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Abstract: We analyze the behavior of Generalized Processor ShariR§)@Queues with heavy-tailed
service times. We compute the exact tail asymptotics of tdwgogary workload of an individual class and
give new conditions for reduced-load equivalence and irdumirstiness to hold. We also show that both
phenomena can occur simultaneously. Our proofs rely onitiggesbig event theorem and new fluid limits
obtained for the GPS system that can be of interest by thersel
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1 Introduction

Empirical evidence of the presence of heavy tails in netviaKic have stimulated the analysis of queue-
ing systems with subexponential service times. Althoughphesence of heavy-tailed traffic is widely
acknowledged [26], the practical implications for netwpesformance and traffic engineering remain to be
fully resolved. The importance of scheduling in the preseoicheavy tails was first recognized by Anan-
tharam in [3]. The present paper specifically examines tfecifeness of Generalized Processor Sharing
(GPS, precisely described in Section 2.1) with subexpaaleservice times. We compute the exact tail
asymptotics of the stationary workload process of eactsclasir framework is restricted to instantaneous
inputs and extends results of Borst, Boxma and Jelenkotic Also our proof is new and inspired by the
recent work of Baccelli and Foss [6] which has been applied wariety of networks [8, 12, 7, 20]. All
these studies deal with networks which belong to the moreoseparable framework. In our GPS system,
a single class does not belong to this framework, hence wenedld to adapt ideas of [6]. Moreover, we
will see that we are able to remove some of the assumptiong ingdé] on the service time distribution.
To do so, we will need a slight extension of Pakes [23] or Vleragke’s Theorem [25, 27] which we state
as Theorem 3. We will also need to derive the fluid limit of tHeSsystem in the same way as [17] derived
fluid limits for generalized Jackson networks as a first steyatds tail asymptotics [7]. Such analysis has
been done by Dupuis and Ramanan [13] based on a Skorokhodeprédrmulation of the GPS model. We
choose to give here a probabilistic proof based on a coupliggment. For stationary and ergodic inputs,
this proof allows us to construct the stationary workloadgasses of the stable classes when the system
is overloaded, i.ep > 1. To the best of our knowledge, Theorem 1 is new and extends {2@r main
result is Theorem 2 which gives the exact tail asymptotics imified way: reduced-load equivalence and
induced burstiness results of [11] are recovered and ertkndoreover the proof is generic and relies on
an extension of the 'single-big-event theorem’ well-knolwnisolated queues [24, 28, 6]. The heurisitic
can be stated as follows: a large workload in one queue of 8 §/stem occurs when one large service
time has taken place at one of the queues, while all otheiceetimes are close to their means. In the case
of subexponential service times, we precisely identifyrdrgge of the parameters of the system for which
this heuristic can be made rigorous. As observed in [18] &saion 4.4.4), our results also show that in
some cases, this heuristic is not valid and gives only an nippend on the tail asymptotics. We should
also stress that the monotone separable framework hagigebean shown to be an efficient tool to derive
large deviation results for light-tailed distribution€[121, 22] and we expect that this approach will give
new results for GPS system extending [9] to more than 2 cdasse



The paper is structured as follows. In Section 2, we intr@ed@®$S system and construct the stationary
GPS system by a coupling argument. We also derive the fluitslithat will be useful for the derivation of
the tail asymptotics. In Section 3, we state our main requdt@mpare it with the literature. Its proofis
given in Section 4

Notation

Here and later in the paper, for positive functiohsnd g, the equivalence (z) ~ dg(z) with d > 0
meansf(z)/g(x) — d asxz — oo. By convention, the equivaleng&z) ~ dg(x) with d = 0 means
f(x)/g(xz) — 0asx — oo, this will be written f (x) = o(g(x)).

The tail of the distribution functior is denotedi’(z) = 1 — F(x). For a distribution functior” on
the positive real line with finite first momedt' = [ F'(u)du, the integrated tail distributiof™* of F is
defined by

F’(x) :=1— F°(z) = min{1, /oo F(u)du}.

We recall here some definitions
Definition 1. A distribution function onR , is called subexponential #*2(x) ~ 2F(z).
For basic properties of subexponential distribution sé€e 15, 14].

Definition 2. A positive measurable functiofion [0, +o00) is called regularly varying with index € R

(f € R(a)) if limg_ o0 §<(t;)> = ¢ forall t > 0.
Definition 3. A positive measurable functidn on [0, 4o00) is called rapidly varying & € R(—o00)) if

. h(tz) _
limg oo W) Oforall ¢t > 1.

For example, Weibull or lognormal random variables haviediatributions that are rapidly varying.

2 Fluid Limits for GPS Queues

In this section, we construct the stationary workload ahepeue of a GPS system under general stochastic
assumptions, namely stationarity and ergodicity. Then geethis result to derive the fluid limits for GPS
queues when a big service time occurs.

