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Abstract In novel switching approaches such as Optical
Burst Switching, the involved buffers can only provide a de-
generate waiting room, with delays restricted to multiples of
a basic value, the granularity. Although the resulting perfor-
mance loss was already studied analytically, previous work
is either limited by the assumption of independent arrivals,
or it involves a matrix with size growing fast with buffer size
or arrival process complexity.

Overcoming this, we developed a generic and accurate
loss performance model for a degenerate GI/G/1 buffer in
discrete time, that yields results instantly for any constella-
tion of burst sizes, inter-arrival times, granularity, load and
buffer size. This paper presents our model and compares
its results to simulations, illustrating the impact of differ-
ent types of correlation in the arrival process on loss perfor-
mance. Our basic model is general and accurate, it can thus
serve as a basic tool for optical switch design.
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1 Introduction

Within the tradition of queueing research, degenerate buffer
systems were studied for the first time only recently. To the
best of the authors’ knowledge, Lakatos was the first to pub-
lish on the subject. He studied a degenerate M/M/1 queue
in continuous time in [1], and extended the analysis to a
discrete-time setting in [2]. He based the model on a prob-
lem connected with the landing of airplanes, where arriving
airplanes are obliged to wait for a discrete number of orbits
of fixed length before landing. This system has a degener-
ate waiting room, which Lakatos refers to as cyclic wait-
ing, while some more recent publications in this tradition
[3] speak of a Lakatos-type queueing system. Important to
note is that this system differs fundamentally from a retrial
system [4], although some, like the one of [5], have a very
similar setting. A general explanation of the differences can
be found in [3].

A wide-spread interest in degenerate buffers was gen-
erated by the advent of optical networking. While optical
fibers are the standard carrier for data transport over long
distances, the data processing at the nodes is still mainly
done in the electronic domain. To increase switching speeds
in the long run, solutions like Optical Packet Switching
(OPS) and Optical Burst Switching (OBS) aim to process
data in the optical domain [6]. The involved optical buffers
are implemented as a set of N + 1 Fiber Delay Lines
(FDLs), with lengths that are typically a multiple of a basic
value D called the granularity (a term coined in [7]). This
results in a degenerate waiting room, with waiting times
0 · D,1 · D,2 · D · · ·N · D.

Over the years, several authors have developed analytic
models for such optical buffers, especially in the case of
memoryless arrivals [7–11]. Since arrival processes in (opti-
cal) communication networks are known to be bursty, a sep-
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arate study of the impact of correlation in the arrival process
on performance is crucial, but was only given attention to re-
cently. Almeida et al. [12, 13] characterize the system with
N + 1 possible waiting times as states of a Markov chain,
and obtain exact results for memoryless inter-arrival times
with the introduction of N + 1 blocking states. However,
for general inter-arrival times, they obtain approximate re-
sults, and need to introduce a multiple of N + 1 blocking
states (10 times N + 1 in [13]) to obtain sufficient accu-
racy, which leads to a very large state space, complicating
the calculation of waiting time and loss probabilities. Op-
posed to this, the results of the current contribution are an-
alytic formulas, that have the benefit of being valid for a
broad range of parameters at once, while yielding results
instantly, even for large buffer sizes or exotically distrib-
uted inter-arrival times. Although valid for the same traffic
assumptions as [13], the formulas are obtained by a com-
pletely different approach, based on the use of probability
generating functions (pgf’s). In this regard, it can be seen
as an extension of [9], with the specific merit that the most
restricting assumption in [9], that of a memoryless arrival
process, is alleviated. As such, this contribution is the first
to provide an exact analysis of the degenerate GI/G/1 queue
of infinite size in discrete-time, while the continuous-time
case still remains unstudied. The analysis is exact for an
infinite-sized buffer, but it also offers accurate approximate
results for finite-sized buffers, as validated in this paper
by comparison with simulations. As such, this paper pro-
vides analytical formulas for the performance evaluation of
optical buffers that apply to a wide variety of traffic set-
tings.

In Sect. 2, we introduce the degenerate buffer setting
and the modeling approach by means of pgf’s. In Sect. 3,
we foreground the crucial steps of the analysis, referring
to Appendix for details at one point. The analytic perfor-
mance measures, derived in Sect. 4, are compared with sim-
ulations in Sect. 5, where also the specific impact of cor-
relation in the arrival process on loss performance is fore-
grounded.

