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Abstract We consider a (doubly) reflected Lévy process where the Lévy exponent
is controlled by a hysteretic policy consisting of two stages. In each stage there is
typically a different service speed, drift parameter, or arrival rate. We determine the
steady-state performance, both for systems with finite and infinite capacity. Thereby,
we unify and extend many existing results in the literature, focusing on the special
cases of M/G/1 queues and Brownian motion.
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1 Introduction

In this paper, we consider a (doubly) reflected spectrally positive Lévy process. The
system can be in two stages, where the stage of the system is controlled using a
hysteretic policy. If the system is in stage i, i = 1,2, the Lévy exponent of the
driving process X is φi(·). The control rule is specified by two switch-over levels
0 ≤ m2 ≤ m1; the stage of the system changes only at upcrossings of the reflected
process (“workload process”) of m1 while the stage is 1 and at downcrossings of m2

while the stage is 2. For example, let i = 1,2 be the stage of the system and consider
the classical M/G/1 queue with service speed ri , arrival rate λi , and service time dis-
tribution Bi(·). The net input process of the queue in stage i is then a compound
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Poisson process with a negative drift, which is a special case of a spectrally positive
Lévy process.

Queueing systems with state-dependent parameters naturally arise as models for
congestion phenomena in production and communication systems. In the literature,
many of these studies on queueing systems with state-dependent parameters have
been devoted to hysteretic control, see e.g. Dshalalow [15] for an extensive survey.
Most often, the control parameter consists of an adaptable service speed (i.e. λ1 =
λ2 and B1(·) = B2(·)) or an adaptable arrival rate (i.e. r1 = r2 and B1(·) = B2(·)).
The latter can be equivalently interpreted as admission control. Queueing systems
where the service requirement distribution can be adapted based on the state of the
system received much less attention, see e.g. [13, 30]. Finally, we refer to [34] for
an interesting related paper on hysteretic control for inventory models of the M/G/1-
type.

From an historical perspective, dams and storage processes also form an important
area of systems with state-dependent parameters. Typically, the input process of a
large class of dams is a nondecreasing Lévy process and the release rate may be a
function of the buffer content, see e.g. [12, 31], or [29, Chap. 3]. Moreover, in the
study of dams and storage processes, quite a number of papers appeared using the
terminology P M

λ,τ policy to describe the release rule of the dam. In fact, the P M
λ,τ

release policy is the equivalent of hysteretic service-rate control in queueing systems,
where m2, m1, and r2 should be read for the parameters λ, τ , and M in the P M

λ,τ

policy, respectively. In [16, 35], the authors considered the optimal control where the
input process of the dam is a Wiener process (Brownian motion). For some studies of
M/G/1 queues with P M

λ,τ policies, we refer to e.g. [5, 26].
The class of spectrally one-sided Lévy processes is much richer than the special

cases of Brownian motion and compound Poisson with negative drift (M/G/1 queues).
We refer to e.g. [23] and the references therein for an excellent introduction and
further examples.

In this paper we consider the steady-state distribution and Laplace–Stieltjes trans-
form (LST), assuming that they exist, of the level of the workload process. The main
goal is to present a unified treatment and derive intuitively appealing results for the
steady-state workload distribution for the general model with two Lévy exponents,
which extends the models in the literature for hysteretic control based on workloads
or buffer contents.

Furthermore, we consider both reflected and doubly reflected processes, corre-
sponding to systems with infinite and finite capacity, respectively. Both types of sys-
tems are often considered in the literature, but they are commonly treated indepen-
dently. In the present case of hysteretic control, we derive a proportionality relation
between systems with finite and infinite buffer capacity based on martingale argu-
ments. This proportionality is well known for classical queueing models, see e.g. [1,
14]. More recently, this proportionality relation was extended to (doubly) reflected
Lévy processes (but without any control), see [28] and Theorem 2.2. An alternative
derivation of Theorem 2.2 of independent interest, based on the Kella–Whitt martin-
gale, may be found in Appendix A.

The organization of the paper is as follows. Section 2 presents some preliminary
results on reflected Lévy processes. In Sect. 3 we analyze the steady-state distribution
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and LST of the process. In two subsections, we consider the intervals during which
the process is in stage 1 and 2, respectively, and present the resulting steady-state
distributions and LSTs. The steady-state distributions become even more tractable
in various special cases. In Sect. 4, we consider the cases of different drifts in the
two stages, the compound Poisson process with negative drift (corresponding to an
M/G/1 queue), and Brownian motion. Finally, in Sect. 5, we derive a proportionality
relation between the reflected and doubly reflected processes under hysteretic control,
corresponding to systems with infinite and finite capacity.

2 Preliminary results on Lévy processes

Consider a spectrally positive Lévy process X = {X(t), t ≥ 0}, i.e. a Lévy process
with no negative jumps. In this paper, we exclude the cases where X is nondecreasing
(a subordinator) or a deterministic (negative) drift. Since X has no negative jumps,
the moment generating function of X(t) is finite for all α ≥ 0 and t ≥ 0 and is given
by

E
[
e−αX(t)

] = etφ(α),

for some function φ(α), which is called the Lévy exponent. It is well known that
φ(α) is strictly convex on [0,∞), φ(0) = 0, and limα→∞ φ(α) = ∞, see e.g. [9, 23].

We first introduce the so-called scale function. In fact, this corresponds to the case
q = 0 in the class of q-scale functions, which is usually encountered in the literature.
Since we are only interested in ‘just’ the scale function, we restrict the definition to
the case q = 0 here. Let Φ(0) denote the largest root of φ(α) on the positive half-axis.