2.1 Construction of the Stationary Regime

Consider the following model oN coupledG/G/FIFO queues. The queues are served in accordance
with the Generalized Processor Sharing (GPS) disciplitghvoperates as follows. Queliés assigned a
weightg¢?, with Zj.vzl ¢ = 1. If all queues are backlogged, then qugtis served at speeg¥. If some of
the queues are empty, then the excess capacity is redtstliaBmong the backlogged queues in proportion
to their respective weights. All customers within each quate served in a FIFO order.

More formally we can construct the workload of each queuels\iis. We first introduce some nota-
tion: customer arrives in the queue, at timeT;,, and its service time is,,. We will say that this customer

is of classc,, € {1,..., N} and denote by,, = T,,.1 — T;, > 0 the inter-arrival times. The evolution of
the workload processes of each class is given by the follpwuations:
WH(T,) = WI(T,—)+0onli —j, (1)
J )
d?; t) = —ri(t) forT, <t <Thy1, (2
) ¥
rj(t) = eerc) @ J ¢ I(t)’ (3)
0 jeI(t);
Ity = {i, W'(t) = 0}. 4)



For any initial conditiony” € RY, we define the workload of each claﬁéfg(t) for ¢ > 0 according to
Equations (1, 2,3, 4). We also denoteB¥(t) = >, Wi(t) the total workload of the system. Since the
GPS discipline is work-conserving, i.e. it serves at thérate whenever any of the classes is backlogged,
the proces$V () is the standard workload process of a single server queusy/féte proces$T,,, oy, tnez.

Assume that the random variablgs,, 0., ¢,, } are defined on a common probability spate F, P, 9)
wheref is an ergodic, measure-preserving shift transformatiach $hat(r,,, 0., ¢, )00 = (711, Ont1, Cnt1)-
Let A = E[r] ! be the intensity of arrival process apd= A\E[o] be the traffic intensity. For example, the
proces§ T, 0., c, } can be obtained by the superposition of independent rervirad processes of finite
intensity (see Section 1.4.2 of [5]) as will be considere8éttion 3.

If p < 1, itis easy to construct the stationary workload processachelass. Le{WW (t)}, ¢t € R, be
the unique stationary workload process of a single serveugwith input{T,,, ., } nez. The point process
FE defined by

E(B) =Y Y1, enyl{w(1,-)—0}>
nez

counts the pointg’,, at which an arriving customer finds an empty system. {iét}, n € Z, be the
sequence of points aF, with the usual conventiotVy, < 0 < U;. Then we can construct the unique
stationary workload proces§W(t),...,W¥(t))} of the GPS queues using Equations (1, 2, 3, 4) on
each cycldU,, U, 1) with initial condition0.

In the casep > 1, it is possible that some classes of the GPS system aretables We first give the
definition of stability that we consider in this paper.

Definition 4. A stochastic procesX () is stable if there are an infinite number of negative and pasit
subscriptse such thatX (T7;,—) = 0.

Let \* be the intensity of the arrival proce§%} that counts the points dff}, } with marke,, = ¢. Let
p! = ME[oo|co = /] be the traffic intensity of class We havep = 3", p¢, see Section 1.4.3 of [5]. We
assume without loss of generality (w.l.0.g.) that

% << Z—N. -
We define

1=y )
Rk:#v K = max k‘:p—<Rk , (6)

Ej:k (Y k=1....N oF

1
S:{l, ,K}, R = ‘ 1_ pj
ngs(bj ( Jez; )

We will show thatS is the set of stable queues. This set is empty if and ondy its! > 1, in this case we
take the conventionk’ = 0 andR = 1.

Remark 1. The quantities in Equation (6) were defined in [11]. We wi# §@Sections 2.2 and 3 that these
quantities are crucial for the computation of the tail asyotjes.

For anyk, we will consider the GPS system indexedibwhere classes > k are always backlogged,
i.e. forallj <k,

el ,
dmilt t —rP () for Ty, <t < Thiy (7)
Wi, = WA(T, ) ol -y (8)
, Y g lH
’I"J’[k] (t) = Zegz[k](t) ?° J ¢ I (t)’ (9)
0 § € Ikl(¢)
1) = {z <k, Wil (1) = o}. (10)
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Note that for alll > k, we have? ¢ I¥1(¢t) for all t, i.e. classes larger than+ 1 are always backlogged.
Theorem 1. Under previous conditions on the input procé¢ss, o, ¢,, }, we have the following properties:

e there exists a unique stationary stable workload procgd® »[K1(¢), ... WK IKl(1))} satisfying
equations (7-10) for alf € R with £ = K defined by (6).

e if K +1 < N, under the additional conditimgi—f1 > R, there exists no finite stationary workload

process{Wi(t)},t € R, for anyi > K + 1. For any finite initial conditiony” € RY, we can define
the workload of each queue for> 0, following equations (1-4), and we have for K + 1

Wi (t) ~ (p* — ¢'R)t ast — oo.

Remark 2. Note that the conditiod’ + 1 < N impliesR < %, so that the additional condition in the
second bullet item ensures that the queuesK + 1 are 'strictly’ unsatble.

Proof.

