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Abstract The purpose of this paper is to survey techniques for constructing effective
policies for controlling complex networks, and to extend these techniques to cap-
ture special features of wireless communication networks under different networking
scenarios. Among the key questions addressed are:

(i) The relationship between static network equilibria, and dynamic network con-
trol.

(ii) The effect of coding on control and delay through rate regions.
(iii) Routing, scheduling, and admission control.

Through several examples, ranging from multiple-access systems to network coded
multicast, we demonstrate that the rate region for a coded communication network
may be approximated by a simple polyhedral subset of a Euclidean space. The poly-
hedral structure of the rate region, determined by the coding, enables a powerful
workload relaxation method that is used for addressing complexity—the relaxation
technique provides approximations of a highly complex network by a far simpler one.

These approximations are the basis of a specific formulation of an h-MaxWeight
policy for network routing. Simulations show a 50% improvement in average delay
performance as compared to methods used in current practice.
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1 Introduction

One hundred years ago the Danish Scientist, Agner Krarup Erlang launched the field
of queueing theory with his paper The theory of probabilities and telephone conver-
sations [14]. In the 2009 workshop 100 Years of Queueing—The Erlang Centennial,
we recalled how Erlang helped to collect data to build models of telecommunica-
tion traffic, and that he was willing to pass through manhole covers for this pur-
pose [5]. Based on these measurements, and ideas proposed by Johannsen in the
1907 manuscript [22], Erlang postulated probabilistic models of traffic statistics, de-
scribed in [13, 14], which is the origin of the Poisson distribution typically assumed
for arrival traffic in network models. The overall goal of his research was to obtain
predictive models for the incredibly complex telephone exchange networks he was
confronted with. Based on an M/D/1 model introduced in [13], he began the process
of characterizing delay in queueing models based on a Markovian model, that was
largely completed by Pollaczek and Khinchine in the 1930s, where average delay is
expressed in their famous formula [24].

In this paper we consider the same issues of interest to Erlang one hundred years
ago. We are concerned with finding characterizations or bounds to understand trade-
offs among delay, energy and network capacity. In addition, we want to use this in-
sight to formulate control strategies for routing, scheduling, and admission control in
telecommunication networks.

Following the style of Erlang’s early papers, we identify a few key questions to be
considered in this paper:

(A) What is the relationship between static network equilibria, and dynamic network
control?

(B) What is the role of coding on control and delay analysis?
(C) How can we construct effective policies for controlling complex networks?

These questions have crisp answers when the answers are based on idealized models,
and in the context of this paper, the answers are relevant even for refined network
models that more accurately describe network behavior.

In this paper ‘control’ is restricted to the decision making processes required in
routing packets in a communication network, admitting packets into the network, or
determining priorities at a node in the network. A standing assumption is that a con-
trol solution should be based on a simple model that captures essential dynamics. If
the control solution is sufficiently robust, then it will be effective even in the presence
of inevitable modeling error.

Topics A and B are addressed in Sect. 2. A complete answer to A is provided, and
we begin to address B by investigating the rate regions obtained under coding. This is
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the first step for dynamic network control since our control policies are designed over
the resulting rate regions. To address topic C we consider model reduction techniques
to reduce complexity. The starting point is a relaxation technique introduced in the
thesis of Neil Laws [27] to obtain lower bounds on achievable delay performance
for stochastic networks.1 An analogous relaxation can be used to construct a simple
model for control design [34]. This however requires a sequence of steps:

1. We first construct a low-dimensional description of the network based on a ‘work-
load relaxation’ that is a generalization of Laws’ relaxation.

2. A control solution is obtained for the relaxation, typically based on some formu-
lation of optimality for the relaxation.

3. The solution for the relaxation is translated to obtain an effective policy for the
original network.

The translation step might appear to be the most challenging. We borrow ideas from
the MaxWeight policies of Tassiulas and Ephremides [16, 37, 39, 40] and state space
collapse from heavy traffic theory [4, 23] to obtain a simple and effective approach to
step 3. This approach to policy translation was introduced in [29], and developed fur-
ther in [34]. The main ideas are summarized in Sect. 3, along with further background
on MaxWeight policies.

2 Rate regions in network models

Until Sect. 3 we consider deterministic aspects of network control based on a fluid
model.