Definition 2.1 The scale function W : (−∞,∞) → [0,∞) is the unique function
whose restriction to (0,∞) is continuous and has Laplace transform

∫ ∞

0
e−αxW(x)dx = 1

φ(α)
, for α > Φ(0),

and W(x) = 0 for x < 0.

Scale functions play an important role in the study of first-exit times and exit
positions. Due to the equivalence between the steady-state distributions of reflected
processes and exit problems for their dual processes with absorbing barriers, scale
functions can also be used to describe the steady-state distribution of some reflected
processes, see also [23]. A typical example of this duality is the two-sided reflected
process, which will be discussed below.

Exit problems In the literature, exit problems are often considered in the setting
of Lévy processes with only negative jumps, see for instance [10, 24]. The case of
Lévy processes with only positive jumps is however directly related. Denote the dual
process X̂ = −X. Hence, it trivially follows that X̂ is a Lévy process without positive
jumps and E[eαX̂(t)] = etφ(α).
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A specific example where the scale function defined above appears is in the study
of two-sided exit problems for the free Lévy process. Define Ta = inf{t ≥ 0 : X(t) ≥
a} and T̂a = inf{t ≥ 0 : −X(t) ≥ a}. The law of the Lévy process started at x ≥ 0 will
be denoted by Px . Starting at x, the probability that the process X leaves [0, a] at the
lower boundary can be obtained by taking q = 0 in e.g. [24, (5)]:

Px

(
T̂0 < Ta

) = W(a − x)

W(a)
. (1)

In this paper, we are mainly concerned with the exit position of the reflected
process as it leaves [0, a). The joint transform of the first-exit time from the inter-
val [0, a) of the reflected process and the exit position of the reflected process can
be found in [4, 27]. In [7], this transform is rewritten in the case that only the exit
position is required. In Corollary 2.1, we restate the latter result in terms of Lévy
processes with only positive jumps.

Throughout, we use the notations c ∨ 0 = max{c,0} and c ∧ 0 = min{c,0}.
The reflected Lévy process is now defined as Z(t) = X(t) − I (t), where I (t) =
inf0≤s≤t {X(s) ∧ 0}. It follows directly that the process X̂ reflected at its supremum,
i.e., Ẑ(t) = sup0≤s≤t {X̂(s) ∨ 0} − X̂, is identical (see also [23]). In particular, from
the above identities it follows that an initial position z of the process Z corresponds to
an initial maximum z of the process Ẑ. Let τa = inf{t ≥ 0 : Z(t) �∈ [0, a)} be the first-
exit time from [0, a). The transform of its exit position is given in [7, Corollary 2.1]:

Corollary 2.1 For α ≥ 0, with X(0) = z ≥ 0,

Ez

[
e−αZ(τa)

] = e−αz

(
1 − φ(α)

∫ a−z

0
e−αyW(y)dy

)

− W(a − z)

W
′
(a)

(
α − φ(α)

∫ a

0
e−αy dW(y)

)
,

which, for α > Φ(0), can be reduced to

Ez

[
e−αZ(τa)

] = φ(α)

(
e−αz

∫ ∞

a−z

e−αyW(y)dy − W(a − z)

W
′
(a)

∫ ∞

a

e−αy dW(y)

)
.

Steady-state results We now turn to the steady-state workload (denoted by Y ) of the
reflected Lévy process Z. The formula for its LST is well known as the generalized
Pollaczek–Khinchine formula and is presented in the following theorem (see e.g. [1,
Corollary IX.3.4], [23, Corollary 4.9], or [11, 20, 36]).

Theorem 2.1 Consider a Lévy process without negative jumps and with negative
drift, i.e., 0 < φ′(0) < ∞. Then, for α ≥ 0,

Ee−αY = φ′(0)
α

φ(α)
.
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The distribution of the steady-state workload may be presented in terms of the
scale function. In particular, using Definition 2.1 and partial integration, we obtain

α

φ(α)
= α

∫ ∞

0
e−αxW(x)dx = W(0) +

∫ ∞

0+
e−αx dW(x).

Hence, the transform in Theorem 2.1 may be readily inverted, providing

P(Y ≤ x) = φ′(0)W(x). (2)

Remark 2.1 The result (2) can also be obtained from the equivalence between the tail
distributions of the steady-state workload and ruin probabilities of the time-reversed
process, see e.g. [32, Example 1]. From [9, Lemma II.2] or [23, Lemma 3.4] it follows
that the time-reversed process and the dual process X̂ have the same law. Starting the
dual process at x (thus X(0) = −x), the ruin probability of X̂ is given in, e.g., [24] by
P−x(T0 < ∞) = 1 − φ′(0)W(x), assuming that φ′(0) > 0. Hence, combining these
arguments yields

P(Y ≤ x) = 1 − P−x(T0 < ∞) = φ′(0)W(x),

corresponding to (2).

In fact, a similar result holds in the case that there is reflection at both 0 and some
level K > 0. We refer to [22] for the formal construction of this process. In a queueing
setting, this doubly reflected process is often referred to as the finite dam. We note that
reflection at K implies that arriving ‘customers’ are only partly accepted so that the
workload equals K . In a queueing situation, there is a well-known proportionality
relation between the finite dam and its infinite buffer counterpart. Essentially, this
proportionality is the result of the lack-of-memory at downcrossings of K in the
infinite buffer queue, such that the sample paths of the finite and infinite buffer queues
are identical on [0,K].

Not surprisingly, a similar proportionality result as for the finite dam holds for
doubly reflected Lévy processes. Let YK denote the steady-state workload. The fol-
lowing theorem seems due to [28].

