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Abstract Networks of Erlang loss queues naturally arise when modelling finite com-
munication systems without delays, among which, most notably are

(i) classical circuit switch telephone networks (loss networks) and
(ii) present-day wireless mobile networks.

Performance measures of interest such as loss probabilities or throughputs can
be obtained from the steady state distribution. However, while this steady state dis-
tribution has a closed product form expression in the first case (loss networks), it
does not have one in the second case due to blocked (and lost) handovers. Product
form approximations are therefore suggested. These approximations are obtained by
a combined modification of both the state space (by a hypercubic expansion) and
the transition rates (by extra redial rates). It will be shown that these product form
approximations lead to

• upper bounds for loss probabilities and
• analytic error bounds for the accuracy of the approximation for various perfor-

mance measures.

The proofs of these results rely upon both monotonicity results and an analytic
error bound method as based on Markov reward theory. This combination and its
technicalities are of interest by themselves. The technical conditions are worked out
and verified for two specific applications:
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• pure loss networks as under (i)
• GSM networks with fixed channel allocation as under (ii).

The results are of practical interest for computational simplifications and, particu-
larly, to guarantee that blocking probabilities do not exceed a given threshold such as
for network dimensioning.

Keywords Network of Erlang loss queues · Blocking probabilities · Error bounds
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1 Introduction

1.1 Background

The classical Erlang loss model, initially developed for a single telephone switch, is
probably the most commonly known queueing model. The loss network is its gen-
eralisation to more complex circuit switched systems with multiple links, multiple
switches, and multiple types of calls (see [11] for an overview). The loss network is
widely used for telephone system dimensioning. The common feature of these net-
works is that a call arriving to the system either obtains a number of circuits from
source to destination and occupies these circuits for its entire duration, or that the call
is blocked and cleared because the required circuits for that call are not all available.
The corresponding blocking probabilities are among the key performance measures
in circuit switched telephone systems. Due to the simple structure of loss networks,
their equilibrium distribution has the appealing so-called product form. This product
form can be seen as a truncated multidimensional Poisson distribution, where the di-
mensionality is determined by the number of call types, the parameter of the Poisson
distribution is determined by the load offered by all call types, and the truncation is
determined by the capacity constraints of the circuits:

πloss(n)=G−1
N∏

k=1

ν
nk

k

nk! , n∈S, G=
∑

n∈S

N∏

k=1

ν
nk

k

nk! , S ={
n= (n1, . . . , nN) : An≤ s

}
,

(1)
where G is a normalising constant, A a d × N matrix, s = (s1, . . . , sd), with si the
capacity constraint on circuit i, i = 1, . . . , d , and d the number of constraints on
the capacity of the circuits, νk = λk/μk , with λk the arrival rate and 1/μk the mean
holding time of type k calls, k = 1, . . . ,N , and N is the number of call types, see [11].

A loss network can also be seen as a network of Erlang loss queues with common
capacity restrictions. An additional appealing property of the equilibrium distribu-
tion πloss is that it is insensitive to the distribution of the call length or holding time
apart from its mean. As blocking probabilities can readily be expressed in terms of
this equilibrium distribution, the insensitivity property obviously carries over to these
blocking probabilities. Although these blocking probabilities are available in closed
form, numerical evaluation requires evaluation of the normalising constant G−1. The
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size of the state space considerably complicates this evaluation. To this end, vari-
ous efficient numerical evaluation and approximation schemes have been developed,
including Monte Carlo summation, and Erlang fixed point methods, see [11, 20].

In mobile communications networks, a call may transfer from one cell to another
while in progress. As a consequence, in addition to fresh call blocking of a newly
arriving call, handover blocking for a call which attempts to route to another cell, but
which finds all circuits available for this cell occupied, becomes of practical inter-
est. In that case, the blocked handover is cleared and lost. A network of Erlang loss
queues with routing and common capacity restrictions is a natural representation of
this network.

The equilibrium distribution for a network of Erlang loss queues with handover
blocking is, unfortunately, not available in closed form. Various approximations have
therefore been suggested in the literature. The most appealing among these approx-
imations is the redial rate approximation introduced in [4]. Under the redial rate ap-
proximation, an extra arrival rate of calls in cells surrounding a blocked cell is intro-
duced. This redial rate mimics the behaviour of calls that are lost when transferring to
the blocked cell. This approximation retains the call blocking structure of the original
model. Under maximal redial rates, when all blocked calls attempt to redial, the equi-
librium distribution is of product form, similar to that for the loss network. Moreover,
the equilibrium distribution and blocking probabilities inherit the appealing insen-
sitivity property. As the equilibrium distribution under the redial rate approximation
also has a truncated multidimensional Poisson distribution, computational techniques
developed for loss networks can be carried over to numerically evaluate fresh call and
handover blocking probabilities.

1.2 Results

The redial rate approximation of blocking probabilities introduces an approximation
error. However, as of yet no formal support for the accuracy of this approximation
or other approximations appears to be available in the literature. For practical pur-
poses, at least an upper bound for blocking probabilities would be of most interest as
blocking probabilities are mainly used for dimensioning. In addition, an error bound
on the accuracy of this bound would substantially enlarge its applicability. This paper
therefore aims to establish both

• upper bounds for blocking probabilities, and
• analytical error bounds on the approximation error for specific performance mea-

sures as based on Erlang loss queue approximations.

The first result (a monotonicity result) may seem intuitively obvious, since the re-
dial rate approximation introduces an extra arrival rate of fresh calls on circuits that
are neighbours of a blocked circuit. However, as shown by an example, see Sect. 4.4,
the result does not apply in general: adding extra calls on some circuits may reduce
blocking probabilities in particular circuits. It is the careful combination of redial
rates and state space modification that yields the monotonicity result. The monotonic-
ity results are not only of interest to establish the bounds, but are also required for
obtaining the error bounds.
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The approximation error is shown to be roughly of the order of magnitude of the
blocking probabilities. For dimensioning of networks with an increasing offered load
this is appealing, since dimensioning based on the upper bound guarantees that block-
ing probabilities do not exceed a given threshold. For example, with approximate loss
probabilities in the order of up to 0.5%, it would secure actual loss probabilities in
the order of 1%.

As both a system and state space modification are involved, the bounds and the
approximation errors need to be obtained in two steps. These steps have not been used
before in the literature and appear to become rather technical. First, we will obtain
a bound and an error bound due to increasing the state space to a hypercube Shc =
{n : 0 ≤ ni ≤ Ni}, Ni = max{ni : n ∈ S}, i = 1, . . . ,N , that contains the original state
space S. The equilibrium distribution of both the original process and the process
on this hypercube are not available in closed form. Next, we show that increasing
the redial rates for the process on the hypercube increases blocking probabilities. In
addition, an error bound is established for the accuracy under increasing redial rates.
In particular, under maximal redial rates, when all calls that have lost their connection
attempt to redial, the equilibrium distribution has a truncated multivariate Poissonian
form, which leads to a closed form expression for the blocking probabilities.

The monotonicity and error bound results cover performance measures which are
increasing in all components of the state. This includes fresh call and handover block-
ing probabilities as well as throughputs. With A0 the performance measure for the
original process, and Ahc,r for the process on the hypercube under redial rates, the
main result states that

Ahc,r − (β + βr0) ≤ A0 ≤ Ahc,r ≤ A0 + (β + βr0),

where the parameter β characterises the approximation error due to the state space
modification from S to Shc, and the parameter βr0 characterises the error due to the re-
dial rate approximation on the hypercube state space. The parameters are determined
by the arrival and service rates, and the equilibrium distribution on the hypercube
under maximal redial rates is of product form:

πhc,r (n) =
N∏

i=1
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]
, n ∈ Shc.

The result states that the approximation Ahc,r is an upper bound on A0, and that this
upper bound differs no more than β + βr0 from A0. In applications, β + βr0 is often
of the order of magnitude of Ahc,r , so that the bound is applicable for dimensioning:
dimensioning the system based on a guaranteed upper bound implies that the actual
system performs better than the target values.

1.2.1 Outline of proofs

The proofs are obtained in two steps. First monotonicity is demonstrated for the state
space modification, where the original process is shown to be stochastically domi-
nated by the process with the same transition structure on a larger state space, e.g. on
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the hypercube Shc ⊃ S. Then, monotonicity is demonstrated in the redial rates of the
process on the hypercube. For the maximal value of the redial rates the process has a
product form equilibrium distribution. Due to the hypercube state space, this enables
us to obtain blocking probabilities directly from the Erlang loss formula.

For the second result (the error bound) first a general error bound result will be
presented that expresses the error in the equilibrium distribution of the approximating
model. Next, as a special case, a simple analytical bound is provided for the redial
rate approximation on the hypercube. The proof of the error bound result requires
both the monotonicity results and a Markov reward approach. In the Markov reward
approach, rewards are associated with the performance measures. For example, for a
blocking probability the process incurs a reward rate 1 per unit time spent in a state in
which blocking would take place. Based upon the combination of the special reward
and structural properties of the transition structure, monotonicity properties and error
bounds for that specific performance measure can then be derived.