2 Stochastic model

2.1 Discrete-time setting

The model we construct has a discrete-time setting, that
assumes events take place synchronously, at the beginning
of time slots, as is frequently proposed in the context of
optical switching. This implies that all time-related vari-
ables and measures, including the granularity D, are ex-
pressed as multiples of the slot length, that may be arbitrary,
and is therefore not mentioned explicitly in the remainder
of the paper. In the unslotted case, inter-arrival times and

Fig. 1 Evolution of Hn in time. A burst Bn arrives, and has to wait for
D�Hn/D�, so as to avoid contention with previously arrived bursts

service times may also be continuous (asynchronous). We
note, however, that one can approximate the continuous-
time case arbitrarily close if one takes a very small slot
length, and scales the involved variables and measures ac-
cordingly.

2.2 Degenerate buffer setting

A degenerate buffer of size N + 1 is a set of N + 1 delay
lines, with lengths expressed in a number of slots 0 · D,1 ·
D · · ·N ·D and feeds into a single outgoing channel. When-
ever a customer arrives in a non-empty buffer, it has to be
queued at least until all previous customers have left the sys-
tem (FIFO). Due to the degeneration of the buffer, customers
have to wait longer, so as to wait for a time that is a multiple
of D. This extra waiting time results in an under-utilization
of the outgoing channel, reflected in the occurrence of so-
called voids, i.e., periods during which the outgoing chan-
nel remains unused, despite the fact that the system is not
empty. In case of a finite-sized buffer, the maximum waiting
time is N × D, and any customer requiring a larger delay is
lost. As a consequence, finite-sized degenerate buffers suf-
fer both under-utilization of the outgoing channel, as well as
increased loss, if compared to a classical (non-degenerate)
buffer. For most of the analysis, we will assume an infinite-
sized buffer (N = ∞). Finite-sized buffers are considered in
Sects. 4.2 and 5.

2.3 Scheduling horizon

At this point, we focus on how arriving customers join the
queue of a degenerate buffer. The relation between the in-
volved random variables, all expressed in a number of slots,
is illustrated in Fig. 1. Numbering customers in the order of
their arrival, the inter-arrival time Tn captures the time be-
tween the nth arrival instant and the next. The burst size Bn

is the service time of the nth customer. Upon arrival, cus-
tomer n has to wait for at least an amount Hn, the time
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needed for all previously arrived customers to be served.
This amount we call the scheduling horizon Hn, as ob-
served by the nth customer upon arrival. Due to the buffer’s
degeneration, the customer has to wait for a waiting time
Wn, that is a multiple of D and is sufficiently long, i.e.,
Wn ≥ Hn.

The evolution of these variables can be captured in one
system equation, namely

Hn+1 =
[
D ·

⌈
Hn

D

⌉
+ Bn − Tn

]+
. (1)

This equation contains two non-linearities. Introducing
some additional notation, we can split this equation into two
parts. The first non-linearity is

Hn+1 = [Gn − Tn]+ (2)

with

Gn = Bn + Wn, (3)

where [x]+ = max{x,0}, while the second one is

Wn = D ·
⌈

Hn

D

⌉
. (4)

In the following, we will refer to the non-linearity in (2) as
the queueing effect, since it occurs frequently in classical
queueing analysis. The non-linearity in (4) we will refer to
as the granularity effect, since it reflects the system’s degen-
eration.

2.4 Traffic model

To proceed with the analysis of (2) and (4), we impose
certain restrictions on the burst sizes Bn and inter-arrival
times Tn. We assume both to form a sequence of indepen-
dent and identically distributed (iid) random variables (rv’s).
In our analysis, we use the probability generating function
(pgf) of the probability mass function (pmf) of the involved
variables. The burst sizes Bn, e.g., have a common pmf
Pr[Bn = k] (k = 1,2 . . .) and a pgf

B(z) = E[zBn ] =
+∞∑
k=1

zk Pr[Bn = k]

and likewise for the other variables Tn, Hn, Gn and Wn.

3 Analysis for the infinite system

The analysis assumes a system of infinite size. The ap-
proach consists in solving queueing effect and granular-

ity effect separately. A crucial third step is then to com-
bine both correctly, which requires involving Rouché’s the-
orem.