Theorem 2.2 Consider a Lévy process without negative jumps and two-sided reflec-
tion. Then, for x ∈ [0,K],

P
(
YK ≤ x

) = W(x)

W(K)
.

We give here a different proof of Theorem 2.2 based on a duality result of [1,
Proposition 3.7]. Another proof of Theorem 2.2, which might be of independent in-
terest, based on the Kella–Whitt martingale can be found in Appendix A.

Proof based on [1] Using the duality between the steady-state versions of reflected
processes and exit positions of a dual process with absorbing barriers, specifically [1,
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Proposition 3.7], we have

P
(
YK > x

) = PK−x

(
TK < T̂0

) = 1 − W(x)

W(K)
,

where the second equality follows from (1). This completes the proof. �

In the notation we add an index i if quantities are associated with stage i, i = 1,2,
e.g. we write φi(·) and Wi(·).

3 Analysis of the steady-state workload

Let X be a right-continuous Lévy process without negative jumps. We exclude the
case that X is nondecreasing or a negative drift. In this section we consider the LST
and distribution of the steady-state amount of work in the system.

The workload process is defined as Z(t) = Z(0) + X(t) − I (t). This workload
process is controlled using an (m1,m2) policy, with m1 > m2 ≥ 0, in the following
way: assume that Z(0) < m1 and define recursively the switch-over times T n

m1
:=

inf{t > T n−1
m2

: Z(t) ≥ m1} and T n
m2

:= inf{t > T n
m1

: Z(t) = m2}, n = 0,1, . . . , with
the convention that T −1

m2
= 0. During the intervals [T n−1

m2
, T n

m1
) and [T n

m1
, T n

m2
), n =

0,1, . . . , the stage of the system is 1 and 2, respectively. When the system is in stage
i the Lévy exponent of the net input process X is φi(·), i = 1,2. We assume that
φ′

2(0) > 0 for the system to be stable. Note that the sign of φ′
1(0) is irrelevant for

stability, since the process can only drift to infinity in stage 2.
Obviously, the process {Z(t), t ≥ 0} is a regenerative process with downcrossings

of m2 while the system is in stage 2, i.e., T n
m2

, n = 0,1, . . . , as regeneration points.
We may thus consider a single regeneration cycle and distinguish two successive
time intervals. More specifically, assume that Z(0) = m2 and let Tm1 = inf{t ≥ 0 :
Z(t) ≥ m1} and Tm2 = inf{t > Tm1 : Z(t) = m2}. During the first interval [0, Tm1)

the Lévy exponent equals φ1(·), while the Lévy exponent equals φ2(·) during the
second interval.

Let J (t) denote the stage of the system and let Z and J denote the steady-state
versions of Z(t) and J (t). Using the theory of regenerative processes, we have

E
[
e−αZ1(J = 1)

] = E[∫ Tm1
0 e−αZ(s) ds]

ETm2

and

E
[
e−αZ1(J = 2)

] =
E[∫ Tm2

Tm1
e−αZ(s) ds]

ETm2

,

where 1(·) is the indicator function. Define for x ≥ 0 and i = 1,2,

Fi(x) = P(Z ≤ x,J = i).
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3.1 The first interval: [0, Tm1)

To determine the steady-state workload, we use the following martingale [1, 20, 23],
for i = 1,2:

Mi(t) = φi(α)

∫ t

s=0
e−αZ(s) ds − e−αZ(t) + e−αZ(0) − αI (t). (3)

For the first interval, take Z(0) = m2 and i = 1. Application of the optional sam-
pling theorem, with stopping time Tm1 yields (cf. [1, 20]):

φ1(α)E

[∫ Tm1

s=0
e−αZ(s) ds

]
= Ee−αZ(Tm1 ) − e−αm2 + αEI (Tm1), (4)

or

E

[∫ Tm1

s=0
e−αZ(s) ds

]
= Ee−αZ(Tm1 ) − e−αm2 + αEI (Tm1)

φ1(α)
. (5)

Notice that this expression, when divided by ETm1 (which can be obtained by letting
α ↓ 0 in (5)), represents the LST of the steady-state distribution of the Z-process
given that the stage of the system is 1.

The transform of the overshoot can be directly obtained from Corollary 2.1 by
taking a = m1 and z = m2, providing, for α > 0,

E
[
e−αZ(Tm1 )

] = e−αm2

(
1 − φ1(α)

∫ m1−m2

0
e−αyW1(y)dy

)

− W1(m1 − m2)

W
′
1(m1)

(
α − φ1(α)

∫ m1

0
e−αy dW1(y)

)
. (6)

To obtain the constant EZ(Tm1) we differentiate the above formula with respect to α

and let α ↓ 0, yielding

EZ(Tm1) = m2 + φ′
1(0)

∫ m1−m2

0
W1(y)dy

+ W1(m1 − m2)

W
′
1(m1)

(
1 − φ′

1(0)

∫ m1

0
dW1(y)

)
. (7)

It remains to find the two constants ETm1 and EI (Tm1). Letting α ↓ 0 in (5) and
applying l’Hôpital’s rule gives the following relation between ETm1 and EI (Tm1):

φ′
1(0)ETm1 = m2 − EZ(Tm1) + EI (Tm1). (8)

For φ′(0) = 0, we directly obtain EI (Tm1) = EZ(Tm1) − m2. In that case, let-
ting α ↓ 0 in (5) and applying l’Hôpital’s rule twice gives the constant ETm1 =
(EZ(Tm1)

