguishable from FCFS.
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Given this arrival pattern and the order of service created by φ, identify the first pair

of customers which are adjacently served and are not served according to their order of

arrival. Interchange the order of service between these two customers (which is certainly

possible since the service policy is non-preemptive). According to Theorem 4.1, the result

of this interchange is a decrease in the overall unfairness. Thus the resulting order of

service is more fair than φ, in contradiction to φ being the least unfair service policy for

this arrival pattern.

A similar argument proves that LCFS is the most unfair policy in Φ.

Remark 4.1. From Remark 3.1 it follows that the properties stated in Theorem 4.3 for

every arrival pattern, hold for system unfairness as well.

4.1.2 Stochastically Identical Service Requirement

Theorem 4.4 (Preference of Seniority Between Adjacently Served Customers

with Stochastically Equal Service Requirement). In a single server queueing system

using a given discipline φ ∈ Φ where the arrival process is independent of the service times

assume that the service times of Cj and Ck, denoted Sj and Sk respectively, are i.i.d and

independent of the service times of all other customers. Let {ai, si}, i = 1, ..., L, be an

arrival and service pattern where aj < ak, Cj and Ck are served adjacently with Cj being

first and their order of service is interchangeable; denote this as possible scenario. Then,

interchanging the order of service of Cj and Ck in all such possible scenarios will result in

an increase in the expected unfairness to the L customers.

Proof. As in Theorem 4.1, the proof is given for FD2 and a similar proof can be given for

F|D|.

For τ1 < τ2, τ1, τ2 > 0, consider a possible scenario (a) from Figure 1 for the case

Sj = τ1 < Sk = τ2. For this case we rewrite Eq.(4) as follows

∆(FD2 |Sj = τ1, Sk = τ2) = ∆(F̂ |Sj = τ1, Sk = τ2) + ∆(F̃ |Sj = τ1, Sk = τ2). (6)

For the case Sj = τ2 > Sk = τ1 (arrival times and service requirements of all customers

except Cj and Ck being the same as in the previous case) we have

∆(FD2 |Sj = τ2, Sk = τ1) = ∆(F̂ |Sj = τ2, Sk = τ1) + ∆(F̃ |Sj = τ2, Sk = τ1). (7)
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Since the service times of Cj and Ck are i.i.d., scenario (a) with Sj = τ1, Sk = τ2 is

equally likely to possible scenario (b) with Sj = τ2, Sk = τ1. Further, the former is possible

if and only if the latter is possible, since the scheduling decisions prior to the service of

Cj and Ck are independent of their values ∀φ ∈ Φ. Therefore it is sufficient to show that

∆(FD2 |Sj = τ1, Sk = τ2) + ∆(FD2 |Sj = τ2, Sk = τ1) > 0 for the theorem to be true (from

Theorem 4.1 we already have ∆(FD2 |Sj = Sk) > 0).

We have

∆(F̂ |Sj = τ1, Sk = τ2) + ∆(F̂ |Sj = τ2, Sk = τ1)

=
1

L

[(

τ1 − (Ra
(1) + Ra

(2) + Ra
(3) + Rb

(4) + Ra
(5))
)2

+
(

τ2 − (Ra
(2) + Ra

(3) + Rb
(4))
)2

−
(

τ1 − (Ra
(1) + Ra

(2) + Ra
(3))
)2

−
(

τ2 − (Ra
(2) + Ra

(3) + Ra
(4) + Ra

(5)))
2

+
(

τ2 − (Ra
(1) + Ra

(2) + Ra
(3) + Ra

(4) + Ra
(5))
)2

+
(

τ1 − (Ra
(2) + Ra

(3))
)2

−
(

τ2 − (Ra
(1) + Ra

(2) + Ra
(3) + Rb

(4))
)2

−
(

τ1 − (Ra
(2) + Ra

(3) + Rb
(4) + Ra

(5))
)2]

=
2

L
Ra

(1)(R
a
(4) + 2Ra

(5)) > 0, (8)

where Ra
(4) and Rb

(4), each appearing several time in the above relation, are (Ra
(4)|Sj =

τ1, Sk = τ2) and (Rb
(4)|Sj = τ1, Sk = τ2), respectively, and τ1 < τ2. We also use the fact

that Ra
(i) = Rb

(i), i = 1, 2, 3, 5. To clarify the relation between the four lines of expressions

appearing in Eq.(8) note that the first and second lines correspond to Figure 1(b) and

Figure 1(a) respectively, and the third and fourth lines correspond to a symmetric scenario

with Sj = τ2, Sk = τ1 (τ1 < τ2). Also, note that the right hand side of the equation does

depend on τ1 and τ2 via the R values.