1.3 Literature

The results of this paper are based on monotonicity and error bounds that relate per-
formance measures to their approximation by a product form network. The equilib-
rium distribution of the product form network coincides with that of an Erlang loss
network. Product form approximations for networks of Erlang loss queues with rout-
ing have been discussed by various authors, see e.g. [4, 8, 18]. The redial rate approx-
imation was introduced in [4], and generalised to networks with general call lengths
in [5], which also investigates insensitivity. Performance measures for networks of
Erlang loss queues with routing have been analysed in a variety of papers, see e.g.
[9, 18, 19]. Performance measures and their numerical evaluation and approximation
for loss networks have been addressed in a series of papers, see [11], and [20] for an
overview and further references.

For the estimation of blocking probabilities, in this paper we have a twofold in-
terest: to prove an upper bound and to establish an error bound for its accuracy.
To prove bounds, the stochastic monotonicity approach by sample path compari-
son is widely used in the literature, see [2, 10, 12–17, 26, 28, 29]. However, while
this approach is straightforward for unrestricted (or infinite) queueing systems (e.g.
[2, 16, 17, 22, 28]), it is not for finite systems. For finite queueing systems a proof of
stochastic monotonicity leads to complications as ‘overtaking’ might take place so
that interchangeability arguments have to be used based on exponentiality assump-
tions [1, 26]. However, these arguments cannot be applied in mobile networks as
exponential calls are no longer indistinguishable due to their location (also see [14]).
In order to establish error bounds, in this paper therefore we will use a combined
approach based on both monotonicity results and the Markov reward technique, see
e.g. [23, 24, 27] for a survey of this technique.

1.4 Organisation

The organisation of this paper is as follows. Section 2 contains the model, the perfor-
mance measures of interest, and the product form modifications. In particular, a net-
work with unlimited capacity is used to introduce the offered load that characterises
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the equilibrium distribution under the redial rate approximation that is described in
Sect. 2.3. Section 3 contains the main monotonicity and error bound results. The
technical proofs of these results are concentrated in Sect. 5 along with additional
comments. Section 4 provides two special applications which include

• a computational simplification for loss networks
• and an explicit error bound for GSM networks with fixed channel allocation.

2 Model

2.1 Markov chain

Consider a wireless communication network consisting of N cells, labelled i =
1,2, . . . ,N . Calls arrive to cell i according to a Poisson process with rate λi (fresh
calls). A successfully completed call has a negative exponentially distributed call
length with mean 1/μ. Calls may move around in the network. A call may move from
cell i to neighbouring cell k at exponential rate λik (handover), provided the new state
is feasible, i, k = 1, . . . ,N . A fresh call or handover leading to an infeasible state is
blocked and cleared. This is referred to as fresh call blocking and handover blocking.
The network can thus be represented by an exponential queueing network, with

λi arrival rate to cell i,

μi = μ +
∑

k

λik holding time parameter in cell i,

pij = λij /μi handover probability from cell i to cell j , and,

pi0 = μ/μi the successful call completion probability in cell i.

(2)

A state of this network is a vector n = (n1, n2, . . . , nN), where ni is the number of
calls in progress in cell i, i = 1,2, . . . ,N . Due to interference constraints or resource
sharing, the states are limited to a set of feasible states

S = {n : An ≤ s}, (3)

where A is a d ×N matrix, s is a d-vector, and d is the number of constraints, see [9].
A state space of this form also arises in a loss network, see [11].

The exponentiality assumptions imply that the state of the network can be rep-
resented as a continuous-time Markov chain, X = (X(t), t ≥ 0), that records
the number of calls in the cells. The Markov chain has transition rates, Q =
(q(n,n′), n,n′ ∈ S), with non-zero entries for n′ �= n given by

q(n,n′)

=

⎧
⎪⎪⎨

⎪⎪⎩

λi1(n + ei ∈ S), n′ = n + ei , fresh call,
niμipi0, n′ = n − ei , call completion,

niμipik1(n − ei + ek ∈ S), n′ = n − ei + ek, handover,∑N
k=1 niμipik1(n − ei + ek /∈ S), n′ = n − ei , blocked handover,

(4)



Queueing Syst (2009) 62: 159–193 165

where ei is the i-th unit vector with 1 in place i, 0 elsewhere, 1(A) is the indicator
function of event A, that is 1 when A occurs, 0 otherwise, and the diagonal elements
q(n,n) are such that the row sums equal zero. Note that the transition rates for a suc-
cessful call completion or a blocked handover effectively lead to the same transition
and can be combined. Nevertheless, we have listed these transition rates separately
to distinguish the two events, which may have different consequences for the perfor-
mance measure of interest, e.g. throughput or handover blocking. This wireless net-
work can thus be regarded as a network of Erlang loss queues with additional state
space restrictions in which customers arriving to a queue resulting in an unfeasible
state are blocked and cleared from the system. For a more detailed description of a
wireless network, its relation to a queueing network, and generalisations to general
holding times, see [4, 5]. The equilibrium distribution, π , is the unique non-negative
probability solution of the global balance equations

πQ = 0.

Remark 2.1 (Product form?) We distinguish two cases of computational interest.
Without handovers, i.e., pij = 0 for all i, j , the network is called a loss network.
In this case, the equilibrium distribution π is well known to have a truncated multi-
variate Poisson distribution as represented by (1), see [11]. This distribution is also
referred to as a product form distribution. Nevertheless, due to the state space re-
strictions its computation can still be numerically demanding. With handovers, this
appealing product form property will in general no longer apply due to the capac-
ity restrictions, except for special instances such as with reversible routing. Several
modifications of the transition rates have been suggested in the literature, e.g. [4, 18].
In this paper, we use the redial rate approximation introduced in [4]. This approxi-
mation is based on a truncation of a network with unlimited capacity, such that the
transition rates resulting in blocked and cleared calls are preserved and compensated.
The redial rate approximation will be introduced in Sect. 2.3. In this paper, we will
show that this approximation leads to bounds for loss probabilities and we will derive
an analytic error bound on the error in the blocking probabilities.

2.2 Performance measures

The fresh call blocking probability, Bi , that an additional call in cell i cannot be
accepted, can be expressed as a summation of π over part of the boundary of the
state space (see [3], or directly by using PASTA):

Bi =
∑

n∈S π(n)λi1(n + ei /∈ S)∑
n∈S π(n)λi

=
∑

n∈Ti

π(n), Ti := {n : n ∈ S, n + ei �∈ S}.

The handover blocking probability, Bij , that a handover from cell i to cell j is
blocked, is (see [3])

Bij =
∑

n∈S π(n)niμipij 1(n − ei + ej /∈ S)∑
n∈S π(n)niμipij

=
∑

n∈S π(n)ni1(n − ei + ej /∈ S)∑
n∈S π(n)ni

.
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The call dropping probability, Di , that a call terminates in cell i due to an unsuccess-
ful handover, is expressed by

Di =
∑

n∈S

∑
j π(n)niμipij 1(n − ei + ej /∈ S)

∑
n∈S

∑
j π(n)niμipij 1(n − ei + ej /∈ S) + ∑

n∈S π(n)niμipi0
.

The throughput or number of successful call completions, Hi , is given by

Hi =
∑

n∈S

π(n)niμipi0,

which can be used to obtain the denominator of the handover blocking probabilities.

2.3 Product form modification

This section presents two modifications to obtain an amenable product form distrib-
ution. The first one is the system with unlimited capacity. This system has a natural
interpretation of the traffic equations and their solution, the offered load, that charac-
terise product forms. The second one is the redial rate approximation which we will
use as product form approximation throughout this paper.

2.3.1 Unlimited capacity

For the system with unlimited capacity, the state space is unlimited, that is S∞ =
{n : n ≥ 0}, and the equilibrium distribution also exhibits the factorising multidimen-
sional Poisson form (1) but with G = ∏

k eνk , and {νi}Ni=1 the unique solution of the
traffic equations

νiμi = λi +
N∑

j=1

νjμjpji, i = 1, . . . ,N. (5)

In this case the equilibrium distribution satisfies the partial balance equations

N∑

j=0

{
π∞(n)q(n,n−ei +ej )−π∞(n−ei +ej )q(n−ei +ej ,n)

} = 0, i = 0, . . . ,N,

where e0 = 0, the vector with each element zero.

Remark 2.2 (Traffic equations; offered load) The traffic equations (5) determine the
average load of the cells in the case of infinite capacities: νi can be interpreted as the
load offered per time unit to cell i, which consists of the arrival rate of fresh calls,
λi , and the arrival rate, νjμjpji , due to handovers from other cells j = 1, . . . ,N . To
this end, observe that in the network with infinite capacity calls move independently
among the cells of the network, so that the mean flow of calls from cell k to cell i is

∑

n≥0

π∞(n)nkμkpki = νkμkpki .



Queueing Syst (2009) 62: 159–193 167

2.3.2 Redial rates

For networks with finite capacities, closed form solutions for the equilibrium distri-
bution or blocking probabilities are generally not available. In [4], it is shown that
the introduction of redial rates re-establishes a product form or truncated multidi-
mensional Poisson equilibrium distribution. Such distributions are commonly used
for studying circuit switched or wireless communications networks, most notably
loss networks. Various computational methods for efficiently computing performance
measures have therefore been studied, see e.g. [20] for Monte Carlo methods, and [6]
for an efficient asymptotic approximation method.