2 − m2
2)/φ

′′
1(0). In the case that φ′

1(0) �= 0 and φ1(α) has a non-zero root,
say α̂, the constant EI (Tm1) can be directly determined from this non-zero root. Since
the expectation in the lhs of (4) is then finite for α = α̂, the rhs of (4) should be zero
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for this value of α. (We refer to [2] for extending (4) to negative values of α; in
particular, see [1, Corollary IX.3.7] or [2, Corollary 2] for its direct application in
determining the constant.) Hence,

EI (Tm1) = 1

α̂

(
e−α̂m2 − Ee−α̂Z(Tm1 )

)
. (9)

Combining the above gives, for φ′(0) �= 0,

ETm1 = 1

φ′
1(0)

(
e−α̂m2 − Ee−α̂Z(Tm1 )

α̂
− (

EZ(Tm1) − m2
))

. (10)

We note that φ1(α) has a non-zero root in the case φ′
1(0) < 0 (take α̂ = Φ1(0) >

0) or, in the case φ′
1(0) > 0, φ1(·) has a sufficiently nice structure (see [21] for an

example of the superposition of Brownian motion with a compound Poisson process
with phase-type jumps). In the case that φ1(α) only has a zero root, the final constant
can be determined by using the first-exit time results of Avram et al. [4] or by first
applying Laplace inversion. We refer to (15) and (16) below for the results. This
completes the analysis of the LST of Z given that the stage is 1.

We now turn to the distribution of the steady-state workload by combining the
transform for the overshoot (6) with (5) and then applying Laplace inversion. Since
the distribution function in stage 1 only has mass on [0,m1], we invert the LST only
on the corresponding interval and neglect the terms having mass on [m1,∞), as they
cancel out. Note that (5) may be equivalently expressed as

E

[∫ Tm1

s=0
e−αZ(s) ds

]
= Ee−αZ(Tm1 ) − e−αm2

φ1(α)
+ EI (Tm1)

α

φ1(α)
. (11)

The second term can be easily inverted using Definition 2.1. Using (6) to rewrite the
first term on the rhs of (11) yields

Ee−αZ(Tm1 ) − e−αm2

φ1(α)

= −e−αm2

∫ m1−m2

0
e−αyW1(y)dy

− W1(m1 − m2)

W
′
1(m1)

(
α

φ1(α)
−

∫ m1

0
e−αy dW1(y)

)
.

Note that α/φ1(α) − ∫ m1
0 e−αy dW1(y) corresponds to the LST of a function with

mass only on [m1,∞), and thus has no mass on [0,m1). This can be easily seen from
the fact that W1(·) is the Laplace inverse of α/φ1(α) and, hence, the above two terms
cancel out on [0,m1). The term e−αm2

∫ m1−m2
0 e−αyW1(y)dy clearly corresponds to

the LST of a function that has no mass on [0,m2). Applying Laplace inversion, the
inverse of this term reads

∫ x−m2
0 W1(y)dy, for x ∈ [m2,m1].

Summarizing, we have, for x ∈ [0,m2),

F1(x) = EI (Tm1)

ETm2

W1(x) (12)
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and, for x ∈ [m2,m1),

F1(x) = EI (Tm1)

ETm2

W1(x) − 1

ETm2

∫ x−m2

0
W1(y)dy. (13)

We conclude with determining the constants EI (Tm1) and ETm1 for the general
case, i.e. including the case that φ1(α) only has a zero root. Note that

F1(m1) = P(J = 1) = ETm1

ETm2

, (14)

where the second equality follows from regeneration theory. Taking x = m1 in (13)
and combining with (7), (8) and (14) yields, after some rewriting,

ETm1 = W1(m1)W1(m1 − m2)

W
′
1(m1)

−
∫ m1−m2

0
W1(y)dy. (15)

The same result can be derived from the LST of the first-exit time given in [4]. Simi-
larly, using (7) and (8) once more, we have

EI (Tm1) = W1(m1 − m2)

W
′
1(m1)

. (16)

Remark 3.1 Considering the first interval only and letting m2 = 0, the process cor-
responds to the workload process in a clearing model, see e.g. [18, Sect. 3] or [21].
The steady-state workload distribution in an M/G/1 queue with clearings (also called
disasters) can be found in [6], where it follows as a special case. Equation (13) may
thus also be considered as an extension of clearing models to spectrally positive Lévy
processes.

3.2 The second interval: [Tm1, Tm2]

In this subsection, we consider the second interval. The stage of the system is 2
during this interval and the Lévy exponent thus equals φ2(·). Note that the process
restricted to the second stage can be interpreted as a reflected Lévy process with
secondary jump input, see [19]. In particular, as soon as the process hits m2 it jumps
by a random amount distributed as the overshoot at the end of the first phase. Hence,
the steady-state results for the process restricted to stage 2 can be directly obtained
from [19]. For later use, in particular in Sects. 4 and 5, we outline its derivation.

An application of the martingale M2(t), now with stopping time Tm2 and some
rewriting, yields

E

[∫ Tm2

s=Tm1

e−αZ(s) ds

]
= e−αm2 − E[e−αZ(Tm1 )]

φ2(α)
, (17)

with E[e−αZ(Tm1 )] given by (6). The remaining constant E[Tm2 − Tm1] is obtained
by letting α ↓ 0 in (17) and applying l’Hôpital’s rule. Using (8) (for φ′

1(0) �= 0), we
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have

ETm2 = EI (Tm1)

φ′
1(0)

+
(

1

φ′
1(0)

− 1

φ′
2(0)

)
(
m2 − EZ(Tm1)

)
, (18)

with EI (Tm1) and EZ(Tm1) given in (16) and (7) respectively. Note that we have
completely determined the LST of Z, including the constants.