3.1 Conditions

From this point on, we assume that the system is stable. The
condition for stability is investigated below in Sect. 4.1. Un-
der this condition, the distributions of Hn (and likewise, for
the other variables Gn and Wn) converge, for n → ∞, to a
unique stochastic equilibrium distribution, that no longer re-
lates to the initial condition of the system. Associated with
this distribution is a common rv H , and a pgf H(z), of which
we will derive the explicit form in the following. For the
burst time distribution, we assume that the mean value of
the burst size is finite, E[B] < ∞, which is not a very re-
strictive assumption. For the inter-arrival time distribution,
we assume that its pgf T (z) is rational. Both the numera-
tor and denominator are thus polynomials of finite degree.
This assumption too is not very restrictive from a mod-
eling point of view, and includes the distributions treated
in Sect. 5.

3.2 The queueing effect

Since we assume the system is stable, we analyze the queue-
ing effect as it occurs for the stochastic equilibrium distrib-
utions, and (2) becomes

H = [G − T ]+ . (5)

We emphasize that G and T (and, Gn and Tn) are statisti-
cally independent, which is essential to our current analy-
sis. Now, the complexity of a transform-based solution to
this problem depends critically on the exact form of the dis-
tribution, or equivalently, the pgf of T , as discussed in for
example [14].

To solve (5), we write the rational pgf of T as

T (z) = N(z)

P (z)
=

∑N
i=0 niz

i∑P
i=0 pizi

. (6)

In other words, we label the numerator as a polynomial N(z)

of degree N , and the denominator as a polynomial P(z) of
degree P . Under these assumptions, (6) lends itself to an
exact analysis, as explained in Appendix. In appendix is ex-
plained how. The result in terms of pgf’s reads

H(z) = G(z)T (z−1) + T ∗(1) − T ∗(z−1). (7)

Here, T ∗(z) is an auxiliary function that is rational, just like
T (z), but not a pgf, as T ∗(z) �= 1. It shares the denominator
of T (z), P(z), but differs in its numerator N∗(z) �= N(z),
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that is a polynomial of degree N or less. In accordance with
(6), we can thus write

T ∗(z) = N∗(z)
P (z)

=
∑N

i=0 n∗
i z

i

∑P
i=0 pizi

. (8)

We note that the coefficients n∗
i are unknown. However, ap-

plying Rouché’s theorem in the following will enable us to
proceed without having to determine them explicitly. We fo-
cus now on the second non-linearity.

3.3 The granularity effect

The granularity effect reflects the degeneration of the buffer,
that is only able to realize delays that are a multiple of the
granularity D. It is captured by

W = D ·
⌈

H

D

⌉
. (9)

In previous work [9] it was obtained that

W(z) =
D−1∑
k=0

1

D

zD − 1

zεk − 1
H(zεk), (10)

where the symbols εk denote the D different complex Dth
roots of unity, i.e., εk = ej2πk/D (k = 0, . . . ,D−1). A prop-
erty of this solution is that it is “periodic” in the z-plane,
in that W(zεk) = W(z), k = 0, . . . ,D − 1, which is a di-
rect consequence of the fact that W(z) is a function of zD

only.

3.4 Combining results

We now start from (7), and apply the property that

G(z) = B(z)W(z). (11)

This is so, because of (3), and the fact that the pgf of the
sum of two independent rv’s is the product of their separate
pgf’s. We find that

H(z) = B(z)W(z)T (z−1) + T ∗(1) − T ∗(z−1). (12)

Further, substituting this expression for H(z) into (10), we
find a functional equation for W(z),

W(z) =
D−1∑
k=0

1

D

zD − 1

zεk − 1
{B(zεk)W(zεk)T ((zεk)

−1)

+ T ∗(1) − T ∗((zεk)
−1)}.

Using W(z) = W(zεk) this results in

W(z) =
∑D−1

k=0
1
D

zD−1
zεk−1

{
T ∗(1) − T ∗((zεk)

−1)
}

1 − ∑D−1
k=0

1
D

zD−1
zεk−1B(zεk)T ((zεk)−1)

. (13)

This does not represent a complete solution for W(z) yet,
as we do not have an exact expression for T ∗(z). However,
making use of Rouché’s theorem, we can overcome this last
obstacle.