If p < 1,thenK = N and the result follows from previous construction on theleyc

We assume now thdat< K < N — 1. The proof will proceed by induction ol < K: we show that
there exists a unique stationary stable workload pro@@ss!¥! (¢), ..., W*[¥l(¢)) which corresponds to a
GPS system where queues- 1, ..., N are always backlogged. Moreovet, ., Wl (¢) is also a stable

process. Fot > 0, we will denote by () = (W (1), ... WE¥ (¢)) the process satisfying equations
(7). (8), (9) and (10) fot > 0 and with initial conditiori?;:* (0) = Y. Foranyu € R, we definel¥"’, (1)
similarly but with initial conditiont¥y], (u) = V" (in particulariV,¥ () = Wy (¢)).

The first step is easy. We haves S, hencep® < ¢* andiW b[1(#) is simply the workload of a standard
G/G/1 queue. B B

Fork < N, we assume thatiWb.(E=1(¢), ... Wk=LE-1(¢)) are given. We consider the random
variable
1

~k
() = ‘ .
DOPINECS FRPTSII

We have by construction

k—1 N
DO s msey + 7)Y ¢ =1, (11)
j=1 j=k

and sincep’ 7 (t) is exactly the service rate of quetié’[*~1!, we have
E [¢7 7 ()1 (prs.00-11 ) 01] = #7- (12)

In particular, from (11) and (12), we ha@&[#*(t)] = R;. For anyY > 0, we consider the following
G/G/1 queue:

WEk@t) = v,

H.
S~—"
|

+
(Wé(T,’i—Hoff;—qs’“ fk<u>du) e TE),

(T} t)

By standard Palm calculus (see Section 1.3.1 in [5]), we have

/ ¥ (u)du
(T, 1)
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E =
A




hence we havé < S implies thatiW*(t) is the workload process of a stalfié/ G/1 queue. Clearly by
looking at the service rates, we have that foriall k£ — 1,

welo) < Wl Yo) = w1l ), (13)
Wello) < WE_0) =21k 0). (14)

We are now able to construct a stationary workload prod&és® of the GPS system where queues
k,..., N are always backlogged: note tH@Qﬁj[_kl(O) are increasing irt, hence we can take the limit as
t — —oo (standard coupling from the past) and the limit is finite tsto (13) and (14). We now prove
uniqueness of this stationary process by a coupling argun@amsider any finite variablgsZ,, . . ., Z).
Then we have

Let
k-1 . ~
i=1

We clearly haveP(v < co) = 1 because
k—1 k
L is[k=1] ki _ i ik pk i
tlirgct <E 7’ )+ o°F ))du—é_lp +¢"R >E_1p.

The random times (which depends on th&;’s) is a coupling time: for alk > v, we haveWg’[k] (t) =
V_V;’i[k] (t). Also by takingZ; = W[¥(0) constructed above, we see that the proceBged! and 17
couple and the uniqueness follows.

It remains to show that queues that are nafiare unstable under the additional conditigai—i > R.

First assume thak’ = N — 1. In this case;—z > Rimplies thatp > 1, sincep — 1 = p" — ¢V R. Now for
any finite workload procegdV* (¢), ..., W (t)) of queued, ..., N fort > 0, we have forali < N — 1,

Wi(t) < Wl

s ), v >0,

Moreover standard result for the single server queue gi@ﬁ1 Wi(t) ~ (p — 1)t. This shows that
WHN(t) — oo ast — oo andW (¢) ~ (p — 1)t = (pV — ¢/V R) t. In this case, the proposition follows.

We assume now th%}i—i > R (with the possible value 0 fak’, in which caseR = 1). This ensures
thatp > 1. Thanks to the ordering of the subscripts, we have

N .
Zi:K+1 P’
N .
Zi:K+1 o}

If we replace the classds + 1, ... N by a unique virtual class with Weiglftjf\’ﬂ@rl ¢* and we asume this
virtual class is always claiming its full share of the seeviate. The service rate received by this virtual
class is clearly an upper bound for the sum of the service rateeived by the classés + 1,... N. Note
that the system with this virtual class is the same as the eseritbed above. Hence this virtual class
receives mean service raEiN: x+1 @' R and we have for any finite workload proce38* (t), ..., W™ (1))
defined orR ;. (we denotel(t) = {i, Wi(t) =0} C {1,...,K}),

> R.

K+1 N
hmsupt/ ¢ + +,¢ du < Z #'R.
0

t—o0 Ejej(w ¢’ i=K+1



In particular, we have

lim sup — =—du<R.

i [ 5o

Hence fori > K + 1, we have

lim sup - / E du < ¢'R < pt.
jej(u

t—o00 t

Hence we havwi( ) — oo ast — oo fori > K + 1 so that we actually have the equality:

limg oo 1 fo oo )¢,du = ¢'R, and therWi(t) ~ (p* — ¢*R)t ast — oo. ]
FET(u
Remark 3. 1. We assumegi—f1 > R in order to avoid the critical case (correspondingto= 1 in

the single server queue).