Define the random variable Z∗
m2

:= Z(Tm1) − m2 as the overshoot over m2 at the
end of the first interval, i.e., at time Tm1 . After some basic manipulations, we may
derive from (17)

1

E[Tm2 − Tm1]
E

[∫ Tm2

s=Tm1

e−αZ(s) ds

]
= e−αm2φ′

2(0)
α

φ2(α)

1 − E[e−αZ∗
m2 ]

αEZ∗
m2

. (19)

This term can be easily inverted using the fact that the product of LSTs corre-
sponds to the convolution of random variables, giving the following decomposition
result:

(Z | J = 2) =d m2 + W2 + Z∗,res
m2

,

where W2 and Z
∗,res
m2 denote generic random variables for the steady-state workload

of a reflected Lévy process with exponent φ2(·) and the residual overshoot over m2
at time Tm1 , respectively. This decomposition result may also follow directly from
Theorem 6.1 and Corollary 6.1 in [19].

Finally, we focus on the distribution of Z
∗,res
m2 . Using its definition and (6) we

obtain, after some rewriting,

Ee−αZ
∗,res
m2 = 1 − eαm2E[e−αZ(Tm1 )]

αEZ∗
m2

= 1

EZ∗
m2

[
φ1(α)

α

∫ m1−m2

0
e−αyW1(y)dy

+ W1(m1 − m2)

W
′
1(m1)

eαm2

(
1 − φ1(α)

α

∫ m1

0
e−αy dW1(y)

)]
.

The distribution of Z
∗,res
m2 can now be obtained by applying Laplace inversion. How-

ever, we characterize the distribution of Z
∗,res
m2 by two implicit equations (see also

Remark 3.2 below for another alternative).
Multiplying both sides by α/φ1(α) yields

α

φ1(α)
Ee−αZ

∗,res
m2 = 1

EZ∗
m2

[∫ m1−m2

0
e−αyW1(y)dy

+ W1(m1 − m2)

W
′
1(m1)

eαm2

(
α

φ1(α)
−

∫ m1

0
e−αy dW1(y)

)]
.

Note that the inverse of α/φ1(α) − ∫ m1
0 e−αy dW1(y) equals W1(·) on [m1,∞) and 0

otherwise. Applying Laplace inversion provides two implicit equations for the distri-
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bution of Z
∗,res
m2 : For x ∈ [0,m1 − m2), we have

∫ x

0
P
(
Z∗,res

m2
≤ x − y

)
dW1(y) = 1

EZ∗
m2

∫ x

0
W1(y)dy,

and, for x ≥ m1 − m2,

∫ x

0
P
(
Z∗,res

m2
≤ x − y

)
dW1(y)

= 1

EZ∗
m2

[
W1(m1 − m2)

W
′
1(m1)

W1(x + m2) +
∫ m1−m2

0
W1(y)dy

]
.

Remark 3.2 In several special cases it is possible to give explicit expressions for the
steady-state workload distribution in stage 2, i.e. F2(·), depending on the specific
form of φ1(α)/φ2(α). The cases of a change of drift, Brownian motions, and M/G/1
queues are addressed in Sect. 4.

For this alternative approach, we express the LST of Z(Tm1) in terms of the steady-
state workload of the first interval. In particular, we rewrite (4) as

Ee−αZ(Tm1 ) = φ1(α)E

[∫ Tm1

s=0
e−αZ(s) ds

]
+ e−αm2 − αEI (Tm1).

Substituting the above in (17) yields

E

[∫ Tm2

s=Tm1

e−αZ(s) ds

]
= α

φ2(α)
EI (Tm1) − φ1(α)

φ2(α)
E

[∫ Tm1

0
e−αZ(s) ds

]
. (20)

The Laplace inversion of the rhs of the above expression is demonstrated in Sect. 4
for various special cases.

4 Special cases

In this section, we consider the following three special cases that are of independent
interest: (i) Change of drift, (ii) general M/G/1 queues, and (iii) Brownian motion. In
these special cases, the steady-state workload distribution in stage 2, i.e. F2(·), has a
more tractable form. Moreover, for the latter two special cases the scale function can
be explicitly given. We refer to [17, 25] for further examples where the scale function
is known in explicit form.

Since an explicit formula for F1(·) is given by (12) and (13), we mainly focus on
the second interval. Dividing both sides of (20) by ETm2 and some rewriting provides
the following form for the LST of the steady-state workload in stage 2:
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1

ETm2

E

[∫ Tm2

s=Tm1

e−αZ(s) ds

]

= EI (Tm1)

ETm2

α

φ2(α)
+ φ2(α) − φ1(α)

φ2(α)

E[∫ Tm1
0 e−αZ(s) ds]

ETm2

− E[∫ Tm1
0 e−αZ(s) ds]

ETm2

.

(21)

The first and third terms on the rhs can be readily inverted yielding
W2(x)EI (Tm1)/ETm2 and −F1(x), respectively. For the second term on the rhs of
(21), we reduce (φ2(α) − φ1(α))/φ2(α) for the special cases mentioned above, see
also [8]. Applying Laplace inversion then provides intuitive formulas for F2(·).
Change of drift Here, we consider the appealing special case of a change of drift,
i.e., we assume that φ1(α) = (r1 −r2)α+φ2(α). This case is most often studied in the
literature, usually under the assumption of an M/G/1 setting or for Brownian motion.
Note that

φ2(α) − φ1(α)

φ2(α)
= (r2 − r1)

α

φ2(α)
,

where the rhs can be easily inverted using the scale function W2(·). Using the fact
that the product of two LSTs corresponds to the convolution of two functions, we
obtain, by applying Laplace inversion to (21), for x ≥ m2,

F2(x) = EI (Tm1)

ETm2

W2(x) + (r2 − r1)

∫ x

0
W2(x − y)dF1(y) − F1(x),

with F1(·) given by (12) and (13).

