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1 Introduction

Empirical evidence of the presence of heavy tails in networktraffic have stimulated the analysis of queue-
ing systems with subexponential service times. Although the presence of heavy-tailed traffic is widely
acknowledged [26], the practical implications for networkperformance and traffic engineering remain to be
fully resolved. The importance of scheduling in the presence of heavy tails was first recognized by Anan-
tharam in [3]. The present paper specifically examines the effectiveness of Generalized Processor Sharing
(GPS, precisely described in Section 2.1) with subexponential service times. We compute the exact tail
asymptotics of the stationary workload process of each class. Our framework is restricted to instantaneous
inputs and extends results of Borst, Boxma and Jelenkovic [11]. Also our proof is new and inspired by the
recent work of Baccelli and Foss [6] which has been applied toa variety of networks [8, 12, 7, 20]. All
these studies deal with networks which belong to the monotone separable framework. In our GPS system,
a single class does not belong to this framework, hence we will need to adapt ideas of [6]. Moreover, we
will see that we are able to remove some of the assumptions made in [6] on the service time distribution.
To do so, we will need a slight extension of Pakes [23] or Veraverbeke’s Theorem [25, 27] which we state
as Theorem 3. We will also need to derive the fluid limit of the GPS system in the same way as [17] derived
fluid limits for generalized Jackson networks as a first step towards tail asymptotics [7]. Such analysis has
been done by Dupuis and Ramanan [13] based on a Skorokhod problem formulation of the GPS model. We
choose to give here a probabilistic proof based on a couplingargument. For stationary and ergodic inputs,
this proof allows us to construct the stationary workload processes of the stable classes when the system
is overloaded, i.e.ρ > 1. To the best of our knowledge, Theorem 1 is new and extends [13]. Our main
result is Theorem 2 which gives the exact tail asymptotics ina unified way: reduced-load equivalence and
induced burstiness results of [11] are recovered and extended. Moreover the proof is generic and relies on
an extension of the ’single-big-event theorem’ well-knownfor isolated queues [24, 28, 6]. The heurisitic
can be stated as follows: a large workload in one queue of the GPS system occurs when one large service
time has taken place at one of the queues, while all other service times are close to their means. In the case
of subexponential service times, we precisely identify therange of the parameters of the system for which
this heuristic can be made rigorous. As observed in [18] (seeSection 4.4.4), our results also show that in
some cases, this heuristic is not valid and gives only an upper bound on the tail asymptotics. We should
also stress that the monotone separable framework has recently been shown to be an efficient tool to derive
large deviation results for light-tailed distributions [19, 21, 22] and we expect that this approach will give
new results for GPS system extending [9] to more than 2 classes.
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The paper is structured as follows. In Section 2, we introduce GPS system and construct the stationary
GPS system by a coupling argument. We also derive the fluid limits that will be useful for the derivation of
the tail asymptotics. In Section 3, we state our main result and compare it with the literature. Its proof is
given in Section 4

Notation

Here and later in the paper, for positive functionsf andg, the equivalencef(x) ∼ dg(x) with d > 0
meansf(x)/g(x) → d asx → ∞. By convention, the equivalencef(x) ∼ dg(x) with d = 0 means
f(x)/g(x) → 0 asx → ∞, this will be writtenf(x) = o(g(x)).

The tail of the distribution functionF is denotedF (x) = 1 − F (x). For a distribution functionF on
the positive real line with finite first momentM =

∫∞

0
F (u)du, the integrated tail distributionF s of F is

defined by

F
s
(x) := 1 − F s(x) = min{1,

∫ ∞

x

F (u)du}.

We recall here some definitions

Definition 1. A distribution functionF onR+ is called subexponential ifF ∗2(x) ∼ 2F (x).

For basic properties of subexponential distribution see [16, 15, 14].

Definition 2. A positive measurable functionf on [0, +∞) is called regularly varying with indexα ∈ R

(f ∈ R(α)) if limx→∞
f(tx)
f(x) = tα for all t > 0.

Definition 3. A positive measurable functionh on [0, +∞) is called rapidly varying (h ∈ R(−∞)) if
limx→∞

h(tx)
h(x) = 0 for all t > 1.

For example, Weibull or lognormal random variables have tail distributions that are rapidly varying.

2 Fluid Limits for GPS Queues

In this section, we construct the stationary workload at each queue of a GPS system under general stochastic
assumptions, namely stationarity and ergodicity. Then we use this result to derive the fluid limits for GPS
queues when a big service time occurs.

2.1 Construction of the Stationary Regime

Consider the following model ofN coupledG/G/FIFO queues. The queues are served in accordance
with the Generalized Processor Sharing (GPS) discipline, which operates as follows. Queuej is assigned a
weightφj , with

∑N
j=1 φj = 1. If all queues are backlogged, then queuej is served at speedφj . If some of

the queues are empty, then the excess capacity is redistributed among the backlogged queues in proportion
to their respective weights. All customers within each queue are served in a FIFO order.

More formally we can construct the workload of each queue as follows. We first introduce some nota-
tion: customern arrives in the queuecn at timeTn and its service time isσn. We will say that this customer
is of classcn ∈ {1, . . . , N} and denote byτn = Tn+1 − Tn > 0 the inter-arrival times. The evolution of
the workload processes of each class is given by the following equations:

W j(Tn) = W j(Tn−) + σn11{cn=j}, (1)

dW j

dt
(t) = −rj(t) for Tn ≤ t < Tn+1, (2)

rj(t) =

{

φj
P

ℓ/∈I(t) φℓ j /∈ I(t),

0 j ∈ I(t);
(3)

I(t) = {i, W i(t) = 0}. (4)
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For any initial conditionY ∈ R
N
+ , we define the workload of each classW j

Y (t) for t ≥ 0 according to
Equations (1, 2,3, 4). We also denote byW (t) =

∑

j W j(t) the total workload of the system. Since the
GPS discipline is work-conserving, i.e. it serves at the full rate whenever any of the classes is backlogged,
the processW (t) is the standard workload process of a single server queue fedby the process{Tn, σn}n∈Z.