2.1 Fluid models

In its most abstract form, a fluid model is a controlled differential equation with
convex state and velocity constraints. The queue levels at time t are denoted qi(t),
1 ≤ i ≤ �, or in vector form q(t) ∈ R

�+. There is a fixed arrival rate vector α ∈ R
�+,

and a convex set of achievable rates R ⊂ R
� such that

d

dt
q(t) = −r(t) + α, t ≥ 0,

with r(t) ∈ R for each t . On letting V denote the velocity space V = {−r +α : r ∈ R},
and v(t) = −r(t) + α ∈ V, we denote,

d

dt
q(t) = v(t), t ≥ 0.

The following assumptions are imposed throughout the paper:

The rate region R is convex, with non-empty interior,

This set contains the origin and the arrival-rate vector α.
(1)

1See recent generalizations in [17, 36], the related LP approaches in [25, 26], and relaxation techniques
from approximate dynamic programming, such as the work of Coffman and Mitrani [9] and its off-
spring [3].
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The rate region depends on factors such as:

(i) Network topology, which may be a design choice.
(ii) Allowable routing decisions at each node.

(iii) The use of coding, and the type of coding strategy.

In particular, the use of coding can greatly expand the region R.
For the purposes of computation, the rate region is conceptualized in terms of

achievable equilibria for the fluid model. Suppose that for a given α ∈ R, there is
vector r ∈ R for which the system is at rest:

d

dt
q(t) = −r + α = 0.

Then we conclude that α = r ∈ R. The network load for a given α is defined by

ρ•(α) = min
{
ρ : ρ−1α ∈ R

}
. (2)

Given our assumption that R is convex and contains the origin, this representation
can be inverted to give

R = {
α : ρ•(α) ≤ 1

}
. (3)

In most applications we can work with a more structured fluid model defined as

d

dt
q(t) = Bζ(t) + α, t ≥ 0 (4)

where ζ(t) ∈ R
�u is a vector of allocation rates. In simple scheduling models we

have B = −[I − RT ]M , where R is a routing matrix with binary entries and M is
a diagonal matrix of maximal service rates. The allocation rates are restricted to a
polyhedron of the form

U := {
u ∈ R

�m : u ≥ 0, Cu ≤ 1
}
. (5)

The constituency matrix C is an �m × �u matrix with binary entries. The rows of C

correspond to resources r = 1, . . . , �m. The rate region is thus given by

R = {[
I − RT

]
u : u ∈ U

}
.

In these models the rate region R and the velocity set V are polyhedral. The form of V
is expressed in terms of generalized workload vectors {ξ s : 1 ≤ s ≤ �v}. On denoting
ρs = αT ξs , there are binary elements {os : 1 ≤ s ≤ �v} such that the velocity space
can be expressed as the intersection of half-spaces,

V = {
v ∈ R

� : vT ξ s ≥ −(os − ρs), 1 ≤ s ≤ �v

}
. (6)

In these models the network load can be expressed as the maximum of ρs over those
s satisfying os = 1 (see [34, Theorem 6.1.1]).

In communication models without routing, the region R is precisely the multiple-
access rate region. In models found in wireless applications we find that a polyhedral
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model may be appropriate, but complex in the presence of multiple-access interfer-
ence combined with coding [10, 11]. In wireless models with fading, the region R
may not polyhedral.

This is the starting point to addressing question A: What is the relationship be-
tween static network equilibria, and dynamic network control? The rate region is
typically envisioned as a static property of the network. Here it is a first step towards
building a dynamic model of the network for purposes of control design.

We say that the fluid model is stabilizable if for each x ∈ R
�+, there is a trajectory

(q, r) that is feasible for the fluid model, and a time T < ∞ such that q(t) = 0 for
t ≥ T . For a stabilizable fluid model we consider the following optimality problem:
We let c : R

� → R+ denote a norm (typically the �1-norm), and denote the value
function,

J ∗(x) = inf
∫ ∞

0
c
(
q(t)

)
dt, q(0) = x, (7)

where the infimum is over all feasible (q, r). This choice of optimality criterion
is motivated by the fact that the value function J ∗ approximates the relative value
function for an associated average-cost optimization problem for a stochastic model
[8, 30, 31].

However, computation of J ∗ is infeasible in all but the simplest models. To obtain
an approximation to this optimal control problem we relax the constraints on v(t) in
the fluid model. Details of this approach can be found in [29, 32–34], and will be
reviewed briefly in the following examples.