3.5 Applying Rouché’s theorem

In order to apply Rouché’s theorem, we need to reformu-
late the denominator of W(z). More precisely, we rewrite
the denominator as the sum of two analytic functions of
z in the domain |z| < 1. Since the factor T ((zεk)

−1) has
poles in this domain, we make further assumptions on the
form of T (z) = N(z)/P (z) to remove these poles. As for
the degree of N(z) and P(z), two possibilities occur: either
N ≤ P , or N > P . Derivations for both cases follow a sim-
ilar line, we confine ourselves here to the case N ≤ P . Fur-
ther, we write P(z), the common denominator of T (z) and
T ∗(z), as

P(z) =
C∏

j=1

(z − γj )
mj .

(This notation is also adopted in Appendix.) The γj (j =
1 . . .C) are the C different zeroes of P(z), all outside of
the domain |z| < 1, each with associated multiplicity mj

(j = 1 . . .C), and thus P = ∑C
j=1 mj . Now, we are in

the position to remove the poles of T ((zεk)
−1), by mul-

tiplying both numerator and denominator of W(z) in (13)
with

D−1∏
k=0

(zεk)
P P ((zεk)

−1)

which gives us, considering (6) and (8), for W(z)

W(z) =
∑D−1

k=0
1
D

zD−1
zεk−1 {∏D−1

k=0 (zεk)
P P ((zεk)

−1)T ∗(1) − ∏D−1
k=0 (zεk)

P N∗((zεk)
−1)}∏D−1

k=0 (zεk)P P ((zεk)−1) − ∑D−1
k=0

1
D

zD−1
zεk−1B(zεk)

∏D−1
k=0 (zεk)P N((zεk)−1)

. (14)
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This can be somewhat simplified (not shown here, but
applied below), by remarking that

D−1∏
k=0

(zεk)
P P ((zεk)

−1) =
D−1∏
k=0

C∏
j=1

(1 − zεkγj )
mj

=
C∏

j=1

(1 − zDγ D
j )mj , (15)

which is an application of the identity xD −aD = ∏D−1
k=0 (x−

εka) at x = 1 and a = zγj . A second step to take is to split
the denominator of (14), denoted R(z), into two functions
R1(z) and R2(z), as follows,

R(z) = R1(z) + R2(z),

R1(z) =
C∏

j=1

(1 − zDγ D
j )mj ,

R2(z) = −
D−1∑
k=0

1

D

zD − 1

zεk − 1
B(zεk)

D−1∏
k=0

(zεk)
P N((zεk)

−1),

where we applied the simplification of (15) to obtain R1(z).
Now, one can verify that R1(z) and R2(z) are both analytic
in the domain |z| < 1: the expression (zεk − 1) is not an
actual pole due to (zD − 1), B(z) is analytic in this domain,
and

∏D−1
k=0 (zεk)

P N((zεk)
−1) is too, since N ≤ P .

In a third and last step, we remark that

R(zεk) = R(z); R1(zεk) = R1(z);
R2(zεk) = R2(z) (k = 0, . . . ,D − 1).

(For R1(z), this is obvious; for R2(z), this can be understood
if one compares with the form of W(z) (10), which also
has this property.) Denoting y = zD , we introduce equiva-
lent functions R̂(y), R̂1(y) and R̂2(y) for which

R̂(zD) = R(z); R̂1(z
D) = R1(z); R̂2(z

D) = R2(z)

Now, we take up the approach of [15], and apply
Rouché’s theorem on R̂(y). To do this, it is necessary that
R̂1(y) and R̂2(y) (i) are analytic functions in |y| < 1, (ii)
are continuous at the boundary |y| = 1, (iii) have derivatives
at y = 1, (iv) comply with the relation |R̂1(y)| > |R̂2(y)|
at (|y| = 1, y �= 1), (v) comply with the relation R̂1(1) =
−R̂2(1) �= 0, (vi) comply with the relation

R̂′
1(1) + R̂′

2(1)

R̂1(1)
> 0, (16)

where primes denote derivates.
If we assume the involved pgf’s to be properly defined,

and require the system to be stable, it can be easily checked

that these six conditions are fulfilled. (What happens for an
unstable system is explained in Sect. 4.1.) Invoking the the-
orem in [15], we conclude that the number of zeroes N

R̂
of

R̂(y) in the domain |y| < 1 relates to the number of zeroes
N

R̂1
of R̂1(y) in the same domain (which is known to be P )

according to the relation

N
R̂

= N
R̂1

− 1 = P − 1.