For Ci, i 6= j, k, scenario (a) with Sj = τ1 and Sk = τ2 is identical to scenario (b) with

Sj = τ2 and Sk = τ1 and vice versa. Therefore ∆(F̃ |Sj = τ1, Sk = τ2)+∆(F̃ |Sj = τ2, Sk =

τ1) = 0 and thus ∆(FD2 |Sj = τ1, Sk = τ2) + ∆(FD2 |Sj = τ2, Sk = τ1) > 0.

From Remark 3.1 it follows that if the set of all possible such scenarios is not of measure

zero, the expected unfairness will increase (and otherwise it will not change).

Theorem 4.5 (System Unfairness of FCFS and LCFS for G/G/1). Consider a

single server system with arbitrary arrivals and where the service times are i.i.d random
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variables with arbitrary known distribution (e.g. G/G/1). Then FCFS is the service

policy with the lowest systen unfairness in Φ and LCFS is the one with the highest system

unfairness.

Proof. The proof follows immediately from Corollary 4.1.2 and using an argument similar

to the one used in Theorem 4.3.

For a given arbitrary service requirement distribution, assume, for the contradiction,

that there exists an arrival pattern, and a service policy φ ∈ Φ, φ 6= FCFS, which is the

policy with the lowest expected unfairness in Φ for this arrival pattern. Then the order of

service created by φ for this arrival pattern is different from the order of service created

by FCFS, otherwise φ is indistinguishable from FCFS.

Given this arrival pattern and the order of service created by φ, observe the first pair

of adjacently served customers which are not served according to their order of arrival.

Since the more senior of these customers is served earlier by φ, one can interchange their

service order. According to Corollary 4.1.2, the result of this interchange is a decrease in

the expected unfairness for this arrival pattern. Thus the resulting order of service is more

fair than φ, in contradiction to φ having the lowest expected unfairness for this arrival

pattern.

A similar argument proves that LCFS has the highest system unfairness in Φ.

Remark 4.2. Again, from Remark 3.1 it implies directly that the properties stated in

Theorem 4.5 for every arrival pattern, hold for system unfairness as well.

4.2 Reaction to Differences in Service Requirement

In this section we show that RAQFM reacts well to service requirement differences. We

demonstrate this in the case where arrival times of all customers are identical.

Theorem 4.6 (Preference of Shorter Service Time, For Simultaneously Arriv-

ing Customers.). Let Ci, i = 1, . . . , N be N customers arriving simultaneously (i.e.

∀i, ai = a) at an empty system. Assume that no arrivals occur between a and the depar-

ture epoch of the last customer a +
∑N

1 si. Then, for any two customers Ci, Cj such that

si < sj, it is more fair to serve Ci before Cj.

Proof. For simplicity of presentation and without loss of generality, assume that cus-

tomer index follows the customer’s service order, namely Ci is served before Ci+1, i =
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1, 2, . . . , N − 1. The discrimination experienced by the n-th customer served is

Dn = sn −

n
∑

i=1

si

N − i + 1
= sn

N − n

N − n + 1
−

n−1
∑

i=1

si

N − i + 1
(9)

The unfairness of the scenario is

1

N

N
∑

n=1

(

sn

N − n

N − n + 1
−

n−1
∑

i=1

si

N − i + 1

)2

(10)

To evaluate Eq.(10) we first evaluate the terms involving s2
n. These yield

s2
n

(

N − n

N − n + 1

)2

+
N
∑

i=n+1

(

sn

N − n + 1

)2

=
N − n

N − n + 1
s2
n. (11)