2.2 Interference constraints and combinatorial complexity

We first consider a system with routing only and no coding. This is the most common
setting considered in network control in the literature. Shown in Fig. 1 is a network
with 18 separate arrival processes, and 40 nodes. To model interference we adopt the
half-duplex constraint model in which no node can send and receive simultaneously.

To construct a model of the form (4) we require a separate buffer for each flow at
each node. This leads to fluid model in which � = 40 × 18 = 720 (!). Shown on the
right-hand side of Fig. 1 are three examples of two-dimensional slices of the region
R (restricted to the positive orthant), computed using the formula (3). These results
suggest that the rate region may be approximated by a polyhedron with a moderate
number of faces. This is motivation for the workload relaxation introduced next for a
simpler multiple-access model.

2.3 Multiple-access model

The constraint imposed in Sect. 2.2 is extremely pessimistic—by analogy, consider
a party in which each guest feels that he or she can speak only if everyone else in
the room is silent. Party guests can effectively filter out conversations of others while
participating in their private conversations, and this efficiency can be replicated in
communication systems through coding.

Consider the multiple-access system illustrated in Fig. 2, where two users trans-
mit to a single receiver. The two users share a single channel which is corrupted by
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Fig. 1 Shown on the left is a network with 40 nodes, 18 flows, and 720 buffers. On the right is shown
three examples of two-dimensional “slices” of the rate region R that is obtained under the half-duplex
constraint. Even with many flows and hundreds of buffers, the rate region is not very complex

Fig. 2 Multiple-access
communication system with two
users and a single receiver

additive white Gaussian noise (AWGN), denoted by N in the figure. The queueing
system has two buffers that receive arriving packets of data modeled as the i.i.d. se-
quences Ai = (Ai(1),Ai(2), . . .), with finite mean αi = E[Ai(t)], i = 1,2. Data at
queue i is stored in its respective queue until it is coded and sent to the receiver. The
output of the system seen at the receiver is given by Y(t) = X1(t) + X2(t) + N(t),
where N is i.i.d. Gaussian with finite second moment σ 2

N , and independent of the two
inputs {X1,X2}. It is assumed that user i is subject to the average power constraint
E[Xi(t)

2] ≤ Pi .
In this example and others, there are two steps required for network control: A pos-

sibly combinatorial problem at the lower level defines the set R of achievable rates.
At a higher level, we have a queueing model where the rates in R are chosen as a
function of time based on cost considerations on a longer time-horizon.

The set of all possible data rates is given by the Cover–Wyner region illustrated
in Fig. 3 [11]. Any pair (R1,R2) ∈ R within this simple pentagonal region can be



Queueing Syst (2009) 63: 195–216 201

Fig. 3 Achievable rates in the
multiple-access model

achieved through independent coding at the two buffers.2 The rate region is a strict
subset of R in the absence of multiple-access coding: the triangular region in the
positive orthant consisting of points below the line connecting μ1 and μ2.

To complete the construction of the fluid model, we construct the matrices B

and C and the vector α consistently with the rate region shown in Fig. 3. We
let ‘μ’ denote a maximal processing rate: μ1 = C(P1) and μ2 = C(P2), where
C(P ) = 1

2 log(1 + P/σ 2
N) for any P ≥ 0. The dynamics of the two-dimensional fluid

model are expressed as

d

dt
q1(t) = −μ1ζ1(t) + α1,

d

dt
q2(t) = −μ2ζ2(t) + α2.

The matrix B and the constituency matrix C are given by

B = −
[

μ1 0

0 μ2

]

, C =
⎡

⎢
⎣

1 0

0 1

μ1/μ μ2/μ

⎤

⎥
⎦ , (8)

where μ = C(P1 + P2). The constituency matrix C has three rows, corresponding to
the three faces of the rate region R.

There are several representations for the rate region. We have R = {−Bu : u ∈ U}
where U is given in (5). We can also obtain an expression for the rate region in terms
of workload. Recall that R = −V0, where V0 = {v ∈ R

� : vT ξ s ≥ −os, 1 ≤ s ≤ �v} is
the velocity space for the arrival-free model (with α = 0). The vector ξ s is called a
workload vector if os = 1. There are three workload vectors in this model:

ξ1 = (1/μ1,0)T , ξ2 = (0,1/μ2)
T , ξ3 = (1/μ,1/μ)T . (9)

The velocity space for the fluid model is obtained by shifting V0 by the mean
arrival-rate vector α. That is, V = {V0 + α} := {v + α,v ∈ V0}. A typical case is
illustrated in Fig. 4.