Including now the zero at y = 1, the total number of ze-
roes for R̂(y) in the domain |y| ≤ 1 sums up to P . Invoking
that W(zD) is a proper pgf, with no singularities in the men-
tioned domain, all P zeroes y = βi (i = 0, . . . ,P −1) of the
denominator R̂(y) in the domain |y| ≤ 1 have to be com-
pensated by the same zeroes y = βi in the numerator. Aware
of these zeroes in the numerator, and using the knowledge
that the numerator of W(zD) is of degree P (which can be
understood if one combines (14) and (15)), we cast W(zD)

in a form

W(z) = K∗(zD − 1)

R̂(zD)

P−1∏
i=1

zD − βi

1 − βi

. (17)

Again, this expression reflects that W(z) is a function of zD .
The constant β0 is the zero of R̂(y) equal to one, while the
other βi , i = 1, . . . ,P − 1 are zeroes of R̂(y) in the domain
|y| ≤ 1. Since R̂(y) has poles βi , R(z) has D · P poles αj ,
j = 0, . . . ,DP − 1, that all fulfill the condition αD

j = βi .
Note that, at this point, we indeed ruled out T ∗(z). The

constant K∗ can be determined by demanding that W(1) = 1
(normalization condition), and results in

K∗ =
C∏

j=1

(1 − γ D
j )mj ·

{
E[T ] − Beq

D

}
, (18)

with Beq the equivalent burst length, defined as

Beq = E[B] + D − 1

2
+

D−1∑
k=1

B(εk)T (ε−1
k )

εk − 1
.

Now, the pgf of the waiting time W(z) is fully known. It
then suffices to substitute W(z) in (12), to obtain an explicit
formula for H(z), which was our aim.

4 Derived measures

In this section, we first define an equivalent load, that serves
to characterize the infinite system’s stability. Next, we take
a look at approximate measures that allow to evaluate the
loss performance of a finite-sized buffer. These we apply in
Sect. 5.
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4.1 Equivalent load

As for the condition to stability, it can be intuitively un-
derstood that, for a buffer with infinite size, the queue
length grows unbounded if the load is too high. For de-
generate buffers, this happens even before the classic load
ρ = E[B]/E[T ] reaches unity. We can characterize a case of
unbounded growth by

lim
n→∞ Pr[Hn = 0] = 0.

Considering (12) and (17), this occurs when K∗ (given by
(18)) becomes zero, which happens when E[T ] equals Beq.
From this, one can define a maximum tolerable arrival in-
tensity λmax, that puts an upper limit to the arrival intensity
λ, defined as 1/E[T ]. It follows that λmax is the solution to
the implicit expression (implicit, as λ also occurs in the ex-
pression for T (z))

1

λmax
= E[B] + D − 1

2
+

D−1∑
k=1

B(εk)T (ε−1
k )

εk − 1
. (19)

The symbols εk still represent the D different complex Dth
roots of unity, as in (10). The solution is thus function of
the FDL granularity D, the (complete) pgfs of both inter-
arrival and burst-size distribution, and can be found from
(19) with a simple bisection algorithm. Related, we can de-
fine an equivalent load, that is given by

ρeq = λ ·
(

E[B] + D − 1

2
+

D−1∑
k=1

B(εk)T (ε−1
k )

εk − 1

)
.

Now, the effect of voids is incorporated into an altered de-
finition of the load. Remark that ρeq equals one when the
arrival intensity reaches λmax, which in general happens
for a classic load smaller than one. Degenerate buffers are
thus unstable for lower loads, if compared to classical (non-
degenerate) buffers.

A final note goes to an alternative method to obtain λmax.
One easily verifies that the conditions to apply Rouché’s
theorem in Sect. 3.5 are violated when λ = λmax. More
precisely, the assumption that the system is stable then no
longer holds, and the numerator of (16) turns zero, reflect-
ing the system’s unstability.

4.2 Heuristic

Results up to now are valid for a degenerate buffer of infinite
size. To derive the loss probability for a buffer of finite size
N + 1, we rely on a heuristic called “heuristic B” in [9], that
is defined as

BLP ≈ (1 − ρeq) · Pr[H∞ > N · D]
1 − Pr[H∞ > N · D] .