M/G/1 queue Consider the general M/G/1 case with arrival rates λi , service speeds
ri , and generic service requirements Bi with distribution Bi(·), mean βi , and LST
βi(·), i = 1,2. Note that φi(α) = riα − λi + λiβi(α) in this case.

For M/G/1 queues, the scale function has a tractable form. Let ρi := λiβi/ri , i =
1,2, denote the traffic intensity in stage i and let Hi(x) := β−1

i

∫ x

0 (1 − Bi(y))dy be
the stationary residual service requirement distribution. The stability condition now
reads ρ2 < 1. In the case ρi < 1, it is well known that

Wi(x) = 1

ri

∞∑

n=0

ρn
i Hn∗

i (x),

where Hn∗
i (·) denotes the n-fold convolution of Hi(·) with itself. The steady-

state workload distribution for an M/G/1 queue with exponent φi(·) then reads
(1 − ρi)riWi(x). For the case ρ1 > 1, we refer to e.g. [8] for details.

Also, the distribution function on the second interval can be rewritten using (21).
After some basic algebra, we can rewrite the fraction of Lévy exponents into familiar
terms:

φ2(α) − φ1(α)

φ2(α)
= −r1

α

r2α − λ2 + λ2β2(α)
+ λ1

λ2

r2α − λ2β1(α) + λ2β2(α)

r2α − λ2 + λ2β2(α)
+1− λ1

λ2
.
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Observe that the first term on the rhs is related to the familiar M/G/1 queue and the
second term is related to an M/G/1 queue with an exceptional first service time. Let
W exc

2 (·) be the steady-state workload distribution in an M/G/1 queue with service
rate r2, arrival rate λ2, and generic service requirement B2, but with exceptional first
service B1 in a busy period (see e.g. [33], p. 128 or [8, Example A.1]). Combining
the above with (21) and applying Laplace inversion yields, for x ≥ m2,

F2(x) = EI (Tm1)

ETm2

W2(x) − r1

∫ x

0
W2(x − y)dF1(y)

+ λ1

λ2

1 + λ2β1
r2

− ρ2

1 − ρ2

∫ x

0
W exc

2 (x − y)dF1(y) − λ1

λ2
F1(x),

with F1(·) given by (12) and (13).

Brownian motion In the case of Brownian motion, we assume that φi(α) =
α2σ 2

i /2 − μiα, i = 1,2. Hence, the scale function reads Wi(x) = (exp(2μix/σ 2
i ) −

1)/μi . For abbreviation, we denote ηi = 2μi/σ
2
i . Note that, for μ1 �= 0, φ1(α) = 0

has a unique non-zero solution α̂ = η1. Since Z(Tm1) = m1, using (9) and (18), we
obtain the constants EI (Tm1) = (exp(−η1m2) − exp(−η1m1))/η1 and

ETm2 =
(

1

μ1
− 1

μ2

)
(m1 − m2) − 1

μ1η1

(
e−η1m2 − e−η1m1

)
.

Substitution in (12) and (13) yields, for x ∈ [0,m2),

F1(x) = EI (Tm1)

μ1ETm2

(
eη1x − 1

)
,

and, using the specific form of EI (Tm1), for x ∈ [m2,m1),

F1(x) = 1

μ1ETm2

[
1

η1

(
1 − eη1(x−m1)

) + 1

η1

(
e−η1m1 − e−η1m2

) + x − m2

]
.

For the second interval, we use the analysis of Sect. 3.2. Because Brownian mo-
tion has continuous sample paths, we have a deterministic overshoot Z∗

m2
= m1 −m2.

Consequently, the residual overshoot Z
∗,res
m2 is uniformly distributed on the inter-

val [m2,m1]. Applying the decomposition result, we find after some straightforward
computations that, for x ∈ [m2,m1),

F2(x) = 1

μ2ETm2

[
1

η2

(
eη2(x−m2) − 1

) − (x − m2)

]
,

and for x ≥ m1,

F2(x) = 1

μ2ETm2

[
1

η2
eη2(x−m1)

(
eη2(m1−m2) − 1

) − (m1 − m2)

]
.
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5 Doubly reflected process

In this section we assume that the workload process is also reflected at some level
K ≥ m1, representing a finite buffer capacity. Such finite capacity systems are well
known in queueing scenarios and also often appear in systems with hysteretic con-
trol.

Since the first interval ends as soon as the workload upcrosses level m1 ≤ K ,
the reflection only effects the workload process on the interval [0, Tm1] through
the constant ETm2 , see (26) below. This constant involves the only adaptation
in the steady-state results for this interval, i.e. F1(·). To analyze the steady-state
workload distribution during the second interval, we first use martingale argu-
ments [1, 20] again to obtain the LST. Since the workload process is kept in
[m2,K], the workload distribution has no mass on [K,∞). Hence, we invert the
LST on the interval [m2,K] to find the steady-state amount of work. The terms
where the inverse has mass on [K,∞) can be neglected, because they cancel
out.