Under the redial rate approximation from [4], the state space S is allowed to have
the general form (3). The Markov chain Xr = (Xr(t), t > 0) now has transition rates
Qr = (qr (n,n′), n,n′ ∈ S), with non-zero entries for n′ �= n given by

qr(n,n′)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λi1(n + ei ∈ S), n′ = n + ei fresh call,
niμipi0, n′ = n − ei call completion,

niμipik1(n − ei + ek ∈ S), n′ = n − ei + ek handover,
∑N

k=1 niμipik1(n − ei + ek /∈ S), n′ = n − ei blocked handover,
∑N

k=1 rki1(n + ei ∈ S, n + ek /∈ S), n′ = n + ei redial attempt,
(6)

where rki is the redial rate in cell i when the neighbouring cell k is blocked, and
the diagonal elements qr(n,n) are such that the row sums equal zero. The following
result is obtained in [4], where it is shown that the redial rates preserve partial balance
at the boundary of the state space. The redial rates are discussed in Remark 2.5 below.

Theorem 2.3 Let {νi}Ni=1 be the (unique) solution of the traffic equations (5), and
assume that the redial rates are such that

rki = νkμkpki, k, i = 1, . . . ,N. (7)

Then the equilibrium distribution πr of Xr is a truncated multivariate Poisson distri-
bution

πr(n) = G−1
N∏

k=1

ν
nk

k

nk! , n ∈ S, G =
∑

n∈S

N∏

k=1

ν
nk

k

nk! . (8)

Remark 2.4 (Notation) Note that the original process is obtained by setting rkj = 0
for all k, j . We will formulate our results for general values for the redial rates rkj ,
with the original process as a special case.

Remark 2.5 (Interpretation of the redial rates; maximal redial rates) The redial rates
rki are introduced for analytical tractability. For the values given in (7) the equilibrium
distribution is a multivariate Poisson distribution.



168 Queueing Syst (2009) 62: 159–193

The redial rates can be interpreted as follows. The redial rate rki represents the sub-
scribers that have lost their connection in cell k (as fresh call, as handover, or possibly
due to fading). These subscribers try to re-establish their connection in neighbouring
cells when they are close to the border of cell k. Since the mean rate of subscribers
with blocked calls from cell k to cell i cannot exceed the mean flow of handovers
from cell k to cell i in the system with unlimited capacity, it is natural to restrict the
redial rates such that

0 ≤ rki ≤ νkμkpki, (9)

where the maximal value corresponds to the network in which all subscribers try to
re-establish their connection. Since the redial behaviour is modelled as a Poisson ar-
rival process, this is clearly an approximation of the actual redial behaviour that may
occur in a mobile network. Intuition suggests that the redial rate approximation leads
to an overestimation of blocking probabilities since the network seems to contain
more calls. Due to the intricate relation between the constraints determining the state
space S this can, in general, not be shown at the sample path level. Nevertheless, in
Sect. 3 we show that blocking probabilities under the maximal redial rates, defined
as rki = νkμkpki , do indeed overestimate the actual blocking probabilities.

Blocking probabilities can be obtained in closed form from the distribution (8).
In particular, the fresh call, Br,i , and handover blocking probabilities, Br,ij , have the
appealing forms (see [4])

Br,i =
∑

n∈Ti

∏N
k=1(ν

nk

k /nk!)
∑

n∈S

∏N
k=1(ν

nk

k /nk!)
, Br,ij =

∑
n∈Tij

∏N
k=1(ν

nk

k /nk!)
∑

n∈Ui

∏N
k=1(ν

nk

k /nk!)
, (10)

with

Ti = {n : n ∈ S, n + ei �∈ S}, Ui := {n : n + ei ∈ S } and

Tij := {n : n + ei ∈ S, n + ej �∈ S}.

2.4 Hypercube modification

As a special redial and state space modification, for a given original network with
state space S, we define the hypercube state space

Shc = {n : 0 ≤ ni ≤ Ni, i = 1, . . . ,N}, Ni = max{ni : n ∈ S},
with transition rates Qhc,r = (qhc,r (n,n′), n,n′ ∈ Shc) as defined in (6), but now with
S replaced by Shc, and assuming the maximal redial rates: rki = νkμkpki . It can then
easily be shown that the equilibrium distribution of this hypercube process factorises
over the queues:

πhc,r (n) =
N∏

i=1

[
ν

ni

i

ni !
/ Ni∑

j=0

ν
j
i

j !

]
, n ∈ Shc.
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As a consequence, with respect to blocking probabilities, each queue behaves as an
Erlang loss queue in isolation with arrival rate determined by the traffic equations.
The fresh call and handover blocking probabilities thus reduce to the Erlang loss
probabilities, see [4]:

Bhc,r,i = Bhc,r,j i = Bloss = ν
Ni

i

Ni !
/ Ni∑

k=0

νk
i

k! , i, j = 1, . . . ,N.

Remark 2.6 (Other product form modifications) Other product form modifications
such as a stop, recirculate, and jump-over protocol can also be used, see [25]. All
these protocols lead to an equilibrium distribution that is functionally the same as ob-
tained under the redial protocol. However, under the stop and recirculate protocols,
transitions leading to call blocking are removed. This is less appropriate for analysing
blocking probabilities. In addition, under a stop or recirculate protocol, approxima-
tion error bounds cannot, in general, be obtained.

3 Main results

This section provides our main practical result (Corollary 3.6). This result is based
on two more technical results (Theorems 3.1, 3.4). The proofs of these results are
concentrated in Sect. 5. First, we investigate monotonicity of the process in the state
space and the redial rates. The second result provides an analytic error bound on the
redial rate approximation. This result consists of two components: an error bound for
the hypercube modification, and an error bound for the redial rate approximation of
the hypercube process. Examples are included in Sect. 3.2.

3.1 General results

Consider the set of functions defined as

Chc = {
f : Shc → [0,∞)|f (n + ei ) − f (n) ≥ 0, for n,n + ei ∈ Shc

}
.

The family of functions f ∈ Chc includes, for example, fresh call blocking in cell i

by f (n) = 1(n �∈ Ti).
The following theorem, which combines Lemma 5.6 and Theorem 5.7, pro-

vides our main monotonicity result. For f ∈ Chc for the hypercube process, Erf ≡∑
n∈Shc

πhc,r (n)f (n) is increasing in the redial rates. This result implies that the prod-
uct form approximation that is obtained under maximal redial rates provides an upper
bound for E0f , the expectation of f for the original process.

Theorem 3.1 (Main monotonicity result) When rji ≥ r ′
ji for all j, i then for any

f ∈ Chc
∑

n∈Shc

πhc,r (n)f (n) ≥
∑

n∈Shc

πhc,r ′(n)f (n),
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and for any f ∈ Chc

∑

n∈Shc

πhc,r (n)f (n) ≥
∑

n∈S

π0(n)f (n).

Remark 3.2 (Literature) Theorem 3.1 generalises a result from [1]. In this reference,
a similar result was established for fresh call blocking only, by a sample path argu-
ment. In the present, more general, setting that involves both redial rates and a state
space modification, a sample path argument can no longer be given. We will use
Theorem 3.1 to demonstrate Theorem 3.4. Theorem 3.1 is of theoretical interest by
itself and provides monotonicity results in both the redial rates and the state space
modification.

Theorem 3.4 will provide both an upper and a lower bound on the approximation
error. Intuitively, it seems obvious that higher redial rates result in higher blocking
probabilities. However, accepting a customer in one queue may lead to a smaller
number of customers in other queues due to joint capacity constraints, which may
lead to counterintuitive results (see Sect. 4.4). Nevertheless, monotonicity will appear
for the hypercube process.

The theorem involves the following condition on the reward rate R, where X in-
curs a reward R(n) per time unit that X spends in state n.

Condition 3.3 Assume that for all n,n + ei ∈ Shc the reward rate is such that on the
hypercube state space Shc

0 ≤ R(n + ei ) − R(n) (11)

≤ λi1(n + 2ei /∈ S) +
N∑

j=1

njμjpji1(n + 2ei /∈ S) + μipi0

+
N∑

k=1

μipik1(n + ek �∈ S). (12)

In Sect. 3.2, it is demonstrated that this condition is satisfied for fresh call blocking
and throughput.

The following theorem, which is a combination of Theorem 5.13 and Theo-
rem 5.16, yields our main error bound result.

Theorem 3.4 (Main error bound result) Under Condition 3.3

Ahc,r − (β + βr0) ≤ A0 ≤ Ahc,r ≤ A0 + (β + βr0), (13)

where

β =
∑

n∈Shc

πhc,r (n)Φ(n), βrr ′ =
∑

n∈Shc

πhc,r (n)Φrr ′(n),
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with

Φ(n) =
∑

j

λj 1(n + ej ∈ Shc\S) +
∑

i,j

niμipij 1(n − ei + ej ∈ Shc\S),

Φrr ′(n) =
∑

k,j

(
rkj − r ′

kj

)
1(n + ej ∈ Shc,n + ek �∈ Shc) (with rkj ≥ r ′

kj ).