Here, H∞ denotes the scheduling horizon in an infinite de-
generate buffer (before denoted simply H ) and ρeq is the
above-mentioned equivalent load. The overflow probabili-
ties Pr[H∞ > N ·D] can be obtained in many different ways
from the expression of H(z); here, we choose to apply a
dominant pole approximation. To do this, we have to im-
pose some additional (rather general) restrictions on the dis-
tribution of B(z). A sufficient condition, e.g., is that B has a
rational pgf. We will adopt this convention from here on, and
note that it poses no problem for the application of Sect. 5.
(Remark, however, that the model up to now is valid for any
B(z) with E[B] < ∞.)

Under this assumption, tail probabilities have a quasi-
geometrical tail decay, with decay rate z0, as

Pr[H∞ > N · D] ≈ cst

zN ·D+1
0

,

with z0 the (single) dominant pole of H(z) along the posi-
tive real axis. The constant follows from the application of
residue theory and is, in its final form, given by

cst = − 1

z0
lim

z→z0
(W(z) · (z − z0))

D

zD
0 − 1

.

The limit in the above can easily be calculated explicitly. As
for the pole z0, the function W(z) relates to H(z) accord-
ing to (12) and both have the same dominant poles. Since
for the latter, we had that W(z) = W(zεk), it is easy to see
that there will be D dominant poles, of the form zk = z0εk

(k = 0, . . . ,D−1), with z0 being (by definition) the positive
real one. That the latter does indeed exist (under the assump-
tions discussed in Sect. 2.4), follows readily by inspecting
the denominator of W(z) (see (14)) along the positive real
axis.

Although all formulas were found under the assumption
of a stable system, note that the heuristic also performs well
for overloaded systems, that is, with ρeq > 1. For a motiva-
tion hereof, see [11] (Sect. 3.4).

5 Numerical comparison

In this section, we perform a numerical comparison of sim-
ulation results against results from the heuristic of Sect. 4.
Our scope is twofold. On the one hand, we want to assess
the accuracy of the heuristic. On the other hand, we are par-
ticularly interested in the impact of correlation in the arrival
process on the performance of an optical buffer, since arrival
processes in (optical) communication networks are bursty,
as noted before.

The buffer we consider has a fixed size N = 20 and feeds
into a single channel. Arriving bursts have a fixed service
time B of 20 time slots. The load ρ = E[B]/E[T ] remains
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Fig. 2 Simulation traces of the
5 runs, ordered (1 to 5) from top
to bottom

Fig. 3 Loss probability vs.
granularity, for runs 1 to 5
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fixed to 60 percent, and thus also E[T ] is fixed. Now, we
consider a correlation model for the inter-arrival times that
uses a probabilistic mix of geometrically distributed rv’s TS

(parameter p1) and TL (parameter p2). More precisely, the
pgf of the inter-arrival time distribution is given by

T (z) = αTS(z) + (1 − α)TL(z),

where α, 0 ≤ α ≤ 1, is a weighing factor, and TS(z) and
TL(z) are the pgf’s of TS and TL respectively. This model
is able to capture an arrival process that we describe with
“trains” and “wagons”. That is, customers or “wagons” do
not arrive independently (as in the case of a Bernoulli ar-
rival process or a Poisson arrival process), but rather, they
arrive in smaller or larger groups or “trains”. The time in-
between customers of the same group, or “wagon spac-
ing”, generally denoted by TS , is on average much smaller
than the time between two trains or “train spacing”, gener-
ally denoted by TL. The average group size is captured by
Gavg = 1/(1 − α), expressing the average number of cus-
tomers per group or “wagons per train”. The average wagon
spacing is captured by Savg = 1/p1, the average train spac-
ing by 1/p2 (both expressed in slots).

In Fig. 2, a sample trace of five different simulation
runs is displayed, each with sample length 500 time slots.
With each new run (increasing run number) parameter val-
ues were altered, so as to go from no correlation between

Table 1 Parameter setting used
for the five runs Run 1 2 3 4 5

Gavg 1 2 4 4 4

Savg 20 20 20 10 5

arrivals (run 1) to an increasing amount of correlation (run
2 to 5). The parameter setting for each run is displayed in
Table 1. As can also be understood from the figure, first we
augmented the average group size Gavg (run 1 to 3), then we
diminished the wagon spacing Savg (run 3 to 5). Note that,
for all five runs, the load, the overall average inter-arrival
time and the service time remained fixed.