2. In the work of Borst, Boxma and Jelenkoyil], stability issues are also considered (see their
Lemma 4.1). However their notion of stability is weaker tiban Definition 4 and it corresponds to
the fact that the mean service rate is equal to the rate ofripati(see their Remark 4.1). Also, they
assume the existence of the mean service rates for eaclisglagbeir Appendix A) and then derive
the equations they must solve. Our Theorem 1 shows thatdforsary ergodic inputs, these mean
service rates exist and are equalgbfor stable classes (i.e. farc S) and to¢’ R otherwise. This
strong result was not needed in [11] for the derivation of thikasymptotics.

In what follows it will be convenient to consider a GPS systgithh weightse!, . .., ¢~ (not satisfying
Condition (5)) but with greedy classes, i.e. the clagses 1,..., N are continuously claiming their full
share of service rate. The other classes behave “normally” the input processed’, o,,} satisfy the
stationary ergodic conditions. The following result is eedt consequence of Theorem 1.

Proposition 1. For any finite initial conditions” € RY, the proces$ "™ | Wi (t) is stable if
J 1—
max 2 M = R. (15)
=1 ¢j 1- Zv 1 ¢Z

Moreover there exists a mean service rate for the greedyagjénthe following sense: for any finite initial
conditionY’, let Iy (t) = {i < K, W¢(t) = 0}, then we have

1
lim - =
60 K N i
t tJo Zz’:l ¢ ]liely(u) + Zi:K+1 ¢

Hence the mean service rate of greedy queisay’ R.
In the casanax; g—'; > R, at least one of the queues.. ., K is not stable.

2.2 Rare Events in GPS Queues

In this section we consider a stable GPS system witkh 1. W.l.o.g we assume that the ordering (5)
holds. We are interested in the effect of a very big servioeetof sizes arriving in queuej at time
TJ Hence we consider workload process given by equationg ¢br4 > 777, with initial condition
(Wl(TJ ),...,WN(TJ-)), i.e. in the stationary regime but we replagg by a deterministic value
o. We assume w.l.o.g tha] = 0 and we denotéV } (0,t) = (Wit (0,¢),..., WU} (0,1)) the
corresponding workload process.



Let T (o) > 0 be the first time for queug to empty. On the intervgD, T'(0)], the queug is always
backlogged. Hence we are exactly in the situation of Prajoosl with queue as greedy queue and if
{2 1— Z ,pi
14 i#j

max — > ———7,

i#j ¢t 11— Zi;ﬁj ol
then at least one queueZ j begins to grow on this period of time. Hence the situatiomae (o) is that
some queues are very big and will remain backlogged for a pmrgpd of time. Indeed we are still in the
situation of Proposition 1 but this time with a set of greedgges. We need to introduce some notations in
order to describe the situation. Given a et {d1,...,d,} C {1,..., N}, withd; <--- <d,, consider
a GPS system in which queugs, ..., N}\D are greedy. We still hav 21 <o < gzz . Hence results
of previous section apply (st = oo for i ¢ D) and we denote

d. i—1 4

.op 1= p™
KD) = max (1: —— < =5 - -
( ) . { ¢di ZZ:i ¢d[ +Ej$D ¢j

i=1,...,n
S(D) = {di,...,dxm},
RD) = ——[1- % ),
2 igs) ¥ 1eSD)

with the conventiorﬁf1 = >y = 0. In words, if queues that are not i continuously claim their full
share of the service rate, thépne S(D) implies that clasg; is stable and for a clags¢ D, it will receive
a service rate o' R(D). In the caseD = {;}, we will use the notationj) instead of({;}). Itis easy to
see that:

N
> 0 <1=RG >p. (16)
=1
Also if
27 < R(j), (17)

then queué is insensitive to queugin the sense that it will remain stable for any valuedf Note that it
is always the case i’ < ¢'.

We now analyze the effect of a very big service time in clasgen condition (17) is not satisfied. We
will attach a superscript’?} to the constants that are calculated in this case. We firstitdesthe intuitive
picture that will be made rigorous using fluid limits. Becaws$ Equation (16), the output rate of class
bigger than the input rate. Hence queueill empty at a timeT’ (o) which is approximatelym. We

denotefl{]} = m

start to build up and reach an approximate Iex/eﬁ’{j} attime7'(o) where we have:

Moreover, during this time queues of the claskes {1,..., N}\(S(j) U {j})
L 1{.1‘} ‘ 4
gt = / (b =20 w) du,
0
PN = ¢ R(I i p0y
We also denote:

L={1,... . NN\SGU{Y, i =i



Attime T'(0), queues: € I, are backlogged and will receive a service rate(1, ), whereas other queues
includingj are stable. Hence f@r> 1, we define:

{5} 2 {5}
e = W\ GRa I
i,{5}
{4} } : “y
{Ze+1 arg | { o R(I;) — pi} ,
Ipyq I\ {Zij}} ,
v ,{J}(t) 10} R(Ie)]l{f}j}<tﬁf}i}l}’
k() et ko k) +
2p3 /0 (p — " (u)) du.

The interpretation is the following: at tim

{ﬁa, queues{i}i}l} empty whereas queues i, reach

levelsz,; 1! . During the time periodf"? o, f71 o), classes i are continuously backlogged.