Assume that the random variables{τn, σn, cn} are defined on a common probability space(Ω, F, P, θ)
whereθ is an ergodic, measure-preserving shift transformation, such that(τn, σn, cn)◦θ = (τn+1, σn+1, cn+1).
Let λ = E[τ0]

−1 be the intensity of arrival process andρ = λE[σ0] be the traffic intensity. For example, the
process{Tn, σn, cn} can be obtained by the superposition of independent renewalpoint processes of finite
intensity (see Section 1.4.2 of [5]) as will be considered inSection 3.

If ρ < 1, it is easy to construct the stationary workload process of each class. Let{W (t)}, t ∈ R, be
the unique stationary workload process of a single server queue with input{Tn, σn}n∈Z. The point process
E defined by

E(B) =
∑

n∈Z

11{Tn∈B}11{W (Tn−)=0},

counts the pointsTn at which an arriving customer finds an empty system. Let{Un}, n ∈ Z, be the
sequence of points ofE, with the usual conventionU0 ≤ 0 < U1. Then we can construct the unique
stationary workload process{(W 1(t), . . . , WN (t))} of the GPS queues using Equations (1, 2, 3, 4) on
each cycle[Un, Un+1) with initial condition0.

In the caseρ > 1, it is possible that some classes of the GPS system are still stable. We first give the
definition of stability that we consider in this paper.

Definition 4. A stochastic processX(t) is stable if there are an infinite number of negative and positive
subscriptsn such thatX(Tn−) = 0.

Let λℓ be the intensity of the arrival process{T ℓ
n} that counts the points of{Tn} with markcn = ℓ. Let

ρℓ = λℓ
E[σ0|c0 = ℓ] be the traffic intensity of classℓ. We haveρ =

∑N
ℓ=1 ρℓ, see Section 1.4.3 of [5]. We

assume without loss of generality (w.l.o.g.) that

ρ1

φ1
≤ · · · ≤ ρN

φN
. (5)

We define

Rk =
1 −∑k−1

j=1 ρj

∑N
j=k φj

, K = max
k=1,...,N

{

k :
ρk

φk
< Rk

}

, (6)

S = {1, . . . , K}, R =
1

∑

j /∈S φj



1 −
∑

j∈S

ρj



 .

We will show thatS is the set of stable queues. This set is empty if and only ifρ1/φ1 ≥ 1, in this case we
take the convention:K = 0 andR = 1.

Remark 1. The quantities in Equation (6) were defined in [11]. We will see in Sections 2.2 and 3 that these
quantities are crucial for the computation of the tail asymptotics.

For anyk, we will consider the GPS system indexed byk where classesi > k are always backlogged,
i.e. for all j ≤ k,

dW̄ j,[k]

dt
(t) = −rj,[k](t) for Tn ≤ t < Tn+1 (7)

W̄ j,[k](Tn) = W̄ j,[k](Tn−) + σn11{cn=j} (8)

rj,[k](t) =

{

φj
P

ℓ/∈I[k](t)
φℓ j /∈ I [k](t),

0 j ∈ I [k](t)
(9)

I [k](t) =
{

i ≤ k, W̄ i,[k](t) = 0
}

. (10)
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Note that for allℓ > k, we haveℓ /∈ I [k](t) for all t, i.e. classes larger thank + 1 are always backlogged.

Theorem 1. Under previous conditions on the input process{τn, σn, cn}, we have the following properties:

• there exists a unique stationary stable workload process{(W̄ 1,[K](t), . . . , W̄K,[K](t))} satisfying
equations (7-10) for allt ∈ R with k = K defined by (6).

• if K + 1 ≤ N , under the additional conditionρ
K+1

φK+1 > R, there exists no finite stationary workload

process{W i(t)}, t ∈ R, for anyi ≥ K + 1. For any finite initial conditionY ∈ R
N
+ , we can define

the workload of each queue fort ≥ 0, following equations (1-4), and we have fori ≥ K + 1

W i
Y (t) ∼ (ρi − φiR)t ast → ∞.

Remark 2. Note that the conditionK + 1 ≤ N impliesR ≤ ρK+1

φK+1 , so that the additional condition in the
second bullet item ensures that the queuesi ≥ K + 1 are ’strictly’ unsatble.

Proof.
If ρ < 1, thenK = N and the result follows from previous construction on the cycles.
We assume now that1 ≤ K ≤ N − 1. The proof will proceed by induction onk ≤ K: we show that

there exists a unique stationary stable workload process(W̄ 1,[k](t), . . . , W̄ k,[k](t)) which corresponds to a
GPS system where queuesk + 1, . . . , N are always backlogged. Moreover

∑

i≤k W̄ i,[k](t) is also a stable

process. Fort ≥ 0, we will denote byW̄ [k]
Y (t) = (W̄

1,[k]
Y (t), . . . W̄

k,[k]
Y (t)) the process satisfying equations

(7), (8), (9) and (10) fort ≥ 0 and with initial conditionW̄ i,[k]
Y (0) = Y i. For anyu ∈ R, we defineW̄ [k]

Y,u(t)

similarly but with initial conditionW̄ [k]
Y,u(u) = Y (in particularW̄ [k]

Y,0(t) = W̄
[k]
Y (t)).

The first step is easy. We have1 ∈ S, henceρ1 < φ1 andW̄ 1,[1](t) is simply the workload of a standard
G/G/1 queue.

For k ≤ N , we assume that(W̄ 1,[k−1](t), . . . , W̄ k−1,[k−1](t)) are given. We consider the random
variable

r̃k(t) =
1

∑N
j=1 φj11{j /∈I[k−1](t)}

.

We have by construction

k−1
∑

j=1

φj r̃k(t)11{W̄ j,[k−1](t)>0} + r̃k(t)

N
∑

j=k

φj = 1, (11)

and sinceφj r̃k(t) is exactly the service rate of queuēW j,[k−1], we have

E
[

φj r̃k(t)11{W̄ j,[k−1](t)>0}

]

= ρj . (12)

In particular, from (11) and (12), we haveE
[

r̃k(t)
]

= Rk. For anyY ≥ 0, we consider the following
G/G/1 queue:

W̃ k
Y (t) = Y,

W̃ k
Y (t) =

(

W̃ k
Y (T k

n−) + σk
n − φk

∫

[T k
n ,t)

r̃k(u)du

)+

, t ∈ [T k
n , T k

n+1).