Next consider the terms in the sum involving snsk, n > k. These yield

−2
sn(N − n)

N − n + 1

sk

N − k + 1
+

N
∑

i=n+1

2
sn

N − n + 1

sk

N − k + 1
= 0. (12)

To summarize, the unfairness of the scenario, namely Eq.(10), reduces to

1

N

N
∑

n=1

N − n

N − n + 1
s2
n. (13)

Note that N−n
N−n+1 is monotone decreasing in n. Thus, the unfairness increases if a cus-

tomer with larger service requirement is served ahead of a customer with smaller service

requirement. In other words, the service order with the lowest unfairness is the one where

∀i < j, si ≤ sj, and every deviation from this order yields a higher unfairness order.

Corollary 4.1. It follows immediately from Theorem 4.6 that for a scenario consisting of

N simultaneously arriving customers (and no other customers), the most fair service order

is Shortest Job First (SJF) and the least fair service order is Longest Job First (LJF).

Remark 4.3. The advantage of serving a shorter service time customer Ci ahead of a

a longer service time customer Cj , as in Theorem 4.6, holds when arrival times of all

customers are identical, and does not necessarily hold when only two customers arrive
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simultaneously, say ai = aj. For example, consider the following arrival and service

pattern

{(ai, si)}i=1...5 = {(0, 3), (1, 1), (1, 2), (3, 1), (6, 1000)} (14)

and compare the following service orders: (i) 1, 2, 3, 5, 4 (ii) 1, 3, 2, 5, 4. Note that a2 = a3

and s2 < s3. Nonetheless, the unfairness of the first order of service is roughly ≈ 83556

while that of the second order is roughly ≈ 83528, namely the second order is more fair.

4.3 Absolute Fairness of PS

Theorem 4.7 (Zero Unfairness of PS). For any arrival and service pattern, a schedul-

ing policy has zero unfairness if and only if the departure epochs of all customers are

identical to those in PS.

Remark 4.4 (PS Imitators). A policy can schedule its processing in a way that the de-

parture epochs of all customers are identical to those in PS, even if the scheduling is not

identical to PS at every epoch. We call such a policy a “PS Imitator”. We conjecture that

in order to execute PS imitation a scheduler must know all the exact service times and

arrival epochs of the customers ahead of time.

Proof of Theorem 4.7. First, PS has zero unfairness from the simple fact that for PS

si(t) = 1/N(t) for every epoch t and for every customer in the system at that epoch.

Thus,

δi(t) = si(t) − 1/N(t) = 0 ⇒ Di =

∫ di

ai

δi(t)dt = 0 ⇒ FD2 = E[D2] = 0, (15)

where the first equality is from Eq.(2), and the second is from Eq.(3). Second, to consider

PS imitators, observe that given the arrival epochs ai, each discrimination value, and

therefore the unfairness, are functions only of the departure epochs di and of N(t). Thus,

a scheduling policy that has departure epochs equal to that of PS for the same arrival and

service pattern has the same discrimination values, and therefore the same unfairness of

PS.

Third, we prove the other direction of the theorem by way of contradiction. Assume for

the contradiction that there exist an arrival and service pattern and scheduling policy φ,

with departure epochs that are not equal to those of PS, and that the resulting scenario has

zero unfairness. Observe the first departure that is different from a departure according to
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PS, say the departure of Ck. Denote the departure epoch according to PS and according

to φ by dk and d′k respectively, where dk 6= d′k. Denote the discrimination of Ck according

to PS and according to φ by Dk and D′
k respectively. From the assumption E[(D ′)2] = 0

and thus we must have D′
k = 0. Denote the number of customers in the system at epoch t

according to PS and according to φ by N(t) and N ′(t) respectively. We have from Eq.(1)

and Eq.(15)

Dk = sk −

∫ dk

ak

dt/N(t) = 0. (16)

Suppose dk > d′k, then all departures up to d′k are the same for PS and for φ, and

therefore ∀t < d′k, N
′(t) = N(t). Thus,

D′
k = sk −

∫ d′

k

ak

dt/N ′(t) = sk −

∫ d′

k

ak

dt/N(t)

= sk −

(
∫ dk

ak

dt/N(t) −

∫ dk

d′

k

dt/N(t)

)

=

∫ dk

d′

k

dt/N(t) > 0, (17)

where the inequality results from the fact that N(t) ≥ 1 in (d′
k, dk) since Ck is in the

system. Thus, the assumption is contradicted.