More precisely, during the second interval, the workload process is defined as
ZK(t) = Z∗

0 + X(t − Tm1) − SK(t), where Z∗
0 = Z(Tm1) and SK(t) :=

supTm1 ≤s≤t {(X(s − Tm1) + Z∗
0 − K) ∨ 0}, for t ∈ [Tm1, T

K
m2

] with T K
m2

:= inf{t ≥
Tm1 : ZK(t) = m2} (see [22]). Here X is a Lévy process with exponent φ2(·). No-
tice that there is no reflection term in 0, because the horizontal axis is not hit during
this second interval. Also, the local time at K , SK(t), is an adapted càdlàg process.
Because SK(t) is increasing, it is of bounded variation on finite intervals. We decom-
pose the local time at K into its continuous and its jump part (see e.g. [3, 20], or [9],
p. 208)

SK(t) = SK,c(t) +
∑

Tm1 ≤s≤t

�SK(s),

where �SK(t) = SK(t) − SK(t−) with SK(t−) = lims↑t S
K(s).

We now apply the martingale used in [1, 20, 23] or, more specifically, [3, Proposi-
tion 3.3]:

MK(t) = φ2(α)

∫ t

Tm1

e−αZK(s) ds − e−αZK(t) + e−αZ∗
0

+ αe−αKSK,c(t) + e−αK
∑

Tm1 ≤s≤t

(
1 − e−α�SK(s)

)
. (22)

Using the definition of Z∗
m2

it follows from an application of the martingale MK(t)

with stopping time T K
m2

, in addition to some rewriting, that
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E

[∫ T K
m2

s=Tm1

e−αZK(s) ds

]

= EZ∗
m2

α

φ2(α)
e−αm2

1 − E[e−αZ∗
m2 ]

αEZ∗
m2

− α

φ2(α)
e−αK

ESK,c
(
T K

m2

)

− α

φ2(α)
e−αK

E

[ ∑

Tm1 ≤s≤T K
m2

1 − e−α�SK(s)

α

]
. (23)

The above expression provides the steady-state workload during the second in-
terval, up to a constant. Because the workload process is constructed such that
ZK(t) ∈ [m2,K], we only need to invert each of the three terms on the rhs of the
above equation on the corresponding interval. Neglecting terms with mass on [K,∞)

greatly simplifies the Laplace inversion. (Note again that the terms with mass on
[K,∞) should cancel out.)

To control the final term on the rhs of (23), we need the following lemma:

Lemma 5.1 The term E[∑Tm1 ≤s≤T K
m2

1−e−α�SK (s)

α
] corresponds to the LST of a func-

tion with no mass on (−∞,0).

Proof Let τK := inf{t ≥ Tm1 : ZK(t) = K} be the first hitting time of K . Note that
τK can be equal to Tm1 , in which case SK(Tm1) = Z∗

0 − K .
In the case τK > Tm2 , the process does not hit K and the lemma is trivial. For the

case τK < Tm2 observe that SK(τK + t)−SK(τK) has the same law as the supremum
process S(t) := sup0≤s≤t {X(s)∨ 0} and ZK(τK + t) has the same law as X − S +K

until X − S + K ≤ m2. Define τm2 := inf{t ≥ 0 : X(t) − S(t) + K = m2}. As in e.g.
[9, 23], denote by L = {L(t), t ≥ 0} the local time of S − X at 0 and by L−1(t) =
inf{s > 0 : L(s) > t} its right-continuous inverse. We also introduce the ladder height
process H , using the inverse local time to time-change the supremum process, as
H(t) = S(L−1(t)), see [9], p. 157, or [23], p. 147. Since the jumps in the supremum
process correspond to jumps in the ladder height process, we have

E

[ ∑

Tm1 ≤s≤T K
m2

1

α

(
1 − e−α�SK(s)

)
]

= P(τK < Tm2)

(
1

α
E

[
1 − e−α�SK(τK)

] + 1

α
E

[ ∑

τK≤s≤T K
m2

(
1 − e−α�SK(s)

)])

= P(τK < Tm2)

(
1

α
E

[
1 − e−α�SK(τK)

] + 1

α
E

[ ∑

0≤s≤L(τm2 )

(
1 − e−α�H(L−1(s))

)])
.

(24)

For the first term (1 − Ee−α�SK(τK))/α we observe that it corresponds to the tail
of the overshoot over K at the first-exit time of [0,K]. Hence, this is a transform of
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a function with mass only on [0,∞). For the second term, we use some properties
of the ladder height process H . In particular, we use the well-known result that the
ladder height process is a (nondecreasing) Lévy process, see e.g. [9, Lemma VI.2].
Let the Lévy measure of H be given by νH (·).

Using the compensation formula for Poisson point processes, we obtain for the
second term

1

α
E

[ ∑

0≤s≤L(τm2 )

(
1 − e−α�H(L−1(s))

)]

= E

[∫ ∞

0
1
(
t ≤ L(τm2)

)
dt

∫ ∞

0

1 − e−αs

α
νH (ds)

]

= EL(τm2)

∫ ∞

0
e−αsνH

(
(s,∞)

)
ds.

Note that
∫ ∞

0 e−αsνH ((s,∞))ds is the LST of the tail of the Lévy measure of H .
Clearly, the tail vH ((·,∞)) has no mass on (−∞,0), which completes the proof. �

Remark 5.1 In the case that the process with exponent φ2(·) is of bounded varia-
tion, Lemma 5.1 can be derived using direct probabilistic arguments. Note that the
probability that the process hits level m2 before level K when the initial position is K

equals W(0)/W(K −m2), cf. (1). This probability is strictly positive for processes of
bounded variation, see e.g. [4]. Hence, given that the process X first upcrosses level
K , the number of successive upcrossings of level K before the first downcrossing of
m2 is geometrically distributed with parameter W(0)/W(K − m2) > 0. The second
term in (24) can then be directly treated using Wald’s equation, giving a geometric
number of residual overshoots. This clearly has no mass on (−∞,0).