{41

Forallk € {1,..., N}, we defined a function”{7} (¢) for t < /(1 — p) and we now extend it for
values oft > /(1 — p) by setting:y*{7} (t) = p*. We can now define the function

. t y +
W o) = /(pk—"/k’{J}(u/J)) du j#k,
0
+

wien = (o /Ot<pf'—¢f'R<j>>du)

Letwli} (0,t) = (w5} (0,1),...,w™N 17} (0, t)) be the multidimensional function. Since the sequence of
sets{I,} is decreasing, it is easy to see th{tl,1) > R(I,). Figure 1 illustrates the shape of functions
wli}(q,.) for a giveno. o

fl{j}o f2{j}a >

Figure 1: functionsu®/} (o, .) for fixed &

Proposition 2. If p < 1, we have for any constant 5 > 0, asn — oo,

{5} — i}
sup Wi (o, nt) — w9 (o, nt) 0, as.
o>na,t<3 n

The proof of this proposition is deferred to Appendix 6. Itiie our main tool for the computation of
the tail asymptotics presented below. It plays a similag @d Proposition 5.1 in [17] in the study of tail
asymptotics for generalized Jackson networks [7].



3 Tails in GPS Queues with Subexponential Service Time Digtru-
tions

3.1 Stochastic Assumptions and Main Results

In this section, we restrict the framework of Section 2: wsuase that each arrival proce§g; },.cz is a
renewal process which is independent of the arrival praces$ classes # j. We also assume that the
sequence of service times of claskenoted by’ is a sequence of i.i.d. random variables with finite mean.
Recall that for eachi € {1,..., N}, we haveE[T{ — T{] = & < o0, p = ME[o]] andp = 31, p.
We assume moreover that for any j, we havep! # R(j)¢'. Recall that this is always true in the case
1 = j sincep < 1 see Equation (16).

We will consider two cases concerning the distribution &f service times.

Assumption 1. The distribution of the service times of clas® (o} > z) = F;(z), is such thatF? is
subexponential.

The other case considered is the following:
Assumption 2. There exists a distribution functiafi onRR ;. such that:
1. F has finite first moment/.
2. The integrated distributiof’® is subexponential.
3. The following equivalence holds whetends tox:
P(o} > z) ~ d'F(x),
forall j =1,..., N with 2% | d/ > 0.
Remark 4. Note that in both cases, we did NOT assume that subexponential.
We take the notation of Section 2.2 to define the following dove indexed by, j € {1,...,N}:
A (@) = (o) eRE, w0 (o)) > .
We are now able to state the main result

Theorem 2. Consider a stable GPS system/éfqueues. We assume that one of the following conditions
holds:

e Assumption 1 is satisfied and < ¢;
e Assumption 2 is satisfied.
Let V¢ be the stationary workload of queieWhenr — oo, we have

P(Ws@:iy//{

We will prove Theorem 2 in Section 4. As an intermediate resug will prove the following theorem
which extends Pakes’ theorem [23] to a more general settidgraght be of interest by itself.

P (o7 € do) dt + o (F (x)) . (18)
(o,t)eAH{TY ()}

Theorem 3. Let W be the stationary workload of a single server queue fed bystiperposition ofv
independen&1/GI processes with Assumption 2 satisfied. Then we have

P(W > z) ~ %P(US > x),

where )\ is the intensity of the arrival procesg,is the traffic intensity and the distribution ef® is the
integrated tail of the (Palm) distribution of the servicm@g.

Remark 5. This result extends Theorem 4.1 of Asmussen, Schmidli dmdi@&d4], in which the arrival
process is the superposition of renewal processes but thiEsdimes are supposed to be i.i.d.



3.2 Reduced-load equivalence and induced burstiness

We now comment on our main Theorem 2 and show how it extendsimxiresults in the literature. The
main results in the literature (see [1] for a survey) revedichotomy in the qualitative behavior, depending
on the traffic intensities and the weight values of the vagidasses:

e reduced-load equivalence occurs when an individual clagis subexponential characteristics is
served at a constant rate, which is determined by the aveasgeof the other classes.

e induced burstiness occurs when an individual class is glyoaffected by excessive activity of
'heavier'-tailed classes and inherits their traffic chaesistics.

The term reduced-load equivalence was first coined in théegbof fluid queues with subexponential
activity periods [2] and the term induced burstiness firggesgyed in [10]. We will show that our results
allows us to consider mixed cases where both phenomena camglay.

We first give some conditions for reduced-load equivalendwold.

Proposition 3. We denote byI’*¢ the stationary workload of a single server queue fed by atsiof class
1 with constant service rate If one of the following conditions holds:

(@) p' < ¢ and Assumption 1 holds;
(b) Assumption 2 holds witl¥ = 0 for all j # i;
(c) Assumption 2 holds witlf > 0 andF" R(—00);
then the following reduced-load equivalence hoB&WV! > ) ~ P(W"¢ R > z).