Figure 3 displays the loss probability for varying granu-
larity D (in time slots), for each of the five runs. The results
from the analysis are displayed as continuous curves, the
simulations as discrete points connected with dotted lines,
with a 95 percent confidence interval indicated for each sim-
ulation point.

As for the performance of the heuristic, it is clear that it
attains high accuracy. Therefore, the analytic curve for run 1
matches the simulations very well, while for run 5, the match
is less striking. Nevertheless, it is clear that the discrepancy
between simulation and analysis is very small around the
optimum, where the loss probability is minimal.

As for the impact of correlation in the arrival process
on the loss performance of a finite-sized degenerate buffer,
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the observation of increased loss comes rather as expected.
Less evident is what happens to the optima. For fixed ser-
vice times, previous work showed that the well-pronounced
optima around D1 = B − 1 and D2 = (B − 1)/2 remain op-
timal for a broad range of the load ρ if arrivals occur inde-
pendently. More precisely, it is known that D1 is optimal for
low values of the load (e.g. 10 percent) and the loss for D2 is
then much higher, while for a transition load ρ ≥ 0.652 (for
the assumed burst size), D2 becomes optimal. Interestingly,
the left pane of Fig. 3 (together with results not shown here)
learns that this balance between D1 and D2 is hardly influ-
enced when we increase the average group size in run 1 to
3: although the overall loss increases, the relative position of
D1 and D2 is hardly influenced. Entirely different is the sit-
uation for run 3 to 5, as inspection of the right pane of Fig. 3
illustrates. Apparently, decreasing the wagon spacing has a
devastating effect on the optimum at D2, while the optimum
D1 is much less influenced. As such, correlated arrivals with
small wagon spacing have the optimum D1 for both low and
higher loads.

Although not self-evident, this can be intuitively under-
stood when we think of a specific situation with D = D1 =
B − 1 = 19, with B the fixed service time of 20 time slots.
If an arriving burst is queued in delay line j.D, and the next
burst arrives just 1 slot later, then this next burst is sent to de-
lay line (j + 1).D and there will be no time in-between the
transmission of both bursts, implying that no void occurs.
This situation is indeed likely in run 4 and 5 (Pr[T = 1] is
0.077 and 0.152 respectively), while it is rather rare in run
1–3 (Pr[T = 1] is 0.030, 0.036 and 0.041 respectively). If
the arrival would occur not 1, but 2 slots later, then the void
size is still just 1 slot. Generalizing, the granularity value
D1 leads to small voids, especially when the case of a very
small inter-arrival time is a likely one. And, since minimiz-
ing the void size results in better loss performance, one can
see how D1 outperforms D2 on the right pane of Fig. 3, as
Pr[T = 1] increases. As a result, the optimum D1 is more
stable than it was under uncorrelated arrivals, and remains
optimal also for higher loads. This reveals how special fea-
tures of the inter-arrival time distribution, such as Pr[T = 1],
play an important role in the performance evaluation of de-
generate buffers.

6 Conclusions

We presented an analytic model for a degenerate buffer of
infinite size, with general inter-arrival and service times.
We started from a single system equation, and then divided
the problem into two parts. After treating the queueing ef-
fect and granularity effect separately, we combined solu-
tions, and applied Rouché’s theorem to determine the re-
maining unknowns. This yielded closed-form expressions
for the pgf’s of the scheduling horizon and the waiting time.

Further, we were able to characterize the system’s stabil-
ity with a maximum tolerable arrival intensity, and an equiv-
alent load. Also, we proposed heuristics to quantify the loss
performance of a finite-sized degenerate buffer, and con-
fronted them with simulation results. The match was good,
especially around the optima. Also, the results allowed for
a deeper insight on the impact of correlation in the arrival
process on loss performance, and the importance of special
features of the inter-arrival time distribution in that context.

In future work, our main challenge is the extension that
would allow for multiple channels serving a shared degen-
erate buffer. Evidently, that analysis encounters the same
mathematical problems as the ones known from conven-
tional multi-server queues. Therefore, we aim to come up
with approximations, that do justice to the specific nature of
degenerate (or optical) buffers.

Appendix

In this appendix, we explain how to solve the queueing ef-
fect (5)

H = [G − T ]+ , (20)

in terms of pgf’s, in a way similar to the approach in [14].
As mentioned above, the solution will contain an auxiliary
function T ∗(z). In the first step, we rewrite the pgf of T , so
as to facilitate the analysis of the second step.