Remark 3.5 Condition 3.3 distinguishes two conditions that each have their specific
function. The monotonicity condition (11) implies the ordering A0 ≤ Ahc,0 so that by
Theorem 3.1 also A0 ≤ Ahc,0 ≤ Ahc,r . The bounding condition (12) will lead to the
error bound Ahc,r − A0| ≤ β + βr0.

Theorem 3.4 also provides a bound on the error in the upper bound Ahc,r of A0.
Often, β +βr0 has the order of magnitude of Ahc,r so that the upper bound is roughly
twice the value of A0. For applications in wireless networks, where typical values
for the blocking probabilities are 1%, this is an acceptable level of accuracy: dimen-
sioning the system based on a guaranteed upper bound of 1% implies that the actual
system performs better than the target values.

The proof of Theorem 3.4 is provided in Sect. 5, and consists of two steps that
cannot be combined into a single step. The first step compares the original process
X0 on state space S with the hypercube process Xhc,0 on state space Shc. Here the
boundary of the state space S plays a crucial role. The contribution to the error bound
is denoted by β . The second step compares the process Xhc,0 with the process Xhc,r .
The essential step consists of a comparison of the redial rates at the boundary of Shc.
The contribution in the error bound is denoted by βr0.

Under maximal redial rates the equilibrium distribution is of product form. The
following corollary is therefore of computational interest. For practical purposes, this
corollary can be regarded as the main result of this paper. The result immediately
follows from Theorem 3.4 and results from Sect. 2.4.

Corollary 3.6 (Main product form error bound result) Under Condition 3.3, and
under maximal redial rates defined as

rki = νkμkpki, k, i = 1, . . . ,N,

(13) applies with

πhc,r (n) =
N∏

i=1

[
ν

ni

i

ni !
/ Ni∑

j=0

ν
j
i

j !

]
, n ∈ Shc.

A disadvantage of the error bound result above, or its product form version of
Theorem 3.4, is that the error bound terms βr and βrr ′ require summation of the
equilibrium distribution πhc,r over Shc \ S. This summation can, in general, not ef-
ficiently be evaluated in closed form. Sections 4.1 and 4.3 will therefore address an
efficient estimation of these summations.
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3.2 Examples

The main condition for Theorem 3.4 and Corollary 3.6 is the reward condition (Con-
dition 3.3). This condition may seem more restrictive than it actually is. For the hy-
percube process, it does allow performance functions that reflect fresh call blocking,
handover blocking, and throughput, as will be shown below.

3.2.1 Fresh call blocking

For n ∈ Shc, and fixed j , let R(n) = λj 1(n+ej �∈ Shc). We have Tj = {n : n ∈ Shc,n+
ej �∈ Shc}. Then, R ∈ Chc, and for n + ei ∈ Shc:

R(n + ei ) − R(n) = λj 1(n + ei + ej �∈ Shc) − λj 1(n + ej �∈ Shc)

= λj 1(n + 2ei �∈ Shc)1(i = j).

Thus R satisfies Condition 3.3, and as the corresponding performance measure, we
obtain the fresh call blocking probability in cell j

Ahc,r =
∑

n∈Shc

πhc,r (n)R(n) = λjBhc,r,j .

3.2.2 Handover blocking and dropping

For n ∈ Shc, and fixed k, let R(n) = ∑N
j=1 njμjpjk1(n − ej + ek �∈ Shc). Then, for

n + ei ∈ Shc:

R(n + ei ) − R(n) =
N∑

j=1

{(
nj + 1(i = j)

)
μjpjk1(n + ei − ej + ek �∈ Shc)

− njμjpjk1(n − ej + ek �∈ Shc)
}

=
N∑

j=1

njμjpji1(n + 2ei �∈ Shc)1(i = k),

where we have used the observation that the right-hand side is non-null only for k = i,
which also implies that j �= i. Clearly, R satisfies Condition 3.3. We find

Ahc,r =
∑

n∈Shc

πhc,r (n)R(n) =
∑

n∈S

N∑

j=1

πhc,r (n)njμjpjk1(n − ej + ek /∈ Shc),

which represents the numerator of the call dropping probability in cell k. By analogy,
for R(n) = njμjpjk1(n − ej + ek �∈ Shc) we obtain the numerator of the handover
blocking probability.
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3.2.3 Throughput

For n ∈ Shc, let R(n) = njμjpj0. Then, for n + ei ∈ Shc:

R(n + ei ) − R(n) = μipi01(i = j),

so that R satisfies Condition 3.3. This leads to the throughput of cell j :

Ahc,r =
∑

n∈Shc

πhc,r (n)R(n).

4 Applications

In this section, we will provide a separate example to illustrate the error due to

• the state space modification from S to Shc (Sect. 4.1),
• the redial rate approximation (Sect. 4.2).

In Sect. 4.4 we provide a counterexample to indicate that the monotonicity result
of Theorem 3.1 is not generally valid.

Section 4.1 considers the classical loss network for circuit switched communica-
tions systems. As the equilibrium distribution in this case is multivariate Poisson, the
effect of the state space modification can be illustrated nicely. Section 4.2 consid-
ers a GSM network with fixed channel allocation. This is the key application which
motivated our research.

4.1 Loss networks

This example considers the error due to the state space modification, where the
process on the original state space S is approximated by the process on the hyper-
cube state space Shc. For a loss network the equilibrium distribution on both state
spaces can, in principle, be evaluated in closed form, so that it provides a good test
case for the accuracy of the state space modification. Furthermore, it is of interest
to note that the easily computable Erlang loss probabilities bound for the hypercube
process indeed bounds the blocking probabilities of the original process.

When handovers do not occur, i.e., pij = 0 for all i, j , the network is a loss
network. The equilibrium distribution π0 = πloss is given in (1). Interesting perfor-
mance measures are the blocking probability Bi , and the throughput Hi = λi(1−Bi).
Although the blocking probability Bi is available in closed form, this form is not
amenable for computation. Often, Monte Carlo summation is used to evaluate the
sum [4, 20]. When the state space S is close to the hypercube state space Shc, block-
ing probabilities can be rapidly evaluated using the convolution algorithm of [7].

The reward rate R(n) = λi1(n + ei �∈ S) yields the blocking probability via A0 =
λiBi . We have an explicit product form distribution on both S and Shc. To this end,

note that πhc,0(n) = G−1
hc

∏N
i=1

ν
ni
i

ni ! , n ∈ Shc, where Ghc = ∏N
i=1[

∑Ni

j=0
ν

j
i

j ! ] so that
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the normalising constant Ghc is readily evaluated. As a consequence,

A0 =
∑

n∈S

R(n)π0(n) = λi

∑

n∈Ti

G−1
N∏

i=1

ν
ni

i

ni ! = λiBi,

and

Ahc,0 =
∑

n∈S

R(n)πhc,0(n) = λi

∑

n∈Ti∪(Shc\S)

G−1
hc

N∏

i=1

ν
ni

i

ni ! .

Evaluation of Ahc,0 requires summation of πhc,0(n) over the set Ti ∪ (Shc \ S).
When this set is small, i.e., when S does not deviate too much from a hypercube,
evaluation of Ahc,0 is much faster than evaluation of A0 that requires evaluation of

the normalising constant G, which involves a summation of
∏

k

ν
nk
k

nk ! . Below we also
provide a readily computable bound on Ahc,0 − A0.

The error due to the state space modification is expressed by β as

β =
∑

n∈Shc

πhc(n)Φ(n) =
∑

n∈Shc

N∑

j=1

λj 1(n + ej ∈ Shc \ S)G−1
hc

N∏

i=1

ν
ni

i

ni ! .

Especially when some of the λj for j �= i are large, we have Ahc − β < 0 so that the
lower bound is not of practical value. An upper bound is of great practical interest.
This can be obtained as follows.

Let M = (M1, . . . ,MN) be an upper corner of the hypercube that is completely
contained in S, let

SM
hc = {n : 0 ≤ ni ≤ Mi, i = 1, . . . ,N} ⊂ S,

and let

βM =
∑

n∈Shc

πhc(n)

N∑

j=1

λj 1
(
n + ej ∈ Shc\SM

hc

)
.

As β ≤ βM and taking into account the explicit expression for the equilibrium distri-
bution πhc, we obtain

|Ahc − A0| ≤ βM ≤
(

N∑

j=1

λj

)
N∑

�=1

N�∑

n�=M�

[
ν

n�

�

n�!
/ N�∑

j=0

ν
j
i

j !

]
.

This result may be sharpened by carefully taking into account the state space summa-
tions involved in the definition of βM . In addition, note that the selection of M need
not be unique, which allows flexibility for minimisation of the upper bound. We have
thus obtained an explicit upper bound on the error in the blocking probabilities due
to state space modification.
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4.2 Fixed channel allocation: a hypercube space process

In a GSM network operating under fixed channel allocation, each cell is assigned a
fixed number of channels that can be used by calls in that cell only. As a consequence,
the state space is a hypercube Shc = {n : 0 ≤ ni ≤ Ni}, where Ni is the number of
channels assigned to cell i. Under maximal redial rates rkj = νkμkpkj

βr0 =
∑

n∈Shc

πhc,r (n)

N∑

k,j=1

rkj 1(n + ej ∈ Shc,n + ek �∈ Shc)

=
N∑

k,j=1

νkμkpkjBhc,r,k(1 − Bhc,r,j ),

where we have used the fact that the state space is a hypercube. We thus obtain

Bhc,r,j −
N∑

k,�=1

νkμkpk�

λj

Bhc,r,k(1 − Bhc,r,�)

≤ Bhc,0,j ≤ Bhc,r,j ≤ Bhc,0,j +
N∑

k,�=1

νkμkpk�

λj

Bhc,r,k(1 − Bhc,r,�),

where

Bhc,r,j = ν
Nj

j

Nj !