This proposition follows easily from Theorem 2 and corrasg®(with slightly different conditions) to
the reduced-load equivalence proved in [11], Theorems3dl4al. Proposition 3 states that the workload
of the classi is asymptotically equivalent to that in an isolated systeherg class would be served at
constant rate’ (i), which is the average rate that clasgceives when it continuously claims its full share
of the service rate. Asymptotically, the workload of class only affected by the traffic characteristics of
the other classes through their average rates. In othersytthporary instability caused by other classes
(possibly heavier) does not substantially influence thekieaid of class. Condition(a) ensures stability
of classi regardless of the activity of the other classes. Conditigrensures that classs the 'heaviest’-
tailed class. In the case of Conditién), the distributionF® is not sufficiently 'heavy’ for other classes to
impact asymptotically class This case extends results of [11] and is new.

We now give some cases of induced burstiness.

Proposition 4. If Assumption 2 holds Witﬂi_z 0andif F~ € R(—a) with0 < a < oo, then the following
induced burstiness hold®(W* > z) ~ C'F"(z), where the constart’ depends only on the parameters
pl M, d, forj e {1,... N} anda.

This proposition follows directly from Theorem 2. We nowdten example in detail.

Example 1. We suppos&/ = 2 and Assumption 2 holds witf? = 0, d* = 1 andF’ e R(—a). We also

assume thaf—i <1l é The first inequality is implied by the stability conditipn< 1 and we are in
the following case: a big service time of class;duces an instability of quele The corresponding fluid
limits are depicted in Figure 2.

As stated by Proposition 4, we are in the situation whereghiginduced burstiness for clags The
corresponding domain is easy to compute,

APy = {(a,t),t> a>x+(1—p)t}.

X
p2_¢2’

10
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Figure 2: GPS with two classes: big service in class

Then we can apply Theorem 2 and we get

P(W? >2) ~ A P(o! > 2+ (1 — p)t)dt
N Al FS <J3(1 — pl))
L—p p* — ¢*

~

Al 1-— ,01 - —s

1—p <p2 —¢2> F

The computations done in previous example can be made foraug of N and we see that any class
that makes the queudemporary unstable, will contribute to the tail asymptetié the workload of clasé
in a non-trivial way given by the shape of the domains. In camfework, Theorem 5.1 of [11] corresponds
to cases where only one class can make queemporarily unstable and the corresponding domain has a
shape similar to the one df>{}(z) in previous example. Our Theorem 2 does not require any tiondi
on the shape of the domains and as sooiag 3, these domains can have quite intricate shapes (see
Lemma 3 in the next section) and more than one class can mads tdmporarily unstable.

We now consider a case where service times have similar cteaigtics in both classes and neither
reduced-load equivalence nor induced burstiness happens.

Example 2. Consider Example 1 but witti = d? = 1. Then by Theorem 2, we have

P(W? >2) ~ A /Oo F(z+ (1 — p)t)dt + N2 /oo F(z + (1 - p)t))dt
0

x
p2—$2

Al 1-— pl e )\2 —=s
~ —_-— F ().
<1—p(p2—¢2> 1, (@)
The first part of the right-hand term is exactly the same asxariple 1. The second part of the right-hand

term, corresponds to a reduced-load equivalence: ctagseiving a service rate af*R(2) = 1 — p'. We
see that in this case both phenomena come into play.

If Assumption 2 holds, we call the sét, d; > 0}, the set of dominant classes. In summary, we see that
1. if p' < ¢, reduced-load equivalence occurs (provided classieavy-tailed);

2. if classi is a dominant class and the corresponding integrated tedlpiglly varying, then reduced-
load equivalence occurs;

11



3. if classi is not a dominant class and the integrated tail of the dontidlasses is regularly varying,
then induced burstiness occurs;

4. if classi is a dominant class and the integrated tail of the dominassels is regularly varying, then
the tail asymptotics of clagsare the sum of two contributions corresponding to both phesra.

Points 1, 2 and 3 are in accordance with results of [11]. Pbistnew for a GPS system (similar results
were obtained for a queue with unit capacity fed by severaldgfiflows [29]).

4 Proof of the tail asymptotics

The GPS system does not fit exactly in the framework of [6]. éf @@onsider the global workload (which
is aG/G/1 queue), we have a monotone separable network, but the sdinvies are not i.i.d. and it is
not possible to directly apply the results of [6]. Hence wedh& adapt the argument to our framework in
order to derive the single big event theorem for our GPS gystExcept in Section 4.4, we assume that
Assumption 2 holds.