By standard Palm calculus (see Section 1.3.1 in [5]), we have

E

[

∫

[T k
0 ,T k

1 )

r̃k(u)du

]

=
Rk

λk
,
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hence we havek ∈ S implies thatW̃ k(t) is the workload process of a stableG/G/1 queue. Clearly by
looking at the service rates, we have that for alli ≤ k − 1,

W̄
i,[k]
0,−t(0) ≤ W̄

i,[k−1]
0,−t (0)

t→∞−−−→ W̄ i,[k−1](0), (13)

W̄
k,[k]
0,−t (0) ≤ W̃ k

0,−t(0)
t→∞−−−→ W̃ k(0). (14)

We are now able to construct a stationary workload processW̄ i,[k] of the GPS system where queues
k, . . . , N are always backlogged: note thatW̄

i,[k]
0,−t(0) are increasing int, hence we can take the limit as

t → −∞ (standard coupling from the past) and the limit is finite thanks to (13) and (14). We now prove
uniqueness of this stationary process by a coupling argument. Consider any finite variables(Z1, . . . , Zk).
Then we have

k
∑

i=1

W̄
i,[k]
0 (t) ≤

k
∑

i=1

W̄
i,[k]
Zi

(t) ≤
k−1
∑

i=1

W̄
i,[k−1]
Zi

(t) + W̃ k
Zk

(t).

Let

ν = inf

{

t ≥ 0,

k−1
∑

i=1

W̄
i,[k−1]
Zi

(t) + W̃ k
Zk

(t) = 0

}

.

We clearly haveP(ν < ∞) = 1 because

lim
t→∞

1

t

∫ t

0

(

k−1
∑

i=1

ri,[k−1](u) + φk r̃k(u)

)

du =
k−1
∑

i=1

ρi + φkRk >
k
∑

i=1

ρi.

The random timeν (which depends on theZi’s) is a coupling time: for allt ≥ ν, we haveW̄ i,[k]
0 (t) =

W̄
i,[k]
Zi

(t). Also by takingZi = W̄ i,[k](0) constructed above, we see that the processesW̄
i,[k]
0 andW̄ i,[k]

couple and the uniqueness follows.

It remains to show that queues that are not inS are unstable under the additional conditionρK+1

φK+1 > R.

First assume thatK = N − 1. In this caseρN

φN > R implies thatρ > 1, sinceρ− 1 = ρN −φNR. Now for

any finite workload process(W1(t), . . . , WN (t)) of queues1, . . . , N for t ≥ 0, we have for alli ≤ N − 1,

W
i(t) ≤ W̄

i,[N−1]
Wi(0) (t), ∀t ≥ 0.

Moreover standard result for the single server queue gives:
∑N

i=1 W
i(t) ∼ (ρ − 1)t. This shows that

WN (t) → ∞ ast → ∞ andWN (t) ∼ (ρ − 1)t =
(

ρN − φNR
)

t. In this case, the proposition follows.

We assume now thatρ
K+1

φK+1 > R (with the possible value 0 forK, in which caseR = 1). This ensures
thatρ > 1. Thanks to the ordering of the subscripts, we have

∑N
i=K+1 ρi

∑N
i=K+1 φi

> R.

If we replace the classesK + 1, . . .N by a unique virtual class with weight
∑N

i=K+1 φi and we asume this
virtual class is always claiming its full share of the service rate. The service rate received by this virtual
class is clearly an upper bound for the sum of the service rates received by the classesK + 1, . . .N . Note
that the system with this virtual class is the same as the one described above. Hence this virtual class
receives mean service rate

∑N
i=K+1 φiR and we have for any finite workload process(W1(t), . . . , WN (t))

defined onR+ (we denoteI(t) = {i, Wi(t) = 0} ⊂ {1, . . . , K}),

lim sup
t→∞

1

t

∫ t

0

φK+1 + · · · + φN

∑

j∈I(u) φj
du ≤

N
∑

i=K+1

φiR.
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In particular, we have

lim sup
t→∞

1

t

∫ t

0

1
∑

j∈I(u) φj
du ≤ R.

Hence fori ≥ K + 1, we have

lim sup
t→∞

1

t

∫ t

0

φi

∑

j∈I(u) φj
du ≤ φiR < ρi.

Hence we haveWi(t) → ∞ ast → ∞ for i ≥ K + 1 so that we actually have the equality:

limt→∞
1
t

∫ t

0
φi

P

j∈I(u) φj du = φiR, and thenWi(t) ∼ (ρi − φiR)t ast → ∞. 2

Remark 3. 1. We assumedρ
K+1

φK+1 > R in order to avoid the critical case (corresponding toρ = 1 in
the single server queue).

2. In the work of Borst, Boxma and Jelenković [11], stability issues are also considered (see their
Lemma 4.1). However their notion of stability is weaker thanour Definition 4 and it corresponds to
the fact that the mean service rate is equal to the rate of the input (see their Remark 4.1). Also, they
assume the existence of the mean service rates for each class(see their Appendix A) and then derive
the equations they must solve. Our Theorem 1 shows that for stationary ergodic inputs, these mean
service rates exist and are equal toρi for stable classes (i.e. fori ∈ S) and toφiR otherwise. This
strong result was not needed in [11] for the derivation of thetail asymptotics.

In what follows it will be convenient to consider a GPS systemwith weightsφ1, . . . , φN (not satisfying
Condition (5)) but with greedy classes, i.e. the classesK + 1, . . . , N are continuously claiming their full
share of service rate. The other classes behave “normally”,i.e. the input processes{T ℓ

n, σn} satisfy the
stationary ergodic conditions. The following result is a direct consequence of Theorem 1.

Proposition 1. For any finite initial conditionsY ∈ R
N
+ , the process

∑K
i=1 W i

Y (t) is stable if

K
max
j=1

ρj

φj
<

1 −∑K
i=1 ρi

1 −∑K
i=1 φi

:= R. (15)

Moreover there exists a mean service rate for the greedy queues, in the following sense: for any finite initial
conditionY , let IY (t) = {i ≤ K, W i

Y (t) = 0}, then we have

lim
t→∞

1

t

∫ t

0

1
∑K

i=1 φi11i/∈IY (u) +
∑N

i=K+1 φi
= R.