Now, we are ready to invert each of the terms on the rhs of (23) separately on the
interval [m2,K]. The Laplace inversion of the first term is similar to the case of an
infinite buffer, see (19). In particular, the inverse of α/φ2(α) is given by W2(·) and
(1 − E[e−αZ∗

m2 ])/(αEZ∗
m2

) corresponds to the LST of Z
∗,res
m2 . The product of these

transforms thus represents the convolution W2(x) ∗ P(Z
∗,res
m2 ≤ x), where ∗ denotes a

convolution.
We note that the second and third terms on the rhs of (23) only have mass on

[K,∞). To see this, note that α/φ2(α) is the LST of W2(·) and has mass on [0,∞).
Consequently, e−αKα/φ2(α) is the transform of a function with mass on [K,∞).
This completes the second term.

The third term involves the product of two transforms, corresponding to the con-
volution of two functions. Since e−αKα/φ2(α) only has mass on [K,∞), it fol-
lows from Lemma 5.1 that the third term also only has mass on [K,∞). Hence,
for x ∈ [0,K − m2], we have

P
(
ZK ≤ x + m2, J = 2

) = EZ(Tm1) − m2

ETm2

∫ x

0
W2(x − y)dP

(
Z∗,res

m2
≤ y

)
. (25)
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Finally, it remains to find the normalizing constant ETm2 . From regeneration the-
ory it follows again that

P
(
ZK ≤ K,J = 2

) = P(J = 2) = 1 − ETm1

ETm2

.

Using the above and taking x = K − m2 in (25), yields

ETm2 = ETm1 + (
EZ(Tm1) − m2

)∫ K−m2

0
W2(K − m2 − y)dP

(
Z∗,res

m2
≤ y

)
. (26)

Corollary 5.1 For φ′
2(0) > 0 and x ∈ [m2,K], we have

P
(
ZK ≤ x | J = 2

) = P(Z ≤ x | J = 2)

P(Z ≤ K | J = 2)
.

The results for the various special cases of Sect. 4 can also be easily modified in
case of a finite buffer. In particular, Corollary 5.1 shows that the steady-state workload
distribution in the case of finite buffers (and φ′

2(0) > 0) is just the truncated workload
distribution of the case of infinite buffers.

An alternative proof of Theorem 2.2 using similar arguments as above, in particu-
lar (22) and Lemma 5.1, is given in Appendix A.
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Appendix A: Martingale proof of Theorem 2.2

Here, we give an alternative proof of Theorem 2.2 based on martingales and Laplace
inversion on [0,K]. The analysis is similar to the derivation in Sect. 5. In principle,
letting φ1(α) ≡ φ2(α) ≡ φ(α), the proportionality result can also be derived from the
results in that section. However, we believe that this alternative derivation of Theo-
rem 2.2 might be of independent interest giving insights for many finite-buffer sys-
tems.

Due to similarities with Sect. 5, we continue to use the notation {ZK(t), t ≥ 0} for
the doubly reflected process. However, we denote the steady-state amount of work in
the system by YK , see also Sect. 2.

Alternative proof of Theorem 2.2 Using the first-hitting time definitions of Sect. 3
with m1 = K and m2 = 0 it holds that T n

0 , n = 0,1, . . . , are regeneration epochs. A
regenerative cycle thus starts at time 0 with ZK(0) = 0 and ends when the process
hits 0 after first upcrossing level K (the cycle length is denoted by T0).
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We let IK = {IK(t), t ≥ 0} be the local time at 0 of the doubly reflected process.
Note that for t ∈ [0, T0) it holds that I (t) = IK(t). We use the following martingale
(see [1, 20, 23] or [3, Proposition 3.3]):

MK(t) = φ(α)

∫ t

0
e−αZK(s) ds − e−αZK(t) + e−αZK(0) − αIK(t)

+ αe−αKSK,c(t) + e−αK
∑

0≤s≤t

(
1 − e−α�SK(s)

)
.

Applying the optional sampling theorem, with stopping time T0, we obtain

E

[∫ T0

s=0
e−αZK(s) ds

]
= α

φ(α)
EIK(T0) − α

φ(α)
e−αK

ESK,c(T0)

− α

φ(α)
e−αK

E

[ ∑

0≤s≤T0

1 − e−α�SK(s)

α

]
. (27)

The first term on the rhs of (27) is readily inverted using Definition 2.1 giving W(·)
times a constant. We observe that the second and third terms correspond to LSTs of
functions that have no mass on [0,K). For the second term, note that α/φ(α) is the
LST of W(·) having mass on [0,∞). The term e−αKα/φ(α) thus corresponds to the
LST of a function with mass only on [K,∞), completing the analysis of the second
term on the rhs of (27). The third term is a product of two transforms, which corre-
sponds to a convolution. Using Lemma 5.1 and the fact that e−αKα/φ(α) has mass
only on [K,∞), it follows that the third term on the rhs of (27) does not contribute
on [0,K) as well.

Now, dividing by ET0 and applying Laplace inversion to (27), yields

P
(
YK ≤ x

) = EIK(T0)

ET0
W(x).

Using normalization, we directly obtain EIK(T0)/ET0 = 1/W(K). This completes
the derivation of Theorem 2.2. �
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