Now suppose dk < d′k, then all departures up to dk are the same for PS and for φ, and

therefore ∀t < dk, N
′(t) = N(t). Thus,

D′
k = sk −

∫ d′

k

ak

dt/N ′(t) = sk −

(
∫ dk

ak

dt/N ′(t) +

∫ d′

k

dk

dt/N ′(t)

)

= sk −

(
∫ dk

ak

dt/N(t) +

∫ d′

k

dk

dt/N ′(t)

)

= −

∫ d′

k

dk

dt/N ′(t) < 0, (18)

again contradicting the assumption.

Corollary 4.2 (Absolute Fairness of PS). PS (and PS imitators) are the unique most

fair scheduling policies.

5 Bounds of RAQFM

In this section we derive bounds on the discrimination and unfairness measured by

RAQFM. Note that several of the theorems brought here were previously mentioned briefly
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and without proof in Raz et al. (2004d). We use this opportunity to bring the theorems

in their entirety and with a full proof.

5.1 Bounds On Individual Discrimination

Theorem 5.1 (Bounds on Individual Discrimination). For every scenario and every

customer Ci, −Wi/2 ≤ Di < si, where Wi is the waiting time of Ci. Both bounds are

tight.

Proof. For the upper bound we have from Eq.(1)

Di = si −

∫ di

ai

dt/N(t)dt < si, 1 ≤ N(t) < ∞, si > 0. (19)

To calculate the lower bound we divide the interval (ai, di) into two sets of intervals:

• T i
S = {t|N(t) = 1}

• T i
W = {t|N(t) > 1}.

We denote the length of a set of intervals X by ‖X‖.

From Eq.(1)

Di = si−

∫

T i

S

dt/N(t)−

∫

T i

W

dt/N(t) ≥ si−

∫

T i

S

dt−

∫

T i

W

dt/2 = si−‖T i
S‖−‖T i

W ‖/2, (20)

where the inequality is due to −1/N(t) ≥ −1/2,∀t ∈ T i
W .

Note that ‖T i
S‖ + ‖T i

W ‖ = di − ai, thus the minimum is achieved when ‖T i
S‖ is the

largest.

To bound ‖T i
S‖ observe that when N(t) = 1, Ci must be served. As the system is

work conserving, a customer cannot be served more than his requested service time, and

therefore ‖T i
S‖ ≤ si. Thus, the minimum of Eq.(20) is achieved when ‖T i

S‖ = si ⇒

‖T i
W ‖ = di − ai − si = Wi. Therefore,

Di ≥ si − si − Wi/2 = −Wi/2. (21)

To show tightness of the upper bound we let N(t) → ∞, ai ≤ t ≤ di in Eq.(19),

where di − ai is finite. To show tightness of the lower bound consider the last customer

in a FCFS busy period, who encounters exactly one customer in the system upon arrival.
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Note that a customer may encounter a negative discrimination of −Wi/2 whose value is

unbounded, even if service times are all bounded. This occurs to a customer who arrives to

a LCFS served system with a single customer (in service) and who encounters a (possibly

unbounded) sequence of arrivals occurring exactly at service completion epochs.

5.2 Bounds on System Fairness

Theorem 5.2 (Bounds on Scenario Unfairness). For every scenario,

0 ≤ F|D| ≤ 2smax (22)

0 ≤ FD2 <
N

2
(smax)2, (23)

where smax is the maximal service requirement and N is the number of customers in the

scenario. The lower bounds are both tight. The upper bound for F|D| is tight.

Proof. For ease of reading we choose the unit of time to be smax , assuming smax < ∞.

The lower bounds, including their tightness, were shown in Corollary 4.3.