Rewriting the pgf of T

The pgf of T (z) mentioned in (6) can be rewritten as fol-
lows.

T (z) =
R∑

i=0

riz
i +

∑Q
i=0 qiz

i

∏C
j=1(z − γj )

mj

=
R∑

i=0

riz
i +

C∑
j=1

mj −1∑
i=0

bij

(γj − z)i+1
. (21)

Subsequently we isolate the polynomial part of the frac-
tion, to perform then a partial fraction expansion. The γj

(j = 1, . . . ,C) are the C different poles of T (z), each with
associated multiplicity mj (j = 1, . . . ,C). Putting to use the
probability generating property of a pgf, one can express the
probabilities tk (k = 0,1 . . .), corresponding to T (z), as

tk = 1

k!
∂k

∂zk
T (z)|z=0

=
R∑

i=0

riδ〈i − k〉 +
C∑

j=1

mj −1∑
i=0

(
i + k

i

)
bij

γ i+k+1
j

,
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where δ〈i − k〉 denotes the discrete delta function, that
equals 1 if i = k, and zero if i �= k. Reordering the bino-
mial coefficients

(
i+k
i

)
, and introducing coefficients cij , we

arrive at

tk =
R∑

i=0

riδ〈i − k〉 +
C∑

j=1

mj −1∑
i=0

ki

γ k
j

cij . (22)

Obtaining the pgf of H

With the definition of a pgf as a starting point, we apply (20)
to obtain

H(z) =
∞∑

m=0

hmzm

=
∞∑

n=0

∞∑
k=0

gntkz
[n−k]+

=
∞∑

n=0

∞∑
k=0

gntkz
n−k +

∞∑
n=0

∞∑
k=n

gntk(z
0 − zn−k)

= G(z)T (z−1) +
∞∑

k=0

(1 − z−k)

∞∑
n=0

gntk+n, (23)

where gn and tk are the probabilities corresponding to G(z)

and T (z) respectively, and [x]+ is shorthand for max{x,0}.
We introduce the coefficients t∗k (k = 0, . . . ,∞),

t∗k =
∞∑

n=0

gntk+n

=
∞∑

n=0

gn

⎛
⎝ R∑

i=0

riδ〈k + n − i〉 +
C∑

j=1

mj −1∑
m=0

(k + n)m

γ k+n
j

cmj

⎞
⎠ ,

(24)

where we used (22) in the last transition. The first term in
this expression we can rewrite as

∞∑
n=0

gn

R∑
i=0

riδ〈k + n − i〉

=
min(k,R)∑

i=0

rigi−k = r∗
k =

R∑
i=0

r∗
i δ〈k − i〉,

where we introduced the coefficients r∗
k for notational con-

venience. The second term of (24) can be reformulated as

∞∑
n=0

gn

C∑
j=1

mj −1∑
m=0

(k + n)m

γ k+n
j

cmj

=
C∑

j=1

mj −1∑
m=0

∞∑
n=0

gn

m∑
i=0

(
m
i

)
kinm−i

γ k+n
j

cmj

=
C∑

j=1

mj −1∑
i=0

ki

γ k
j

⎛
⎝ ∞∑

n=0

gn

mj −1∑
m=i

(
m
i

)
nm−i

γ n
j

cmj

⎞
⎠

=
C∑

j=1

mj −1∑
i=0

ki

γ k
j

c∗
ij .

In the second step, we interchanged the sums over m and i,
respectively, while in the third step, we introduced other co-
efficients c∗

ij for notational convenience.
Now, the form of the t∗k is captured by

t∗k =
R∑

i=0

r∗
i δ〈k − i〉 +

C∑
j=1

mj −1∑
m=0

km

γ k
j

c∗
mj , (25)

which obviously resembles the form of the tk (22). If we
now introduce the auxiliary function T ∗(z),

T ∗(z) =
∞∑

k=0

t∗k zk

the resemblance between (22) and (25) leads to the con-
clusion that T (z) and T ∗(z) have a common denominator
P(z). Also, we see that the numerator of T ∗(z) has degree
N or less. The result of the queueing effect then follows
from (23), leading to

H(z) = G(z)T (z−1) + T ∗(1) − T ∗(z−1)

which is the result we aimed for in this Appendix.
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