Hence the mean service rate of greedy queuej is φjR.

In the casemaxj
ρj

φj > R, at least one of the queues1, . . . , K is not stable.

2.2 Rare Events in GPS Queues

In this section we consider a stable GPS system withρ < 1. W.l.o.g we assume that the ordering (5)
holds. We are interested in the effect of a very big service time of sizeσ arriving in queuej at time
T j

0 . Hence we consider workload process given by equations (1-4) for t ≥ T j
0 , with initial condition

(W 1(T j
0−), . . . , WN (T j

0−)), i.e. in the stationary regime but we replaceσ0 by a deterministic value
σ. We assume w.l.o.g thatT j

0 = 0 and we denoteW {j}(σ, t) = (W 1,{j}(σ, t), . . . , WN,{j}(σ, t)) the
corresponding workload process.
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Let T (σ) > 0 be the first time for queuej to empty. On the interval[0, T (σ)], the queuej is always
backlogged. Hence we are exactly in the situation of Proposition 1 with queuej as greedy queue and if

max
i6=j

ρi

φi
>

1 −
∑

i6=j ρi

1 −∑i6=j φi
,

then at least one queuei 6= j begins to grow on this period of time. Hence the situation at timeT (σ) is that
some queues are very big and will remain backlogged for a longperiod of time. Indeed we are still in the
situation of Proposition 1 but this time with a set of greedy queues. We need to introduce some notations in
order to describe the situation. Given a setD = {d1, . . . , dn} ⊂ {1, . . . , N}, with d1 ≤ · · · ≤ dn, consider

a GPS system in which queues{1, . . . , N}\D are greedy. We still haveρ
d1

φd1
≤ · · · ≤ ρdn

φdn
. Hence results

of previous section apply (setρi = ∞ for i /∈ D) and we denote

K(D) = max
i=1,...,n

{

i :
ρdi

φdi
<

1 −∑i−1
ℓ=1 ρdℓ

∑n
ℓ=i φdℓ +

∑

j /∈D φj

}

S(D) = {d1, . . . , dK(D)},

R(D) =
1

∑

j /∈S(D) φj



1 −
∑

j∈S(D)

ρj



 ,

with the convention
∑0

−1 =
∑

∅ = 0. In words, if queues that are not inD continuously claim their full
share of the service rate, thendi ∈ S(D) implies that classdi is stable and for a classi /∈ D, it will receive
a service rate ofφiR(D). In the caseD = {j}, we will use the notation(j) instead of({j}). It is easy to
see that:

N
∑

i=1

ρi < 1 ⇒ R(j)φj > ρj . (16)

Also if

ρi

φi
< R(j), (17)

then queuei is insensitive to queuej in the sense that it will remain stable for any value ofρj . Note that it
is always the case ifρi < φi.

We now analyze the effect of a very big service time in classj when condition (17) is not satisfied. We
will attach a superscript.{j} to the constants that are calculated in this case. We first describe the intuitive
picture that will be made rigorous using fluid limits. Because of Equation (16), the output rate of classj is
bigger than the input rate. Hence queuej will empty at a timeT (σ) which is approximately σ

φjR(j)−ρj . We

denotef{j}
1 = 1

φjR(j)−ρj . Moreover, during this time queues of the classesk ∈ {1, . . . , N}\(S(j) ∪ {j})
start to build up and reach an approximate levelσz

k,{j}
1 at timeT (σ) where we have:

z
k,{j}
1 =

∫ f
{j}
1

0

(

ρk − γk,{j}(u)
)+

du,

γk,{j}(t) = φkR(j)11
{t≤f

{j}
1 }

.

We also denote:

I1 = {1, . . . , N}\(S(j) ∪ {j}), i
{j}
1 = j.

7



At time T (σ), queuesk ∈ I1 are backlogged and will receive a service rateφkR(I1), whereas other queues
includingj are stable. Hence forℓ ≥ 1, we define:

f
{j}
ℓ+1 = min

i∈Iℓ

{

z
i,{j}
ℓ

φiR(Iℓ) − ρi

}

+ f
{j}
ℓ ,

{

i
{j}
ℓ+1

}

= argmin
i∈Iℓ

{

z
i,{j}
ℓ

φiR(Iℓ) − ρi

}

,

Iℓ+1 = Iℓ\
{

i
{j}
ℓ

}

,

γk,{j}(t) = φkR(Iℓ)11{f
{j}
ℓ <t≤f

{j}
ℓ+1}

,

z
k,{j}
ℓ+1 =

∫ f
{j}
ℓ+1

0

(

ρk − γk,{j}(u)
)+

du.

The interpretation is the following: at timef{j}
ℓ+1σ, queues

{

i
{j}
ℓ+1

}

empty whereas queues inIℓ+1 reach

levelsz
k,{j}
ℓ+1 σ. During the time period(f{j}

ℓ σ, f
{j}
ℓ+1σ), classes inIℓ are continuously backlogged.

For all k ∈ {1, . . . , N}, we defined a functionγk,{j}(t) for t ≤ σ/(1 − ρ) and we now extend it for
values oft > σ/(1 − ρ) by setting:γk,{j}(t) = ρk. We can now define the function

wk,{j}(σ, t) =

∫ t

0

(

ρk − γk,{j}(u/σ)
)+

du ∀j 6= k,

wj,{j}(σ, t) =

(

σ +

∫ t

0

(ρj − φjR(j))du

)+

.

Let w{j}(σ, t) = (w1,{j}(σ, t), . . . , wN,{j}(σ, t)) be the multidimensional function. Since the sequence of
sets{Iℓ} is decreasing, it is easy to see thatR(Iℓ+1) > R(Iℓ). Figure 1 illustrates the shape of functions
w{j}(σ, .) for a givenσ.

σ
1−ρ

σ

f
{j}
1 σ f

{j}
2 σ . . .