The upper bounds can be derived by maximizing 1/N
∑N

i=1 |Xi| and 1/N
∑N

i=1(Xi)
2

under the constraints:

−
N − 1

2
≤ Xi ≤ 1 (24)

N
∑

i=1

Xi = 0. (25)

The first constraint arises from the bounds on the individual discrimination. The second

constraint expresses E[D] = 0 (see Section 3.2).

For both F|D| and FD2 , when N ≥ 3 one of the global maxima is achieved at X1 =

−(N − 1)/2, X2 = −(N − 3)/2, Xi = 1 for i > 2 (other global maxima exist, for example,

due to symmetry between the variables, or for F|D| every 0 ≤ X1, X2 ≤ N − 1 where

X1 + X2 = −(N − 2)). The maximum value for F|D| is

max F|D| =
1

N

(

(N − 1)/2 + (N − 3)/2 + (N − 2)
)

= 2 − 4/N < 2, (26)
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and the maximum value for FD2 is

maxFD2 =
1

N

(

(

(N − 1)/2
)2

+
(

(N − 3)/2
)2

+ (N − 2)12
)

= N/2 − 1 + 1/2N < N/2.

(27)

To prove the tightness of the upper bound of F|D|, consider a scenario as follows. All

customers in this busy period have a service requirement of 1 unit of time. The scenario

starts with the simultaneous arrival of N customers (say C1, C2, . . . , CN ) at the empty

system. The first customer to be served is CN . As soon as CN finishes service, a new

customer (say CN+1) joins the system and gets served ahead of C1, . . . , CN−1. Just prior

to the service completion of CN+1, CN+2 arrives and gets served ahead of C1, . . . , CN−1,

and so on, until CN+M−1 is served. At the service completion of CN+M−1, the first N − 1

customers are served together using a processor sharing policy, and all leave the system

N +M −1 units of time after the beginning of the scenario. Analyzing the above scenario

we find M customers with a positive discrimination of 1− 1/N and N − 1 customers with

negative discrimination of 1−M/N − (N − 1)/(N − 1) = −M/N . The total unfairness is

therefore 1/(M + N − 1)(M(N − 1)/N + (N − 1)M/N) = 2M(N − 1)/(N(M + N − 1)).

Taking the limiting case M � N → ∞, we get F|D| → 2.

6 Computing RAQFM for Markovian Models

In this section we demonstrate how the system measure of RAQFM can be computed for

Markovian models.

6.1 Analysis of the Single-Server FCFS System

To demonstrate one way of analyzing the system fairness we provide the analysis of the

FCFS service M/M/1 system, with arrival rate λ and mean service length 1/µ. This

analysis was done in a slightly different approach in Raz, Levy, and Avi-Itzhak (2004d).

It is provided here in order to demonstrate and clarify the methodology.

Let us consider a tagged customer C. For an arbitrary epoch let a and b denote the

number of customers in the queue which are ahead of C and behind C, respectively. Due

to the memoryless properties of the system, the state (a, b) (which we call the customer

state) captures all that is needed for predicting the future discrimination of C.

The number of customers in the system at an epoch where C observes the state (a, b)
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is a + b + 1. The discrimination rate at that state, denoted δ(a, b), is given by:

δ(a, b) =

{

− 1
a+b+1 a > 0,

1 − 1
b+1 a = 0.

(28)

The customer state will remain unchanged until the next customer arrival or depar-

ture occur. The duration until either of those events is exponentially distributed and its

moments are

t(1) =
1

λ + µ
, t(2) =

2

(λ + µ)2
= 2(t(1))2. (29)

Since these moments are independent of the state we can denote them t(1) and t(2).

Let D(a, b) be a random variable denoting the discrimination experience by C through

a walk starting at state (a, b) and ending when C leaves the system. Let d(a, b) and

d(2)(a, b) denote the first and second moment of D(a, b), respectively.

Assume C is in state (a, b) at some epoch. The state of C can change by one of the

following events:

1. A customer arrives into the system. The probability of this event is λ̃ = λ/(λ + µ).

Afterwards C’s state will change to (a, b + 1).