[ Nj∑

t=0

νt
j

t !

]−1

,

the Erlang loss probability. From the expressions for blocking probabilities obtained
in [4], for maximal redial rates Bhc,r,jk = Bhc,r,k .

The term
∑N

k,�=1
νkμkpk�

λj
may be small, especially when pk0 ≈ 1. This is in accor-

dance with intuition, as in this regime handovers are rare, and redial rates are small,
so that the redial rate approximation is likely to be accurate.

Notice that the lower bound may actually be below zero. In applications, the upper
bound is often of more importance than the lower bound. Observe that

Bhc,0,j +
N∑

k,�=1

νkμkpk�

λj

Bhc,r,k(1 − Bhc,r,�) ≤ Bhc,0,j +
N∑

k,�=1

νkμkpk�

λj

Bhc,r,k

= Bhc,0,j +
N∑

k=1

νkμk(1 − pk0)

λj

Bhc,r,k.

When the upper bound Bhc,r,j < 1%, the error in the blocking probability of the actual
fresh call blocking probabilities Bhc,0,j is of that order of magnitude, too. Thus, it is
sufficient to dimension the system with maximal redial rates to guarantee a Quality
of Service limit of 1% of the blocking probabilities, in which case the actual blocking
probabilities will be in the range 0.5%–1%.
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4.3 General result including routing

The approach for a loss network without routing as in Sect. 4.1 can readily be ex-
tended to networks with routing. Note that in this case the equilibrium distribution
of the original chain is not known. However, the bounds are expressed in terms of
the equilibrium distribution of the hypercube process with redial rates. Under max-
imal redial rates the resulting truncated Poisson equilibrium distribution is explic-
itly known and amenable for computation since its normalising constant is known in
closed form.

The bound consists of two parts: β and βr0. Under maximal redial rates:

β + βr0 =
∑

n∈Shc

πhc,r (n)

{
N∑

j=1

λj 1
(
n + ej ∈ Shc\SM

hc

)

+
N∑

i,j=1

niμipij 1
(
n − ei + ej ∈ Shc\SM

hc

)

+
N∑

k,j=1

rkj 1(n + ej ∈ Shc,n + ek �∈ Shc)

}

=
∑

n∈Shc

πhc,r (n)

{
N∑

j=1

λj 1
(
n + ej ∈ Shc\SM

hc

)

+
N∑

i,j=1

νiμipij 1
(
n + ej ∈ Shc\SM

hc

)

+
N∑

i,j=1

(νiμipij )1(n + ej ∈ Shc,n + ei �∈ Shc)

}
.

Following the steps as in Sect. 4.1, we readily obtain

βM ≤
N∑

�=1

N�∑

n�=M�

[
ν

n�

�

n�!
/ N�∑

j=0

ν
j
i

j !

]{
N∑

j=1

λj +
N∑

i=1

νiμi(1 − pi0)

}

+
N∑

i=1

N∑

i,j=1, j �=i

(νiμipij )
ν

Ni

i

Ni !
/ Nk∑

k=0

νk
i

k! .

Remark 4.1 (Complete sharing) Under complete sharing of capacity, all cells share
the common capacity s. The state space is

Ss =
{

n :
N∑

i=1

ni ≤ s

}
,
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and handovers cannot be blocked. The PASTA property implies that

Bj = Br,j = (
∑N

j=1 νj )
s

s!

[
s∑

t=0

(
∑N

j=1 νj )
t

t !

]−1

,

and

Bij = Br,ij .

When the state space S is close to that of complete sharing, we may use Ss instead of
SM

hc to approximate the error bound.

4.4 Counterexample

This section provides an example to illustrate that the introduction of redial rates
does not necessarily increase fresh call blocking probabilities at all cells. Consider a
network of 5 cells, cell 1, . . . ,5, with common capacity constraints

n1 + n2 ≤ 1, n2 + n3 ≤ 1, n3 + n4 ≤ 1, n4 + n5 ≤ 1.

Handovers are allowed only from cell 2 to cell 3, say with probability p. The traffic
equations (5) have the unique solution

νi = λi/μi, i = 1,2,4,5, ν3 = (λ3 + λ2p)/μ3.

Fresh call blocking probabilities for the process without redial rates, and with maxi-
mal redial rates, then become:

B =
(

22 531 289

129 964 237

17 307 792

129 964 237

25 390 649

129 964 237

17 428 912

129 964 237

22 507 065

129 964 237

)
,

Br =
(

21

121

16

121

25

121

16

121

21

121

)
,

and

Bi < Br,i , i = 1,3,5, Bi > Br,i , i = 2,4.

This illustrates that for a general state space there is a knock-on effect due to the
redial rates: extra calls in one cell may decrease the load in neighbouring cells, re-
sulting in lower blocking probabilities in cells sharing a capacity constraint with that
neighbouring cell.

5 Proof of the main results

This section provides the proofs of our main results and some related arguments.
Some of the results are duplicated to enhance the readability of the section. Sec-
tion 5.1 first establishes preliminary results on Markov reward structures and uni-
formisation. Next, Sect. 5.2 develops the monotonicity results, and Sect. 5.3 proves
the error bound result.
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5.1 Preliminaries

We will compare performance measures for the system under different conditions by
means of expected rewards. To this end, let a reward R(n) be incurred per unit time
whenever the system is in state n, and define

A =
∑

n∈S

π(n)R(n) = lim
t→∞

1

t
E

∫ t

0
R

(
X(u)

)
du,

with π(n) the equilibrium distribution of the Markov chain X(t). First, in order to
use inductive arguments, we transfer the continuous-time setting to a discrete-time
formulation by means of uniformisation. To this end, let Λ be some arbitrarily large
number such that

Λ ≥
N∑

j=1

λj +
N∑

j=1

N∑

k=0

Njμjpjk +
N∑

j=1

N∑

k=1

rkj =
N∑

j=1

λj +
N∑

j=1

Njμj +
N∑

j=1

N∑

k=1

rkj .

The continuous-time Markov chain X can then be studied via the discrete-time
Markov chain with one-step transition probabilities (uniformisation), see e.g. [21,
p. 110]:

P(n,n′) =
{

q(n,n′)/Λ, if n′ �= n,

1 − ∑
n′′ �=n q(n,n′′)/Λ, if n′ = n.

Furthermore, let the functions V k(n) represent the expected cumulative reward over
k steps when starting in state n at time 0 and incurring a reward R(n)/Λ per step for
the corresponding discrete-time Markov chain, i.e.,

V K(n) = 1

Λ

K−1∑

k=0

∑

n′∈S

P k(n,n′)R(n′), n ∈ S, K = 0,1,2, . . . , V 0(n) = 0,

where, by convention, P 0(n,n′) = 1(n = n′). These functions can recursively be de-
termined as

V K+1(n) = R(n)

Λ
+

∑

n′∈S

P (n,n′)V K(n′), n ∈ S, K = 0,1,2, . . . , V 0(n) = 0,

and by virtue of the uniformisation:

A = lim
K→∞

Λ

K
V K(n).

Similarly, with the same uniformisation parameter Λ, for the modified processes with
redial rates rkj and the state space transformed to the hypercube Shc, we can deter-
mine Ar and Ahc,r by defining the one-step matrices Pr and Phc,r and cumulative
rewards V k

r and V k
hc,r with qr and qhc,r replacing q .
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5.2 Monotonicity

This section provides proofs for a variety of monotonicity results. These monotonicity
results have a twofold function. First, Theorems 5.3, 5.4, and 5.7 will be essential
for the proof of the error bound Theorem 3.4 as will appear in Sect. 5.3. Second,
these theorems will also lead to upper bounds of practical interest by themselves.
In particular, the main monotonicity result (Theorem 5.7) states that rewards for the
hypercube process with arbitrary redial rates exceed those of the original process.

First, we show that rewards for the hypercube process are monotone and increasing
in the number of steps of the Markov chain. Next, it is shown that the cumulative
expected rewards for the hypercube process exceed those for the original process. Our
main monotonicity result states that rewards for the hypercube process with arbitrary
redial rates exceed those of the original process. In particular, this result allows us
to select maximal redial rates under which the equilibrium distribution is truncated
multivariate Poisson. The proof of this result consists of a number of steps. This
section provides these steps as well as additional comments on the results.

Consider the set of functions defined as

Chc = {
f : Shc → [0,∞)|f (n + ei ) − f (n) ≥ 0, for n,n + ei ∈ Shc

}
.

Lemma 5.1 Chc is closed under Phc,r , that is (Phc,rf ) ∈ Chc for all f ∈ Chc.