ρ− 1

ρ j−
φ j

R
(j)

ρ
i − φ

i R(j)
z

i,{j}
1 σ

Figure 1: functionsw{j}(σ, .) for fixedσ

Proposition 2. If ρ < 1, we have for any constantα, β > 0, asn → ∞,

sup
σ>nα,t≤β

∣

∣

∣

∣

W {j}(σ, nt) − w{j}(σ, nt)

n

∣

∣

∣

∣

→ 0, a.s.

The proof of this proposition is deferred to Appendix 6. It will be our main tool for the computation of
the tail asymptotics presented below. It plays a similar role as Proposition 5.1 in [17] in the study of tail
asymptotics for generalized Jackson networks [7].
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3 Tails in GPS Queues with Subexponential Service Time Distribu-
tions

3.1 Stochastic Assumptions and Main Results

In this section, we restrict the framework of Section 2: we assume that each arrival process{T j
n}n∈Z is a

renewal process which is independent of the arrival processes of classesi 6= j. We also assume that the
sequence of service times of classj denoted byσj

n is a sequence of i.i.d. random variables with finite mean.
Recall that for eachj ∈ {1, . . . , N}, we haveE[T j

1 − T j
0 ] = 1

λj < ∞, ρj = λj
E[σj

0] andρ =
∑N

j=1 ρj .
We assume moreover that for anyi 6= j, we haveρi 6= R(j)φi. Recall that this is always true in the case
i = j sinceρ < 1 see Equation (16).

We will consider two cases concerning the distribution of the service times.

Assumption 1. The distribution of the service times of classi, P(σi
0 > x) = Fi(x), is such thatF s

i is
subexponential.

The other case considered is the following:

Assumption 2. There exists a distribution functionF onR+ such that:

1. F has finite first momentM .

2. The integrated distributionF s is subexponential.

3. The following equivalence holds whenx tends to∞:

P(σj
0 > x) ∼ djF (x),

for all j = 1, . . . , N with
∑N

j=1 dj > 0.

Remark 4. Note that in both cases, we did NOT assume thatF is subexponential.

We take the notation of Section 2.2 to define the following domains indexed byi, j ∈ {1, . . . , N}:

∆i,{j}(x) =
{

(σ, t) ∈ R
2
+, wi,{j}(σ, t) > x

}

.

We are now able to state the main result

Theorem 2. Consider a stable GPS system ofN queues. We assume that one of the following conditions
holds:

• Assumption 1 is satisfied andρi < φi;

• Assumption 2 is satisfied.

LetW i be the stationary workload of queuei. Whenx → ∞, we have

P(W i > x) =
N
∑

j=1

λj

∫ ∫

{(σ,t)∈∆i,{j}(x)}

P
(

σj ∈ dσ
)

dt + o
(

F
s
(x)
)

. (18)

We will prove Theorem 2 in Section 4. As an intermediate result, we will prove the following theorem
which extends Pakes’ theorem [23] to a more general setting and might be of interest by itself.

Theorem 3. Let W be the stationary workload of a single server queue fed by thesuperposition ofN
independentGI/GI processes with Assumption 2 satisfied. Then we have

P(W > x) ∼ λ

1 − ρ
P(σS > x),

whereλ is the intensity of the arrival process,ρ is the traffic intensity and the distribution ofσS is the
integrated tail of the (Palm) distribution of the service time.

Remark 5. This result extends Theorem 4.1 of Asmussen, Schmidli and Schmidt [4], in which the arrival
process is the superposition of renewal processes but the service times are supposed to be i.i.d.
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3.2 Reduced-load equivalence and induced burstiness

We now comment on our main Theorem 2 and show how it extends existing results in the literature. The
main results in the literature (see [1] for a survey) reveal adichotomy in the qualitative behavior, depending
on the traffic intensities and the weight values of the various classes:

• reduced-load equivalence occurs when an individual class with subexponential characteristics is
served at a constant rate, which is determined by the averagerates of the other classes.

• induced burstiness occurs when an individual class is strongly affected by excessive activity of
’heavier’-tailed classes and inherits their traffic characteristics.

The term reduced-load equivalence was first coined in the context of fluid queues with subexponential
activity periods [2] and the term induced burstiness first appeared in [10]. We will show that our results
allows us to consider mixed cases where both phenomena come into play.

We first give some conditions for reduced-load equivalence to hold.

Proposition 3. We denote byW i,c the stationary workload of a single server queue fed by arrivals of class
i with constant service ratec. If one of the following conditions holds:

(a) ρi < φi and Assumption 1 holds;

(b) Assumption 2 holds withdj = 0 for all j 6= i;

(c) Assumption 2 holds withdi > 0 andF
s ∈ R(−∞);

then the following reduced-load equivalence holds:P(W i > x) ∼ P(W i,φiR(i) > x).

This proposition follows easily from Theorem 2 and corresponds (with slightly different conditions) to
the reduced-load equivalence proved in [11], Theorems 3.1 and 4.1. Proposition 3 states that the workload
of the classi is asymptotically equivalent to that in an isolated system where classi would be served at
constant rateφiR(i), which is the average rate that classi receives when it continuously claims its full share
of the service rate. Asymptotically, the workload of classi is only affected by the traffic characteristics of
the other classes through their average rates. In other words, temporary instability caused by other classes
(possibly heavier) does not substantially influence the workload of classi. Condition(a) ensures stability
of classi regardless of the activity of the other classes. Condition(b) ensures that classi is the ’heaviest’-
tailed class. In the case of Condition(c), the distributionF s is not sufficiently ’heavy’ for other classes to
impact asymptotically classi. This case extends results of [11] and is new.

We now give some cases of induced burstiness.

Proposition 4. If Assumption 2 holds withdi = 0 and ifF
s ∈ R(−α) with 0 < α < ∞, then the following

induced burstiness holds:P(W i > x) ∼ CiF
s
(x), where the constantCi depends only on the parameters

ρj , λj , dj , for j ∈ {1, . . .N} andα.

This proposition follows directly from Theorem 2. We now treat an example in detail.

Example 1. We supposeN = 2 and Assumption 2 holds withd2 = 0, d1 = 1 andF
s ∈ R(−α). We also

assume thatρ
1

φ1 < 1 < ρ2

φ2 . The first inequality is implied by the stability conditionρ < 1 and we are in
the following case: a big service time of class1 induces an instability of queue2. The corresponding fluid
limits are depicted in Figure 2.