2. A customer leaves the system. The probability of this event is µ̃ = µ/(λ + µ). If C

is not being served (a 6= 0) C’s state will change to (a − 1, b); else C will leave the

system.

This leads to the following recursive expression:

d(a, b) = t(1)δ(a, b) + λ̃d(a, b + 1) +

{

µ̃d(a − 1, b) a > 0,

0 a = 0.
(30)

Similarly, the equations for d(2)(a, b) are

d(2)(a, b) = t(2)(δ(a, b))2 + λ̃d(2)(a, b + 1) + 2t(1)δ(a, b)λ̃d(a, b + 1)+

{

µ̃d(2)(a − 1, b) + 2t(1)δ(a, b)µ̃d(a − 1, b) a > 0,

0 a = 0.
(31)

These expressions can be used, via numerical recursion, to compute the values of

d(2)(a, b) to any desired accuracy.
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We can now compute the system unfairness. Let k be the number of customers seen

by C upon arrival into the system. Then

FD2 =

∞
∑

k=0

pkd
(2)(k, 0), (32)

where pk = (1 − ρ)ρk is the steady state probability of encountering k customers in the

system.

6.2 Analysis of Other Markovian Models

A methodology for analyzing a general Markovian system is provided in (Raz, , Levy, and

Avi-Itzhak (2004a)).

This type of methodology, with various adaptations, was used to analyze the M/M/1

system with other service disciplines (Raz, Levy, and Avi-Itzhak (2004d)), M/M/1 queues

with prioritization (Raz, Avi-Itzhak, and Levy (2004b)), M/M/r (r > 1) systems with a

common queue and multiple servers (Raz, Avi-Itzhak, and Levy (2004c)) and queueing

systems with Poisson arrivals and Coxian service time distributions (Brosh, Levy, and

Avi-Itzhak (2004)).

7 Locality of Reference

One issue related to definition of fairness is the locality of reference. It may be argued

that a customer’s perception of the level of fairness is determined by how he is treated

in comparison to other customers who, by getting higher or lower service preference, may

impact his preference. These are customers who compete with him, locally in time, for

the resources of the server. In a non-idling steady-state single-server system the largest

possible group of reference is determined by the busy period in which a customer is being

served. As shown in Raz, Levy, and Avi-Itzhak (2005) service preference of all customers

in a busy period can be impacted by all other customers of the busy period. Customers

served in two different busy periods cannot impact each other’s service preference. A

variance that is computed according to this principle is called local-reference variance.

In contrast, it may also be argued that the customer’s perception of the level of fairness

is determined by comparison to all customers ever served in the system (globality of ref-

erence). A variance that is computed according to this principle is called global-reference

variance.
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The RAQFM measure addresses both the locality of reference and the globality of

reference approaches, since the values it computes under both approaches are always

identical to each other. This is demonstrated in the following example. Consider a system

where all customers have service time of one unit, and arrivals occur in bulks of either 2 or

4 customers in a bulk. Assume also that arrivals occur at constant distance of 6 time units,

and thus each busy period consists of one bulk exactly. Suppose that the system is served

in the Random Order of Service (ROS) discipline. The RAQFM value of customers served

in the short busy period is 0.25 and in the long one it is 0.479. The probabilities of being

served in a short and in a long busy periods are 1/3 and 2/3 respectively. Using the local-

reference variance approach we get for RAQFM FD2 = (1/3)0.25 + (2/3)0.479 = 0.403.

Nontheless, since E(D) = 0 (zero-sum property) this is also the value of the global-

reference variance.

In contrast, suppose one uses the waiting time variance as the unfairness measure (as

opposed to the discrimination variance). In such a case the values of this measure for the

short and long busy periods are 0.25 and 1.25 respectively. The local-reference variance

unfairness measure value is then 0.917 while the global-reference variance value is 1.139,

which is 24 percent greater.

This difference becomes even more striking when the service discipline is PS and one

uses the sojourn time (instead of using the waiting time). In this case the local-reference

variance measure is zero while the global-reference variance measure is 0.889.