Proof It is sufficient to show that (Phc,rf )(n + ei ) − (Phc,rf )(n) ≥ 0 for n,n +
ei ∈ Shc for all f ∈ Chc. We will first establish results for the process on arbitrary
state space S, and only when required in the derivation restrict ourselves to Shc. For
notational convenience, we omit the subscript in the transitions rates. Straightforward
calculations yield, for n, n + ei ∈ S,

Λ
[
(Phc,rf )(n + ei ) − (Phc,rf )(n)

]

=
∑

n′∈S

q(n + ei ,n′)f (n′) + Λf (n + ei ) −
∑

n′∈S

q(n + ei ,n′)f (n + ei )

−
∑

n′∈S

q(n,n′)f (n′) − Λf (n) +
∑

n′∈S

q(n,n′)f (n)

=
N∑

j=1

λjf (n + ei + ej )1(n + ei + ej ∈ S) −
N∑

j=1

λjf (n + ej )1(n + ej ∈ S)

+
N∑

j=1

λjf (n + ei )1(n + ei + ej �∈ S) −
N∑

j=1

λjf (n)1(n + ej �∈ S)

+
N∑

j=1

N∑

k=0

(nj + δij )μjpjkf (n + ei − ej + ek)1(n + ei − ej + ek ∈ S)

−
N∑

j=1

N∑

k=0

njμjpjkf (n − ej + ek)1(n − ej + ek ∈ S)
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+
N∑

j=1

N∑

k=1

(nj + δij )μjpjkf (n + ei − ej )1(n + ei − ej + ek �∈ S)

−
N∑

j=1

N∑

k=1

njμjpjkf (n − ej )1(n − ej + ek �∈ S)

+
N∑

j=1

N∑

k=1

rkj f (n + ei + ej )1(n + ei + ej ∈ S,n + ei + ek �∈ S)

−
N∑

j=1

N∑

k=1

rkj f (n + ej )1(n + ej ∈ S,n + ek �∈ S)

+ Λ
[
f (n + ei ) − f (n)

]

−
N∑

j=1

λjf (n + ei ) +
N∑

j=1

λjf (n)

−
N∑

j=1

N∑

k=0

(nj + δij )μjpjkf (n + ei ) +
N∑

j=1

N∑

k=0

njμjpjkf (n)

−
N∑

j=1

N∑

k=1

rkj f (n + ei )1(n + ei + ej ∈ S,n + ei + ek �∈ S)

+
N∑

j=1

N∑

k=1

rkj f (n)1(n + ej ∈ S,n + ek �∈ S),

so that

Λ
[
(Phc,rf )(n + ei ) − (Phc,rf )(n)

]

=
N∑

j=1

λj

[
f (n + ei + ej ) − f (n + ej )

]
1(n + ei + ej ∈ S)

+
N∑

j=1

λj

[
f (n + ei ) − f (n)

]
1(n + ej �∈ S)

+
N∑

j=1

N∑

k=0

njμjpjk

[
f (n + ei − ej + ek) − f (n − ej + ek)

]

× 1(n + ei − ej + ek ∈ S)

+
N∑

k=0

μipik

[
f (n + ek) − f (n)

]
1(n + ek ∈ S)
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+
N∑

j=1

N∑

k=1

njμjpjk

[
f (n + ei − ej ) − f (n − ej )

]
1(n − ej + ek �∈ S)

+
N∑

j=1

N∑

k=1

rkj
[
f (n + ei + ej ) − f (n + ej )

]
1(n + ei + ej ∈ S,n + ei + ek �∈ S)

+
{

Λr −
N∑

j=1

λj −
N∑

j=1

N∑

k=0

(nj + δij )μjpjk

−
N∑

j=1

N∑

k=1

rkj 1(n + ej ∈ S,n + ek �∈ S)

}
[
f (n + ei ) − f (n)

]

+
N∑

j=1

λj

[
f (n + ei ) − f (n + ej )

]
1(n + ei + ej �∈ S, n + ej ∈ S)

+
N∑

j=1

N∑

k=1

njμjpjk

[
f (n + ei − ej ) − f (n − ej + ek)

]

× 1(n + ei − ej + ek �∈ S, n − ej + ek ∈ S)

+
N∑

j=1

N∑

k=1

rkj
[
f (n + ej ) − f (n + ei )

]

× [
1(n + ei + ej ∈ S,n + ei + ek �∈ S) − 1(n + ej ∈ S,n + ek �∈ S)

]
.

Now restrict attention to the hypercube process Xhc,r with state space Shc, and tran-
sition probabilities Phc,r . For this process, all terms except the last three are pos-
itive due to the definition of Λ and the assumption that f ∈ Chc. On the hyper-
cube state space, the last three terms are zero since for n + ei ∈ Shc it must be that
n + ej ∈ Shc implies that n + ei + ej ∈ Shc unless i = j . However, for i = j we have
[f (n + ei ) − f (n + ej )] = 0. A similar argument applies to the other terms. �

Remark 5.2 (Chc closed under P ?) The hypercube state space is essential for the
proof of Lemma 5.1. In particular, in addition to the assumption that f ∈ Chc, for the
proof to be completed the following terms must cancel:

N∑

j=1

λj

[
f (n + ei ) − f (n + ej )

]
1(n + ei + ej �∈ S, n + ej ∈ S)

+
N∑

j=1

N∑

k=1

njμjpjk

[
f (n + ei − ej ) − f (n − ej + ek)

]

× 1(n + ei − ej + ek �∈ S, n − ej + ek ∈ S)
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+
N∑

j=1

N∑

k=1

rkj
[
f (n + ej ) − f (n + ei )

]

× [
1(n + ei + ej ∈ S,n + ei + ek �∈ S) − 1(n + ej ∈ S,n + ek �∈ S)

]
.

To this end, recall from the proof that, on the hypercube state space, these terms are
zero since for n + ei ∈ S it must be that n + ej ∈ S implies that also n + ei + ej ∈ S

unless i = j . However, for i = j we have [f (n + ei ) − f (n + ej )] = 0. Similarly,
in the second term the indicator is non-zero only when k = i, but then the term in
square brackets cancels. For non hypercube state spaces the contribution of [f (n +
ei ) − f (n + ej )] may be arbitrary, and, in general, Chc is not closed under Pr .

Theorem 5.3 For any f ∈ Chc and k ≥ 0 we have with 0 = (0, . . . ,0)

P k
hc,rf (0) ≤ P k+1

hc,r f (0) ≤
∑

n∈Shc

πhc,r (n)f (n).

Proof We will prove the first inequality by induction in k. For k = 0 it applies since

ΛPhc,rf (0) = Λf (0) +
N∑

j=1

λj

(
f (0 + ej ) − f (0)

) ≥ Λf (0),

where we have used that ej ∈ Shc for all j . Suppose that the inequality holds for
k ≤ t . Then it also holds for k = t + 1, since

P t+1
hc,r f (0) − P t+2

hc,r f (0) = P t
hc,r (Phc,rf )(0) − P t+1

hc,r (Phc,rf )(0) ≤ 0,

where the last inequality is obtained since Phc,rf ∈ Chc by Lemma 5.1.
The second inequality is a direct consequence of the first inequality and irre-

ducibility of the Markov chain which implies that limk→∞ P k
hc,rf (0) =∑

n∈Shc
πhc,r (n)f (n). �

Monotonicity between the original Markov chain and the hypercube process can
only be obtained for redial rates equal to zero. As we will see in Lemma 5.6, the
hypercube process is monotone in the redial rates. We are now ready to state a main
monotonicity result which will be used in the proof of Theorem 3.4.

Theorem 5.4 For any f ∈ Chc and k ≥ 0 we have

P0
kf (0) ≤ P k

hc,0f (0). (14)

Moreover,
∑

n∈S

π0(n)f (n) ≤
∑

n∈Shc

πhc,0(n)f (n). (15)
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Proof For notational convenience, we introduce the Markov chain X̄r as the exten-
sion of Xr to state space Shc, that has transition rates Q̄r = (q̄r (n,n′),n,n′ ∈ Shc) for
n′ �= n defined as

q̄r (n,n′) =

⎧
⎪⎨

⎪⎩

qr(n,n′), if n,n′ ∈ S,

qhc,r (n,n′), if n ∈ Shc\S,n′ ∈ Shc,

0, otherwise.

Note that qr(n,n′) = qhc,r (n,n′) if n,n′ ∈ Shc\{{⋃i Ti} ∪ {⋃i,j Tij }}, and that the

states Shc\S are transient states for X̄r . The chain X̄r is uniformisable with transition
matrix

P̄r (n,n′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qr(n,n′)/Λ, if n′ �= n, n,n′ ∈ S,

qhc,r (n,n′)/Λ, if n ∈ Shc\S,n′ ∈ Shc,

1 − ∑
n′′ �=n qr(n,n′′)/Λ, if n′ = n ∈S,

1 − ∑
n′′ �=n qhc,r (n,n′′)/Λ, if n′ = n ∈Shc\S.

Note that for the process starting at S, e.g. starting empty (in state 0 = (0, . . . ,0), the
evolution of the process X̄r coincides with that of Xr , so that

P̄ k
r f (0) = P k

r f (0).