As stated by Proposition 4, we are in the situation where there is induced burstiness for class2. The
corresponding domain is easy to compute,

∆2,{1}(x) =

{

(σ, t), t >
x

ρ2 − φ2
, σ > x + (1 − ρ)t

}

.
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ρ− 1

ρ 1−
φ 1

ρ
2 − φ

2

σ
φ1−ρ1

Figure 2: GPS with two classes: big service in class1

Then we can apply Theorem 2 and we get

P(W 2 > x) ∼ λ1

∫ ∞

x
ρ2−φ2

P(σ1 > x + (1 − ρ)t)dt

∼ λ1

1 − ρ
F

s
(

x(1 − ρ1)

ρ2 − φ2

)

∼ λ1

1 − ρ

(

1 − ρ1

ρ2 − φ2

)−α

F
s
(x).

The computations done in previous example can be made for anyvalue ofN and we see that any class
that makes the queuei temporary unstable, will contribute to the tail asymptotics of the workload of classi
in a non-trivial way given by the shape of the domains. In our framework, Theorem 5.1 of [11] corresponds
to cases where only one class can make queuei temporarily unstable and the corresponding domain has a
shape similar to the one of∆2,{1}(x) in previous example. Our Theorem 2 does not require any condition
on the shape of the domains and as soon asN ≥ 3, these domains can have quite intricate shapes (see
Lemma 3 in the next section) and more than one class can make classi temporarily unstable.

We now consider a case where service times have similar characteristics in both classes and neither
reduced-load equivalence nor induced burstiness happens.

Example 2. Consider Example 1 but withd1 = d2 = 1. Then by Theorem 2, we have

P(W 2 > x) ∼ λ1

∫ ∞

x
ρ2−φ2

F (x + (1 − ρ)t)dt + λ2

∫ ∞

0

F (x + (1 − ρ)t))dt

∼
(

λ1

1 − ρ

(

1 − ρ1

ρ2 − φ2

)−α

+
λ2

1 − ρ

)

F
s
(x).

The first part of the right-hand term is exactly the same as in Example 1. The second part of the right-hand
term, corresponds to a reduced-load equivalence: class2 receiving a service rate ofφ2R(2) = 1 − ρ1. We
see that in this case both phenomena come into play.

If Assumption 2 holds, we call the set{i, di > 0}, the set of dominant classes. In summary, we see that

1. if ρi < φi, reduced-load equivalence occurs (provided classi is heavy-tailed);

2. if classi is a dominant class and the corresponding integrated tail israpidly varying, then reduced-
load equivalence occurs;
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3. if classi is not a dominant class and the integrated tail of the dominant classes is regularly varying,
then induced burstiness occurs;

4. if classi is a dominant class and the integrated tail of the dominant classes is regularly varying, then
the tail asymptotics of classi are the sum of two contributions corresponding to both phenomena.

Points 1, 2 and 3 are in accordance with results of [11]. Point4 is new for a GPS system (similar results
were obtained for a queue with unit capacity fed by several On-Off flows [29]).

4 Proof of the tail asymptotics

The GPS system does not fit exactly in the framework of [6]. If we consider the global workload (which
is a G/G/1 queue), we have a monotone separable network, but the service times are not i.i.d. and it is
not possible to directly apply the results of [6]. Hence we need to adapt the argument to our framework in
order to derive the single big event theorem for our GPS system. Except in Section 4.4, we assume that
Assumption 2 holds.

4.1 The Single Big Event Theorem

We first construct an upper bound forW . We considerN virtual GI/GI/1 queues with respective input
processs{T j

n, σj
n}n∈Z and with server capacitỹrj = ρj + 1−ρ

N . We denote byW̃ j the workload at time 0
of these single server queues andW̃ = W̃ 1 + · · · + W̃N . More formally, we define

ξj
n = σj

n − r̃jτ j
n, Sj

−n =

0
∑

i=−n

ξj
i , M j = sup

n≥0
Sj
−n.

With these definitions, we havẽW j =
(

M j + r̃jT j
0

)+

, whereT j
0 < 0 is the last arrival time of classj

before timet = 0.
We have [23, 25]:P(W̃ j > x) ∼ Nλjdj

1−ρ F
s
(x). Moreover the random variables̃W j are independent of

each other, hence we have

P(W̃ > x) ∼
N
∑

j=1

P(W̃ j > x) ∼
N
∑

j=1

Nλjdj

1 − ρ
F

s
(x). (19)

The following corollary follows the line of Corollary 5 of [6].

Corollary 1. For anyx andj = 1, . . . , N , let {Kj
n,x} be a sequence of events such that

1. for anyn, the eventKj
n,x and the random variables(σ−n, c−n) are independent;

2. infn≥Nx P
(

Kj
n,x

)

→ 1 asx → ∞.

For any sequenceηn → 0, let

Aj
n,x = Kj

n,x ∩
{

σ−n > x + n

(

1 − ρ

Nλ
+ ηn

)

, c−n = j

}

Ax =

N
⋃

j=1

⋃

n≥Nx

Aj
n,x.

Then asx → ∞,

P(W̃ > x) ∼ P(W̃ > x, Ax) ∼ P(Ax) ∼
N
∑

j=1

∑

n≥Nx

P
(

Aj
n,x

)

. (20)
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Proof.
The proof follows the one of Corollary 5 of [6]. First note that

N
∑

j=1

∑

n≥Nx

P
(

Aj
n,x

)

=

N
∑

j=1

∑

n≥Nx

P
(

Kj
n,x

)

P

(

σ−n > x + n

(

1 − ρ

Nλ
+ ηn

)

, c−n = j

)

∼
N
∑

j=1

∑

n≥Nx

λj

λ
P

(

σj
−n > x + n

(

1 − ρ

Nλ
+ ηn

))

∼
N
∑

j=1

λj

λ

Nλ

1 − ρ
djF

s
(x) =

N
∑

j=1

Nλjdj

1 − ρ
F

s
(x).