Due to the lack of space we only state this property in this paper. A formal treatment

of this subject as well as a proof that for the discrimination function D of RAQFM the

local-reference variance equals the global-reference variance, while for other functions it

does not hold, are provided in a forthcoming work Raz, Levy, and Avi-Itzhak (2005).

8 Numerical Results

In Raz, Levy, and Avi-Itzhak (2004d), numerical results for the M/M/1 queue were

brought, and it was demonstrated that when the seniority differences dominate service

time differences (as is the case in the M/M/1 queue), RAQFM properly ranks the policies

by their seniority preferences.

Our aim in the following example is to demonstrate the sensitivity of RAQFM to

service time discrepancies and show that when this factor dominates the seniority factor,
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RAQFM reacts properly.

To this end we consider a case where the arrivals remain Poisson while the variability

of service times increases drastically. This is achieved by a bi-valued service time whose

values are s = 0.1 with probability p and s′ = 10 with probability 1− p. The value of p is

selected to be p = 90/99 = 0.9009 so as to have mean service time of 1, identical to the

previous numerical example. The variance of this service time is ps2 + (1 − p)s′2 = 9.1,

in comparison to the variance of the M/M/1 case which was 1/µ2 = 1. This system is

analyzed via a simulation program, which was run on each evaluated point for at least

106 customers. Figure 2 depicts FD2 as a function of ρ for the FCFS, LCFS and P-LCFS

cases.
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Figure 2: System Unfairness For Highly Variable Service Times

The figure demonstrates that over the range ρ = (0, 0.55) RAQFM ranks P-LCFS as

the most fair among the 3 policies, in contrast to its ranking in the M/M/1 case. As such,

it concurs, in this case, with the ranking of the slow-down fairness approach (Wierman

and Harchol-Balter (2003)) and is in contrast with the order fairness approach (Avi-Itzhak

and Levy (2004)).

To understand this, note that due to the large variability of service times, large dis-

criminations (and unfairness values) are formed when a large job is served and many small

jobs queue behind it. In such cases preemption of large jobs from service can alleviate this

problem. P-LCFS achieves this since it tends to preempt the large jobs with high prob-
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ability. Thus, in the case of high variability service times, where service time differences

dominate seniority differences, P-LCFS can be more fair than FCFS due to giving prefer-

ential treatment to short jobs over long jobs, despite its preferential service to less-senior

jobs over more-senior jobs.

In summary, the example demonstrated how RAQFM accounts for the tradeoffs be-

tween seniority differences and service times differences.

It should be noted that the lower unfairness of P-LCFS does not hold for the whole

range of utilizations. For high load situations P-LCFS becomes again the most unfair

policy. This may possibly be attributed to the fact that at high loads the queue size tends

to be large and thus the magnitude of order discrepancies may increase sharply (similarly

to the waiting time variance).

9 Concluding Remarks

This work aimed at evaluating the RAQFM queueing fairness measure. We recognized

that both seniority and service requirements must play significant roles in scheduling deci-

sions, and showed that RAQFM accounts for both quantities. RAQFM is appropriate for

measuring individual job discrimination under specific sample paths, as well as unfairness

of scenarios and unfairness of systems and service policies. Further, the measure allows

the use of common queueing theory techniques for evaluating the system unfairness.

We examined the sensitivity of RAQFM to seniority and service requirement and

showed that in special “simple-to-understand” cases it reacts to these parameters in a

proper and intuitive way. We showed that the PS service policy is uniquely absolutely

fair. We further provided bounds on the measure (individual discrimination) that can be

used as a scale of reference for the measure. In addition to these properties, RAQFM

possesses the “locality of reference” property.

We showed that RAQFM yields to analysis of Markovian systems and demonstrated

the method on the FCFS M/M/1 system.

Good understanding of fairness and proper quantification of it will allow researchers

and practitioners to quantitatively account for fairness, in addition to the traditional

measure of efficiency, in designing and evaluating queueing systems and scheduling policies.

A comparison of the various measures of fairness in queues is important in order to better

understand the subject as well as the situations in which each of the measures should be
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applied. Such comparison is provided in Avi-Itzhak, Levy, and Raz (2004).
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