The entries of P̄0 and Phc,0 differ only at the boundary of S. We readily find that, for
f ∈ Chc, and n ∈ Shc

(Phc,0 − P̄0)f (n)

=
N∑

j=1

λj 1(n + ej ∈ Shc\S)
(
f (n + ej ) − f (n)

)

+
N∑

i=1

N∑

j=1

niμipij 1(n − ei + ej ∈ Shc\S)
(
f (n − ei + ej ) − f (n − ei )

) ≥ 0.

(16)

Observe that

(
P k

hc,0 − P̄ k
0

)
f (0)

= P̄0
[(

P k−1
hc,0 − P̄ k−1

0

)
f

]
(0) + (Phc,0 − P̄0)

(
P k−1

hc,0 f
)
(0)

= · · · = P̄ k
0

(
P 0

hc,0f − P̄ 0
0 f

)
(0) +

k−1∑

t=0

P̄ t
0(Phc,0 − P̄0)

(
P k−t−1

hc,0 f
)
(0).

Note that P 0
hc,0f = P̄ 0

0 f = f by definition. By Lemma 5.1, observe that P k−t−1
hc,0 f ∈

Chc for f ∈ Chc, so that by (16) (Phc,0 − P̄0)(P
k−t−1
hc,0 f )(0) ≥ 0 for all t =
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0, . . . , k − 1. Furthermore, since P̄0 is a stochastic matrix, we can use the fact that
P̄ t

0g ≥ 0 if g ≥ 0 componentwise. The proof of (14) is hereby completed. From The-
orem 5.3 we obtain from (14) for r = 0: P0

kf (0) ≤ ∑
n∈Shc

πhc,0(n)f (n) for all k.
Equation (15) now follows noting that S is an irreducible class for X, so that for all
m ∈ S

lim
K→∞

1

K

K−1∑

k=0

P k
0 f (m) = lim

K→∞
1

K

K−1∑

k=0

P k
0 f (0) =

∑

n∈S

π0(n)f (n). � (17)

Remark 5.5 (General redial rates) The assumption of null redial rates is used in (16).
For non-null redial rates an additional negative term involving the redial rates at the
boundary of S would appear.

Now we will show that P k
hc,rf (0) for f ∈ Chc is strictly increasing in the redial

rates, which implies that the rewards (blocking probabilities) are increasing in the
redial rates. This result will enable us to provide a computable bound on the block-
ing probabilities for the original process (without redial rates). The main step is the
following lemma.

Lemma 5.6 Consider the processes Xhc,r and Xhc,r ′ on state space Shc with rji ≥ r ′
ji

for all j, i. For f ∈ Chc

P k
hc,rf (0) ≥ P k

hc,r ′f (0),

and
∑

n∈Shc

πhc,r (n)f (n) ≥
∑

n∈Shc

πhc,r ′(n)f (n).

Proof Note that

(Phc,r − Phc,r ′)f (n)

=
∑

k,i

(rki − r ′
ki)

(
f (n + ei ) − f (n)

)
1(n + ek �∈ Shc, n + ei ∈ S) ≥ 0.

Furthermore, Chc is closed under Phc,r . The remainder of the proof can be shown
along the lines of that of Theorem 5.4. �

Our main monotonicity result now follows directly as a consequence of Theo-
rem 5.4, and Lemma 5.6 for r ′ = 0.

Theorem 5.7 (Main monotonicity result) For any f ∈ Chc, rji ≥ 0 for all j, i, and
k ≥ 0

P k
0 f (0) ≤ P k

hc,rf (0).

Moreover,
∑

n∈S

π0(n)f (n) ≤
∑

n∈Shc

πhc,r (n)f (n).
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Remark 5.8 (Bound by maximal redial rates) Under the conditions of Theorem 5.7,
i.e., for rji = νjμjpji , j, i = 1, . . . ,N , an upper bound can readily be computed by

πhc,r (n) =
N∏

k=1

(
ν

nk

k

nk!
/ Nk∑

j=1

ν
nj

j

nj !

)
.

Remark 5.9 (Other product form modifications) Various modifications resulting in
a product form or truncated multivariate Poisson equilibrium distribution have been
introduced in the literature. For these modifications, the result of Lemma 5.1 that is
crucial for our main monotonicity result Theorem 5.7 cannot be obtained, since the
transition rates in the modification do not lead to higher states (transitions from n to
n + ei for some i).

Remark 5.10 A sample path proof for Lemma 5.6 is provided in [1] for fresh call
blocking probabilities. In the present paper we have provided a direct proof for gen-
eral f ∈ Chc.

5.3 Error bounds

We are now also able to establish error bounds on performance measures such as
the fresh call blocking probabilities and throughputs by studying cumulative reward
structures of the Markov reward chains. The following lemma establishes a lower
and upper bound for the different terms of the cumulative rewards for the system
with redial rates rij . To make our result and the role of the state space more explicit,
we formulate the results for a general state space. As a corollary we provide the result
for the hypercube state space.

Lemma 5.11 Consider the process Xr with state space S, transition rates qr and
reward rate R. A sufficient condition for

0 ≤ [
V K+1

r (n + ei ) − V K+1
r (n)

] ≤ 1, n,n + ei ∈ S,

is that

0 ≤ [
V K

r (n + ei ) − V K
r (n)

] ≤ 1, n,n + ei ∈ S,

and

0 ≤ R(n + ei ) − R(n)

+
N∑

j=1

λj

(
V K

r (n + ei ) − V K
r (n + ej )

)
1(n + ej ∈ S, n + ei + ej �∈ S)

+
N∑

j=1

N∑

k=1

njμjpjk

(
V K

r (n + ei − ej ) − V K
r (n − ej + ek)

)

× 1(n + ei − ej + ek �∈ S, n − ej + ek ∈ S)
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+
N∑

j=1

N∑

k=1

rkj
(
V K

r (n + ei ) − V K
r (n + ej )

)

× [
1(n + ej ∈ S,n + ek �∈ S) − 1(n + ei + ej ∈ S,n + ei + ek �∈ S)

]

≤
N∑

j=1

λj 1(n + ej ∈ S, n + ei + ej �∈ S)

+
N∑

j=1

N∑

k=1

njμjpjk1(n + ei − ej + ek �∈ S, n − ej + ek ∈ S)

+ μipi0 +
N∑

k=1

μipik1(n + ek �∈ S)

+
N∑

j=1

N∑

k=1

rkj
[
1(n + ej ∈ S,n + ek �∈ S) − 1(n + ei + ej ∈ S,n + ei + ek �∈ S)

]
.

(18)

Proof For K + 1, a derivation similar to that in the proof of Lemma 5.1 yields, for n,
n + ei ∈ S,

Λ
[
V K+1(n + ei ) − V K+1(n)

]

= R(n + ei ) − R(n)

+
N∑

j=1

λj

(
V K(n + ei + ej ) − V K(n + ej )

)
1(n + ei + ej ∈ S)

+
N∑

j=1

λj

(
V K(n + ei ) − V K(n)

)
1(n + ej /∈ S)

−
N∑

j=1

λj

(
V K(n + ej ) − V K(n + ei )

)
1(n + ej ∈ S, n + ei + ej �∈ S)

+
N∑

j=1

N∑

k=0

njμjpjk

(
V K(n + ei − ej + ek) − V K(n − ej + ek)

)

× 1(n + ei − ej + ek ∈ S)

+
N∑

j=1

N∑

k=1

njμjpjk

(
V K(n + ei − ej ) − V K(n − ej )

)
1(n − ej + ek �∈ S)

+
N∑

j=1

N∑

k=1

njμjpjk

(
V K(n + ei − ej ) − V K(n − ej + ek)

)
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× 1(n + ei − ej + ek �∈ S, n − ej + ek ∈ S)

+
N∑

k=0

μipik

(
V K(n + ek) − V K(n)

)
1(n + ek ∈ S)

+
N∑

j=1

N∑

k=1

rkj
[
V K(n + ei + ej ) − V K(n + ej )

]

× 1(n + ei + ej ∈ S,n + ei + ek �∈ S)

−
N∑

j=1

N∑

k=1

rkj
[
V K(n + ej ) − V K(n + ei )

]

× [
1(n + ei + ej ∈ S,n + ei + ek �∈ S) − 1(n + ej ∈ S,n + ek �∈ S)

]

+
(

Λ −
N∑

j=1

λj −
N∑

j=1

N∑

k=0

(nj + δij )μjpjk

−
N∑

j=1

N∑

k=1

rkj 1(n + ej ∈ S,n + ek �∈ S)

)
[
V K(n + ei ) − V K(n)

]
.