Thus, if the sequences{Kn,x} and{ηn} are such that, for all sufficiently largex,

1. the eventsAj
n,x are disjoint for alln ≥ Nx;

2. Aj
n,x ⊂ {W̃ > x} for all n ≥ Nx;

then

P(W̃ > x) ≥ P(W̃ > x, Ax) = P(Ax)

=

N
∑

j=1

∑

n≥Nx

P
(

Aj
n,x

)

∼
N
∑

j=1

Nλjdj

1 − ρ
F

s
(x).

Combining with (19), we get the equivalence (20).
We now construct two specific sequences{Kj

n,x} and{ηn} satisfying conditions 1 and 2 above and the
conditions of the corollary.

We define the following functionCj(n) =
∑0

k=−n 11{ck=j} − 1. On the event{c−n = j}, we have

T−n = T j
−Cj(n), σ−n = σj

−Cj(n). We can find a non-increasing sequenceǫn → 0 such thatnǫn → ∞ and
such that the probabilities of the following events tend to 1asn → ∞,

Ln,x =

{∣

∣

∣

∣

∣

Sj
−k

k
− ρ − 1

Nλj

∣

∣

∣

∣

∣

≤ ǫk, Nx ≤ k ≤ Cj(n − 1), 1 ≤ j ≤ N

}

,

M j
n =

{∣

∣

∣

∣

Cj(n − 1)

n
− λj

λ

∣

∣

∣

∣

≤ ǫn

}

,

N j
n =

{∣

∣

∣T
j
0

∣

∣

∣ ≤ nǫn

r̃j

}

.

Hence the eventKj
n,x = Ln,x ∩ M j

n ∩ N j
n satisfies the conditions of the corollary. Moreover on the event

{c−n = j}, we haveCj(n) = Cj(n − 1) + 1 and,Sj
−Cj(n) = σ−n + Sj

−Cj(n−1).
Now if we takeηn =

√
ǫn, we have

W̃ ≥ Sj
−Cj(n) − nǫn

> x + n

(

1 − ρ

Nλ
+ ηn

)

+ n

(

λj

λ
− ǫn

)(

ρ − 1

Nλj
− ǫ(λj/λ)n−1

)

− nǫn,

and we see that for sufficiently largen, we haveW̃ > x. The fact that the eventsAj
n,x are disjoint

follows from the fact that for sufficiently largex, we haveǫNx ≤ (1 − ρ)/(Nλj). Indeed on the event
Aj

n,x, we haveSj
−Cj(n) > x andSj

−Cj(n)+1 ≤ (Cj(n) − 1)((ρ − 1)/(Nλj) + ǫNx) ≤ 0. The events

{Sj
n > x} ∪ {Sj

n−1 ≤ 0} are clearly disjoint inn. It is also easy to see that the eventsAj
n,x are disjoint in

j. The end of the proof, i.e. showing that the corollary is truefor any sequenceKj
n,x follows exactly the

line of the proof of Corollary 5 of [6] and is omitted. 2

From this corollary we derive the following proposition
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Proposition 5. For anyx andj = 1, . . . , N , let {Kj
n,x} be a sequence of events such that

1. for anyn, the eventKj
n,x and the random variables(σ−n, c−n) are independent;

2. infn≥Nx P
(

Kj
n,x

)

→ 1 asx → ∞.

For any sequenceηn → 0, let

Aj
n,x = Kj

n,x ∩
{

σ−n > x + n

(

1 − ρ

Nλ
+ ηn

)

, c−n = j

}

Ax =
N
⋃

j=1

⋃

n≥Nx

Aj
n,x.

Then for any random variableW ≤ W̃ , we have asx → ∞,

P(W > x) = P(W > x, Ax) + o
(

F
s
(x)
)

(21)

=
N
∑

j=1

∑

n≥Nx

P
(

W > x, Aj
n,x

)

+ o
(

F
s
(x)
)

. (22)

Proof.
We have

P(W > x) = P(W > x, Ax) + P(W > x, Ac
x)

≤ P(W > x, Ax) + P(W̃ > x, Ac
x),

but thanks to previous corollary we have thatP(W̃ > x, Ac
x) = o

(

F
s
(x)
)

. Hence we have

P(W > x, Ax) ≤ P(W > x) ≤ P(W > x, Ax) + o
(

F
s
(x)
)

,

which gives (21). The end of the proof is the same as the one of last corollary. 2

4.2 Proof of Theorem 3.

First note thatW̃ ≥ W . Hence we can apply previous proposition, with

Kj
n,x =

{∣

∣

∣

∣

S−k

k
− ρ − 1

λ

∣

∣

∣

∣

≤ ǫk, Nx ≤ k ≤ n − 1, |T0| ≤ nǫn

}

,

whereS−k =
∑0

i=−k σi − τi. On the eventAj
n,x, we haveW = σ−n + S−n+1 + T A

0 , hence

N
∑

j=1

∑

n≥Nx

P(W > x, Aj
n,x) ∼

N
∑

j=1

∑

n≥Nx

P

(

σ−n > x + n

(

1 − ρ

λ
+ 2ǫn

)

, c−n = j

)

∼ λ

1 − ρ
F

s
(x).

4.3 Computation of the Exact Asymptotics when Assumption 2 holds

We have to find a sequence of events{Kj
n,x} in order to compute the following sum

Si,{j} =
∑

n≥Nx

P

(

W i > x, Kj
n,x, σ−n > x + n

(

1 − ρ

Nλ
+ ηn

)

, c−n = j

)

A first case is easy: when queuei remains stable even if queuej is continuously backlogged.
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Lemma 1. Assume that

ρi

φi
< R(j). (23)

Then we haveSi,{j} = o
(

F
s
(x)
)

.

Proof.
Under condition (23), we know thanks to Proposition 1, that the stationary workload of queuei exists

when queuej is continuously backlogged. We denote this workloadW i(j). We haveW i ≤ W i(j) < ∞,
andW i(j) is clearly independent of(T j

n, σj
n). Hence we have

Si,{j} =
∑

n≥Nx

P

(

W i > x, Kj
n,x, σ−n > x + n

(

1 − ρ

Nλ
+ ηn

)

, c−n = j

)

≤ P(W i(j) > x)
∑

n≥Nx

P

(

σ−n > x + n

(

1 − ρ

Nλ
+ ηn

)

, c−n = j

)

= o
(

F
s
(x)
)

.