It is assumed that a cost function c : R
2+ → R+ is given that is convex, and van-

ishes only at the origin. For simplicity we shall concentrate on a linear cost function

2The Cover–Wyner region is constructed under the assumption that each queue has an infinite supply of
bits for coding. Strict limits on delay will result in a smaller rate region.
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Fig. 4 Velocity space for the
multiple-access model

Fig. 5 Two instances of the
relaxed velocity space for the
multiple-access model

of the form c(x) = c1x1 + c2x2, with ci > 0 for each i. Our interest is in minimizing
the average cost over all policies.

We obtain an approximate solution using a workload relaxation. Shown on the
left-hand side of Fig. 5 is the half-space V̂ that defines a one-dimensional workload
relaxation using the workload vector ξ3, and on the right is a two-dimensional re-
laxation that maintains the two constraints defined by ξ1 and ξ3. In either case, the
fluid model is defined to be the controlled model in continuous time, whose velocity
is constrained to the region V̂,

d

dt
q̂(t) = v̂(t), v̂(t) ∈ V̂, t ≥ 0.

A relaxation for the stochastic model is defined similarly [34].
There are many results establishing solidarity between a relaxation and the orig-

inal stochastic model. The strongest such result is obtained for a general class of
queueing network models in [29]: If in the one-dimensional relaxation the workload
vector is chosen corresponding to the highest load, then under general conditions a
policy for the stochastic model based on the optimal policy for the relaxation will be
approximately optimal, with logarithmic regret as the load tends to unity.

We now focus on the one-dimensional relaxation for the fluid model, based on the
workload vector ξ3. There is a policy that is pathwise optimal in this case. To see
why, first note that the movement of q̂(t) is unconstrained in directions orthogonal to
ξ3 (the velocity space for q̂(t) is a half-space defined by ξ3). Hence, in an optimal

solution, the cost c(q̂∗(t)) will be minimal among all values c(x) for which ξ3T
x =

ξ3T
q̂∗(t).

This motivates the effective cost, defined for w ∈ R+ by

c(w) = min
{
c(x) : ξ3T

x = w, x ∈ R
2+
}
. (10)
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The basic feasible solutions of the linear program (10) are

x∗1 =
(

1

0

)
μw, x∗2 =

(
0

1

)
μw,

and the effective cost is thus c(w) = μw min(c1, c2).
In an optimal solution we have c(q̂∗(t)) = c(ŵ∗(t)) for all t > 0, where ŵ∗(t) :=

ξ3T
q̂∗(t).

Supposing further that c1 < c2, the optimal solution will satisfy q̂∗
2 (t) = 0 and

q̂∗
1 (t) = μŵ(t) = μŵ(0) − μ(1 − ρ3)t for 0 < t ≤ ŵ(0)/(1 − ρ3), where ρ3 = ξ3T

α.
The resulting infinite-horizon cost is a quadratic function of the initial workload:

Ĵ ∗(x) =
∫ ∞

0
c
(
q̂∗(t)

)
dt = 1

2
μc1

w2

1 − ρ3
, q̂∗(0) = x, w = ξ3T

x, x ∈ R
2+. (11)

We consider next the two-dimensional relaxation based on the workload vectors ξ1

and ξ3. For linear cost, the effective cost is in the solution to the linear program,

c(w) = min c1x1 + c2x2

s.t. ξ1T
x = w1, (12)

ξ3T
x = w3 x ≥ 0.

We can invert the constraint equations to obtain x as a function of w. On letting Ξ

denote the 2 × 2 matrix with rows ξ1T
and ξ3T

, we have
(

x1

x2

)

= Ξ−1

(
w1

w3

)

=
(

μ1w1

μw3 − μ1w1

)

,

provided w is feasible, which requires w ∈ W = {(w1,w3) ∈ R
2+ : w1 ≥ 0, w3 ≥

μ1w1/μ}. The effective cost is defined for feasible w by

c(w) = cT Ξ−1x = (c1 − c2)μ1w1 + c2μw3.

The monotone region W+ is defined to be the set of all w ∈ W such that c(w′) ≥
c(w) whenever w′ ≥ w (component-wise). The effective cost is called monotone if
W+ = W. In this example, the effective cost is monotone if and only if c1 ≥ c2.
In this case there exists a pathwise optimal solution for the relaxation in which the
components of the workload process are minimal.