First consider the lower bound. Observe that

1(n + ei + ej ∈ S) + 1(n + ej �∈ S) + 1(n + ej ∈ S, n + ei + ej �∈ S) = 1,

and a similar relation holds for the handover and redial terms. As 0 ≤ [V K(n + ei ) −
V K(n)], n,n + ei ∈ S, all terms are guaranteed positive (use definition of Λ), except
the three terms

R(n + ei ) − R(n)

−
N∑

j=1

λj

(
V K(n + ej ) − V K(n + ei )

)
1(n + ej ∈ S, n + ei + ej �∈ S)

+
N∑

j=1

N∑

k=1

njμjpjk

(
V K(n + ei − ej ) − V K(n − ej + ek)

)

× 1(n + ei − ej + ek �∈ S, n − ej + ek ∈ S)

−
N∑

j=1

N∑

k=1

rkj
[
V K(n + ej ) − V K(n + ei )

]

× [
1(n + ei + ej ∈ S,n + ei + ek �∈ S) − 1(n + ej ∈ S,n + ek �∈ S)

]
,

but this expression is non-negative by the assumption of the lemma.
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Now consider the upper bound. In the expression

N∑

k=0

μipik

(
V K(n + ek) − V K(n)

)
1(n + ek ∈ S)

the k = 0 term cancels. This absorbs the term μipi0 in the bound on R(n+ei )−R(n).
As [V K(n + ei ) − V K(n)] ≤ 1, n,n + ei ∈ S, we obtain by insertion of the upper
bound, and noting that under the upper bound all terms involving the redial rates
cancel,

Λ
[
V K+1(n + ei ) − V K+1(n)

]

≤
N∑

j=1

λj 1(n + ei + ej ∈ S)

+
N∑

j=1

λj 1(n + ej /∈ S)

+
N∑

j=1

N∑

k=0

njμjpjk1(n + ei − ej + ek ∈ S)

+
N∑

j=1

N∑

k=1

njμjpjk1(n − ej + ek �∈ S)

+
N∑

k=1

μipik1(n + ek ∈ S)

+
(

Λ −
N∑

j=1

λj −
N∑

j=1

N∑

k=0

(nj + δij )μjpjk

)

+
N∑

j=1

λj 1(n + ej ∈ S, n + ei + ej �∈ S)

+
N∑

j=1

N∑

k=1

njμjpjk1(n + ei − ej + ek �∈ S, n − ej + ek ∈ S)

+ μipi0 +
N∑

k=1

μipik1(n + ek �∈ S)

=
N∑

j=1

λj
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+
N∑

j=1

N∑

k=0

(nj + δij )μjpjk

+
(

Λ −
N∑

j=1

λj −
N∑

j=1

N∑

k=0

(nj + δij )μjpjk

)

which completes the proof. �

Corollary 5.12 Consider the hypercube process Xhc,r . A sufficient condition for

0 ≤ [
V K

hc,r (n + ei ) − V K
hc,r (n)

] ≤ 1, n,n + ei ∈ S

is that

0 ≤ R(n + ei ) − R(n) (19)

≤ λi1(n + 2ei /∈ S) +
N∑

j=1

njμjpji1(n + 2ei /∈ S) + μipi0

+
N∑

k=1

μipik1(n + ek �∈ S). (20)

Proof We use expression (18) for which it can readily be seen that all indicator terms
are equal to zero. Hence,

N∑

j=1

λj

[
V K(n + ej ) − V K(n + ei )

]
1(n + ej ∈ S, n + ei + ej �∈ S)

=
N∑

j=1

λj

[
V K(n + ej ) − V K(n + ei )

]
1(j = i, n + ei ∈ S, n + 2ei �∈ S) = 0,

and

N∑

j=1

N∑

k=1

njμjpjk

[
V K(n + ei − ej ) − V K(n − ej + ek)

]

× 1(n + ei − ej + ek �∈ S, n − ej + ek ∈ S)

=
N∑

j=1

N∑

k=1

njμjpjk

[
V K(n + ei − ej ) − V K(n − ej + ek)

]

× 1(k = i, n + ei ∈ S, n + 2ei �∈ S) = 0.

By analogy, the redial rates term cancel, which completes the proof. �
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The following result now transforms the comparison of the original and the hy-
percube process with null redial rates into a condition on the bias terms for only one
process, the hypercube process.

Theorem 5.13 Suppose that for some non-negative function Φ ∈ Chc, for all n ∈ S

and k = 0,1,2, . . .

0 ≤
∑

n′∈Shc

(
qhc,0(n,n′) − q0(n,n′)

)(
V k

hc,0(n
′) − V k

hc,0(n)
)
< ΛΦ(n).

Then

Ahc,0 − β ≤ A0 ≤ Ahc,0,

where

β =
∑

n∈Shc

πhc,0(n)Φ(n).

Proof Recall the definition of P̄ provided in the proof of Theorem 5.4. By iteration,
and by analogy with the proof of Theorem 5.4, we get

(
V k

hc,0 − V0
k
)
(0) =

k−1∑

t=0

P̄ t
0(Phc,0 − P̄0)V

k−t−1
hc,0 (0).

For notational convenience, we will omit the index 0.
Since

∑
n′∈Shc

p̄(n,n′) = 1 = ∑
n′∈Shc

phc,0(n,n′) we have

(Phc − P̄ )V k
hc(n) =

∑

n′∈Shc

(
phc,0(n,n′) − p̄(n,n′)

)
V k

hc(n
′)

=
∑

n′ �=n

(
phc,0(n,n′) − p̄(n,n′)

)(
V k

hc,0(n
′) − V k

hc,0(n)
)
.

Combination of this result with the hypothesis of the theorem gives

(
V k

hc − V k
)
(0) ≤

k−1∑

t=0

P̄ tΦ(0) ≤
k−1∑

t=0

P t
hc,0Φ(0) ≤ k

∑

n

πhc,0(n)Φ(n), (21)

where the second inequality follows from Theorem 5.4. Recall (17). Application of
Theorem 5.3 completes the proof. �

Remark 5.14 Note that the condition of the theorem is for n ∈ S. Further note that
q0(n,n′) = 0 for n ∈ S, n′ �∈ S.

Remark 5.15 Note that the theorem can also be formulated with the roles of Xhc,0
and X0 reversed. However, this requires an upper bound on (V k

0 (n′) − V k
0 (n)) that

usually cannot be obtained.
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As a second comparison result, by analogy with the monotonicity result for the
transition matrices, the cumulative rewards of the hypercube process also appear to
be monotone in the redial rates.

Theorem 5.16 Consider the processes Xhc,r and Xhc,r ′ on state space Shc. Let rji ≥
r ′
ji for all j, i. Suppose that for some non-negative function Φrr ′ ∈ Chc, for all n ∈ Shc

and k = 0,1,2, . . .

0 ≤
∑

n′∈Shc

(
qhc,r (n,n′) − qhc,r ′(n,n′)

)(
V k

hc,r (n
′) − V k

hc,r (n)
)
< ΛΦrr ′(n).

Then

Ahc,r − βrr ′ ≤ Ahc,r ′ ≤ Ahc,r ,

where

βrr ′ =
∑

n∈Shc

πhc,r (n)Φrr ′(n).

Proof The proof is obtained by analogy with that of Theorem 5.13 but now invoking
Lemma 5.6.

For n ∈ S, under the conditions of Corollary 5.12,

∑

n′∈Shc

(
qhc,0(n,n′) − q0(n,n′)

)(
V k

hc,0(n
′) − V k

hc,0(n)
)

=
∑

j

λj 1(n + ej ∈ Shc\S)
(
V k

hc,0(n + ej ) − V k
hc,0(n)

)

+
∑

i,j

niμipij 1(n − ei + ej ∈ Shc\S)
(
V k

hc,0(n − ei + ej ) − V k
hc,0(n − ei )

)

≤
∑

j

λj 1(n + ej ∈ Shc\S) +
∑

i,j

niμipij 1(n − ei + ej ∈ Shc\S) = Φ(n),

and Φ ∈ Chc. For n ∈ Shc, under the conditions of Corollary 5.12, and assuming that
rk,j ≥ r ′

k,j , for all k, j ,

∑

n′∈Shc

(
qhc,r (n,n′) − qhc,r ′(n,n′)

)(
V k

hc,r (n
′) − V k

hc,r (n)
)

=
∑

k,j

(rk,j − r ′
k,j )1(n + ej ∈ Shc,n + ek �∈ Shc)

(
V k

hc,r (n + ej ) − V k
hc,r (n)

)

≤
∑

k,j

(rk,j − r ′
k,j )1(n + ej ∈ Shc,n + ek �∈ Shc) = Φrr ′(n).

�

A combination of Theorem 5.13 and Theorem 5.16 yields our main error bound
result of Theorem 3.4.
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6 Concluding remarks

This paper has investigated analytical results for performance measures in networks
of Erlang loss queues with common capacity constraints that naturally arise when
modelling finite circuit switched communication systems. For such networks, the
equilibrium distribution is, in general, not available in closed form. Via a state
space modification, and a redial rate approximation, monotonicity results and bounds
have been obtained for performance measures including blocking probabilities and
throughputs. Both the approximating results for these performance measures, and
bounds on the accuracy of the approximation have been obtained in closed form via
the product form equilibrium distribution that is available for a network with suitably
chosen redial rates.

Results for the upper bound on the approximating performance measures are
amenable for dimensioning in practical systems, since the error in these bounds is
roughly of the order of magnitude of the performance measure. The lower bounds
have been argued to be rather loose. Further research includes improvement of the
accuracy of the lower bounds. Furthermore, extension of the bounds to systems with
time-dependent arrival rates is among our aims for further research.
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