2

We consider now the caseρ
i

φi > R(j). In this case when queuej experiences a long backlog (due to
a very big service time), queuei is no longer stable and the fluid limit corresponding to this queue is no
longer 0. The remaining steps of the proof of Theorem 2 are similar to those of Section 3 in [7].

Let ǫn be some sequence of positive real numbers, we define

Kj
n =















sup
σ>n 1−ρ

Nλ

t≤2a

∣

∣

∣

∣

W {j}(σ, T−n + nt) − w{j}(σ, nt)

n

∣

∣

∣

∣

≤ ǫn,

∣

∣

∣

∣

T−n

n
+ a

∣

∣

∣

∣

≤ ǫn















.

Thanks to the results of Section 2.2, we have the following lemma

Lemma 2. Let{Kj
n} be the sequence of events defined above.Kj

n and the random variablesσ−n andc−n

are independent. There exists a sequenceǫn → 0 such that we haveP(Kj
n) → 1 asn → ∞.

On the eventKj
n ∩

{

σ−n > x + n
(

1−ρ
Nλ

)

, c−n = j
}

, we have (thanks to the continuity ofwi,{j}),

W i = wi,{j}(σ−n, na) + nηn, with ηn a r.v. such that|ηn| ≤ ǫn.

We will need the following lemma on the shape of the domain∆i,{j}(x).

Lemma 3. There exist constants{αi,{j}
k , β

i,{j}
k , γ

i,{j}
k }0≤k≤ℓ with α

i,{j}
0 < α

i,{j}
1 < · · · < α

i,{j}
ℓ ,

β
i,{j}
k ≤ 1, such that

∆i,{j}(x) =

ℓ
⋃

k=0

{

α
i,{j}
k x ≤ t < α

i,{j}
k+1 , σ >

x

β
i,{j}
k

+ tγ
i,{j}
k

}

,

with α
i,{j}
ℓ+1 = +∞. Moreover, we have

∆i,{i}(x) =
{

σ > x +
(

φiR(i) − ρi
)

λt
}

.

This lemma follows directly from the definition of the functionwi,{j}.
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Following exactly the steps of the proof of Theorem 2.1 in [7], we can show that

Si,{j}(x) ∼
ℓ
∑

k=0

∑

α
i,{j}
k x≤na<α

i,{j}
k+1 x

P

(

σ−n >
x

β
i{j}
k

+ naγ
i,{j}
k , c−n = j

)

=
λj

λa

ℓ
∑

k=0

∑

α
i,{j}
k x≤n<α

i,{j}
k+1 x

P

(

σj >
x

β
i{j}
k

+ nγ
i,{j}
k

)

= λj
ℓ
∑

k=0

∑

α
i,{j}
k x≤n<α

i,{j}
k+1 x

P

(

σj >
x

β
i,{j}
k

+ nγ
i,{j}
k

)

. (24)

This term is of orderdjF
s
(x/β

i,{j}
0 ) and henceo(F

s
(x)) as soon asF s is rapidly varying. Summing over

j, we obtain the equality (18) of the Theorem, which concludesthe proof.

4.4 Tail asymptotics when Assumption 1 holds

The stationary workload of theGI/GI/1 queue with input process{T i
n, σi

n}n∈Z and service rateφi is
clearly a stable upper-bound forW i. The proof then follows from the same arguments as above.
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6 Appendix: proof of Proposition 2

We consider a sequenceσn such thatσn > nα. We suppose thatσ
n

n → σ ≤ +∞. We will show that

sup
0≤t≤β

∣

∣

∣

∣

W {j}(σn, nt) − w{j}(σn, nt)

n

∣

∣

∣

∣

→ 0,

which is sufficient to prove the proposition. For simplicity, we denoteW {j}
n (t) = W {j}(σn, t) and

w
{j}
n (t) = w{j}(σn, t).

We first assume thatσ < ∞. Let T n
1 be the first positive time at which queuej becomes empty, i.e.

queuej is backlogged on[0, T n
1 ]. Hence we have thanks to the result on the mean service rate ofProposition

1,

lim
n→∞

W
j,{j}
n (T n

1 )

n
= σ + (ρj − φjR(j))

(

lim
n→∞

T n
1

n

)

= 0,

from which we derivelimn→∞
T n
1

n = σ/(φjR(j)−ρj). Now for0 ≤ t ≤ T n
1 /n, we can apply Proposition

1 and we have

W
ℓ,{j}
n (nt)

n
→ (ρℓ − φℓR(j))+t, ∀ℓ 6= j,

W
j,{j}
n (nt)

n
→ σ + (ρj − φjR(j))t.

We have shown in the caseσ < ∞ that for allj,

sup
0≤t≤f

{j}
1 σ

∣

∣

∣

∣

∣

W
{j}
n (nt) − w

{j}
n (nt)

n

∣

∣

∣

∣

∣

→ 0.

Moreover, we see that at timeT n
1 , the queuesk ∈ I1 are backlogged. DefineT 2

n as the first time at which one

of these queues becomes empty. Using Proposition 1 in the same manner, we obtain thatT n
2 /n → σf

{j}
2

and that,

sup
0≤t≤f

{j}
2 σ

∣

∣

∣

∣

∣

W
{j}
n (t) − w

{j}
n (nt)

n

∣

∣

∣

∣

∣

→ 0.

Hence in the caseσ < ∞, the proposition follows by iterating the same kind of arguments.
In the caseσ = +∞, sinceT n

1 ≥ σn, we have for sufficiently largen, we haveT n
1 ≥ nβ. Hence for all

k 6= j, we have with the same argument as above that

sup
0≤t≤β

∣

∣

∣

∣

∣

W
k,{j}
n (nt) − w

k,{j}
n (nt)

n

∣

∣

∣

∣

∣

→ 0,

and fork = j, we have for allt ≤ β,

W
j,{j}
n (nt) − σn

n
→ (ρj − φjR(j))t.

This concludes the proof. 2
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