4.1 The Single Big Event Theorem

We first construct an upper bound fir. We considerV virtual GI/G1/1 queues with respective input
processq T}, o7 },ez and with server gapacit@!" :ij + 152, We denote by¥/ the workload at time 0
of these single server queues dfd= W' + --- + W, More formally, we define

0
ol —ir, §, =3 ¢ i G
ggz - qu, - TjT%J S—n - gia M7 = blipS—n'
. n>0

With these definitions, we havé’/ = (Mj + ijg)+, whereT}] < 0 is the last arrival time of clasg
before timet = 0. o

We have [23, 25]P(W/ > z) ~ %”;”Fs(x). Moreover the random variablég’ are independent of
each other, hence we have

N .o
POV > o) ~ 3 B >x)~zz¥ijijfs(x). (19)

j=1 j=1

The following corollary follows the line of Corollary 5 of |6
Corollary 1. Foranyxz andj =1,..., N, Iet{Kg,x} be a sequence of events such that

1. for anyn, the evenIKTJ;?m and the random variablegr_,,, c_,,) are independent;

2. inf, >N, P (Kj ) — lasx — oo.

n,x

For any sequencsg,, — 0, let

A{um = wa N {O’n >x+n <1N;)\p —|—77n) , C_n :j}
N
AI = U U Agz,m'
j=1n>N,
Then ast — oo,
~ ~ N .
P(W > 2) ~ P(W > 2, 4,) ~ P(Ay) ~ ) P (A7 ,). (20)

12



Proof.
The proof follows the one of Corollary 5 of [6]. First note tha

iZP(AJ iZP(K;w)PGn>x+n<1]\;;’+nn), n:j>

j=1n>N, j=1n>N,
N .
N ( j 1
~ ZZ—P an>a:+n(—+77n)>
priicrd A N
i)\_j NX g iv:NAﬂdj—s
= Al—p = 1

Thus, if the sequencdds,, ..} and{n, } are such that, for all sufficiently large
1. the eventst/, , are disjoint for alln. > N,;
2. A, C{W >z} foralln > N,;

then

P(W > x)

vV

P(W > z,A,) = P(A,)

N 7 i
SDIDIICRED SE )

[

J=1n=>Ngy Jj=1

Combining with (19), we get the equivalence (20).

We now construct two specific sequen({éégﬁ} and{n, } satisfying conditions 1 and 2 above and the
conditions of the corollary.

We define the following functio (n) = S Liei=j) — 1. Onthe even{c_, = j}, we have
T, =T’ Ci(ny O—n = o{cj(n). We can find a non-increasing sequenge— 0 such thate,, — oo and
such that the probabilities of the following events tend st — oo,

Ln. = 5 p—1i - N, <k<Ci(n—-1),1<j<N
n,x L Ny | = €y N S R > n ) 7= )
. I(n — ]
M = {M_ﬁqn}y
" n A
NTJL _ {Tj‘<n€n}

Hence the evenK,qu = L, . N M7 N Nj satisfies the conditions of the corollary. Moreover on thergv
{c_n =7}, wehaveCi(n) =Ci(n—1)+1 and,S” o,y = 0—n + 57 g1y
Now if we taken,, = /€, we have

w > Sc,n) neEy,

i 1—p N p—1
> T+n N)\ +77n T—Gn N—Aj—ﬁ()\j/)\)n,1 — NE€Ep,

and we see that for sufficiently large we havel’ > z. The fact that the eventsg;ﬁ are disjoint

follows from the fact that for sufficiently large, we haveey, < (1 — p)/(NX). Indeed on the event

Al . we haveSij(n) >z andS’ ;4 < (C7(n) = 1)((p — 1)/(NV) + en,) < 0. The events

{57 > 2} U{S]_, < 0} are clearly disjoint im. It is also easy to see that the everts, are disjoint in

4. The end of the proof, i.e. showing that the corollary is tioieany sequencé’’ , follows exactly the

line of the proof of Corollary 5 of [6] and is omitted. ’ ]
From this corollary we derive the following proposition

13



Proposition 5. Foranyz andj = 1,..., N, let{K7 ,} be a sequence of events such that
1. for anyn, the evenf(g;y,x and the random variablegr_,,, c_,,) are independent;

2. infnZNm P (KJ

nw) — lasxz — oo.

For any sequencsg,, — 0, let

N
A, = | Al
j=1n>N,

Then for any random variable/ < W, we have as: — oo,

P(W>z) = PW>uzA4,)+o0 (F (a:)) (21)
N
= Y Y P(W a4l )—i—o(F(x)). 22)
j=1n>Ng
Proof.
We have
PW >z) = PW >z, A)+P(W >z, AS)
< P(W > z,Ay) + P(W > z, AS),
but thanks to previous corollary we have tR&tV > z, A¢) = o (Fs(x)). Hence we have
P(W >z, A,) <P(W >x) <P(W >z, 4,)+o (Fg(x)) ,
which gives (21). The end of the proof is the same as the oresotbrollary. O

4.2 Proof of Theorem 3.

First note that? > TW. Hence we can apply previous proposition, with

_{’——L <ep, Ny <k<n—1, |T0|<nen},
whereS_;, = E?:_k o; — 7;. On the evenﬂ{l . wehavelW =o_, +S_,,1 + T3, hence
N 1—
ZZ W>a:Aj ~ ZZ}P’(a_n>x+n<Tp+2en),c_n:j>
j=1n>N, j=1n>N,
A —s
~ ——F ().
I—p

4.3 Computation of the Exact Asymptotics when Assumption 2 dlds

We have to find a sequence of eveﬁfér{y,x} in order to compute the following sum

§ilit = ZP(WZ>35 KnT,Jn>x+n<1N)\p+77n), :j>

n>Ng

A first case is easy: when quetiemains stable even if queyes continuously backlogged.

14



Lemma 1. Assume that
= < R(j). (23)

-3

Then we havé™ i} = o (F (x)).

Proof.

Under condition (23), we know thanks to Proposition 1, that stationary workload of queueexists
when queug is continuously backlogged. We denote this workId&é(j). We havelV? < Wi(j) < oo,
andWi(j) is clearly independent ¢fl’/, o7 ). Hence we have

o , , 1—
iw{j} _ i P _
gulil = Z ]P’(W >x,Kﬂw,U_n>a:+n(—N)\ +77n),c_n—j>

n>Ny

, 1—

< PW*'(y) > z) Z P <0'_n >x+n (N—)\p +77n) , Cop = j)
n>Ny
- O(Fs(x)).

a
We consider now the cas%, > R(j). In this case when queyeexperiences a long backlog (due to
a very big service time), queues no longer stable and the fluid limit corresponding to thigge is no
longer 0. The remaining steps of the proof of Theorem 2 ardasito those of Section 3 in [7].
Let e, be some sequence of positive real numbers, we define

; Wit (o, T t) —wli (o, nt T
K; =4 sup (0, T+ nt) — w {0, nt) <eén, |— +a| < e
o>nize n n
NX
t<2a

Thanks to the results of Section 2.2, we have the followinge

Lemma 2. Let{ K} } be the sequence of events defined abfieand the random variables_,, andc_,,
are independent. There exists a sequences 0 such that we havB(K/) — 1 asn — oo.

Onthe evenf? N {o_, >z +n (5£), c—, = j}, we have (thanks to the continuity af-{7}),

Wi = wi’{j}(a,n, na) + nn,, Withn, arv. such thaty,| <e,.
We will need the following lemma on the shape of the dom&in/} (z).

Lemma 3. There exist COﬂStE\nt@aZ’{j},ﬁ]i’{j},’yli’{j}}ogkgg with o < oV < L < az’{j},
BiUY <1, such that

¢
Ai’{j}(x) = U {az’{j}x <t< a;:j_jl}, o> ﬂix{j} +t7,i’{j}} ,
k

k=0

with a1} = + 0. Moreover, we have
A @) = {o > 2+ (¢"R(i) — p') Mt}

This lemma follows directly from the definition of the funatiw {7},
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Following exactly the steps of the proof of Theorem 2.1 in {¥& can show that

¢
Si’{j}(a?) ~ Z Z P <o’_n > ﬁ + nary;’{ﬂ}7 Cp = j)
k

k=0 az’{'j}wgna<az’ii}m

ooy
N . x 1
— J i,{7}
= 32 E E P <a > ﬁ,i{j} + ny )

k=0 az’{'j}w§n<az’ii}m

4
5 ; X i,{j

i
k=0 0110 p<ncal BVe k

This term is of orderi 7" (/357 ) and hence(F" (x)) as soon a$™ is rapidly varying. Summing over
j, we obtain the equality (18) of the Theorem, which conclutiegproof.
4.4 Tail asymptotics when Assumption 1 holds

The stationary workload of th&I/G1I/1 queue with input procestT, % },,cz and service rate’ is
clearly a stable upper-bound féir¢. The proof then follows from the same arguments as above.
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6 Appendix: proof of Proposition 2
We consider a sequeneé& such thav™ > na. We suppose tha;i—L — o < 4o00. We will show that

sup Wit (o™, nt) — wiit (o”, nt) o,
0<t<p n

which is sufficient to prove the proposition. For simpligitye denotel;\’}(¢) = W{i}(o™,¢) and
wi () = wlit (o7, 1).

We first assume that < oco. LetZ]* be the first positive time at which quetidoecomes empty, i.e.
queuej is backlogged oifd, 77']. Hence we have thanks to the result on the mean service rBtepbsition
1,

lim Wa T(I) o+ (p) — ¢ R(j)) ( lim —1> =0,

n—oo n n—oo N

from which we derivéim,, _. TTl =0o/(¢"R(j)—p’). Now for0 < ¢t < T7*/n, we can apply Proposition
1 and we have

£,{5}
Wal 0l st RG) L A
W o~ RGN

We have shown in the case< oo that for all j,

Wi (nt) — wi (nt)
n

— 0.

sup
o<t<fiito

Moreover, we see that at tin1&", the queues € I; are backlogged. DefirE? as the first time at which one

of these queues becomes empty. Using Proposition 1 in the s@mner, we obtain th&t}' /n — afz{j}
and that,

W9 ) — wi (nt)
n

— 0.

sup
0<t<filo

Hence in the case < oo, the proposition follows by iterating the same kind of argunts.
In the caser = 400, sincely" > ¢", we have for sufficiently large, we havel* > n3. Hence for all
k # j, we have with the same argument as above that

W (nt) —wiy ¥ (nt)
n

sup — 0,

0<t<p

and fork = j, we have for alk < g,

n

This concludes the proof. ]

18