If c1 < c2 then W+ is a strict subset of W. In such cases an optimal solution
minimizing the infinite horizon cost Ĵ ∗ will be defined by a cone W∗ satisfying W+ ⊂
W∗ ⊂ W, with ŵ∗(t) ∈ W∗ for all t > 0, where ŵ∗(t) = Ξq̂∗(t) [34].

2.4 Single-flow communication network

To see how relaxations may be constructed for networks we consider the simplest
formulation of the routing model, in which coding among different connections is
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Fig. 6 Single-user routing model with min-cut A = {1,2,3}

disallowed. The impact of coding in a network setting will be addressed in the fol-
lowing subsection.

In a fluid model, the �-dimensional vector of queue-lengths evolves according to
the differential equation,

d+

dt
qi(t) = αi +

�∑

k=1

ζkiμki −
�∑

j=1

ζijμij , (13)

where μki is the maximal rate on the link joining nodes k and i, and the rate con-
straints are decoupled,

U := {0 ≤ ζij ≤ 1, 1 ≤ i, j ≤ �}.

Consider the single-user routing model shown in Fig. 6. The capacities on each
of seven links are as indicated. The links are unidirectional so, for example, we have
μ5,4 = 0. The imposition of the rate μ5 = 100 at node 5 is for the purposes of con-
structing a linear fluid model of the form (4).

We first look at this model from the point of view of the Min-Cut Max-Flow The-
orem. Based on this result we can conclude that the maximal rate α∗

1 that the network
can support in equilibrium is the sum of the rates on the minimal cut shown:

α∗
1 = μ

(
A,Ac

) = 5.

The fluid model is stabilizable for any arrival rate satisfying α1 < 5, and the network
load is given by ρ• = α1/5.

The conclusion ρ• = α1/5 can also be reached by constructing the workload vec-
tors that define V. To construct a fluid model we first order the vector of activity rates
as follows:

ζ = (ζ1,2, ζ1,3, ζ2,5, ζ3,2, ζ3,4, ζ3,5, ζ4,5, ζ5)
T
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so that (13) is of the form (4) with α = (α1,0,0,0,0)T , and

B =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

−2 −10 0 0 0 0 0 0

2 0 −1 5 0 0 0 0

0 10 0 −5 −2 −2 0 0

0 0 0 0 2 0 −10 0

0 0 1 0 0 2 10 −100

⎤

⎥⎥
⎥⎥⎥⎥
⎦

.

The workload vector ξ = (1/5,1/5,1/5,0,0)T consistently expresses the load by
ρ• = αT ξ = α1/5. For given x ∈ R

5+, the workload w = ξT x is given by

w = 1

μ(A,Ac)
× Total fluid above network cut

where μ(A,Ac) = 5 is the maximal rate that fluid can flow across the cut.
Just as in the multiple-access example we can construct a one-dimensional work-

load relaxation, and compute the associated optimal policy.

2.5 Multicast and network coding

In this section we consider coding to allow several receivers to share a connection.
A common application in networks is multicasting, i.e. the transmission of informa-
tion from a source node s to a subset of network nodes T . Let (s, T ,R) denote a
multicast connection with rate R. In general, network coding is necessary to achieve
capacity [1]; practical capacity achieving schemes have been proposed in [19–21].
Note that, for a single point-to-point connection, a necessary and sufficient condition
for a flow to be established between a sender and a receiver is given by the min-cut
max-flow conditions. Such a condition trivially remains necessary when we consider
a single sender and several receivers. However, when using routing schemes to es-
tablish connections, one must use combinations of trees. In such trees, the min-cut
condition may not be sufficient, since in effect trees may compete with each other for
capacity. This competition for capacity among trees will render the min-cut condition
non-sufficient when trees serving different receiver nodes compete for capacity along
a link. Under network coding, however, different receivers in a multicast connection
do not compete with each other for resources. Thus, under network coding condi-
tions, the maintenance of min-cut conditions between the set of senders and every
receiver individually is not only necessary, but also a sufficient condition to achieve
capacity.

Although network coding obviates competition for resources among receivers in
a multicast connection in wireless models, interference from simultaneous transmis-
sions has to be taken into account. In effect, interference changes the underlying net-
work according to the presence or absence of connections. A conservative approach
for managing interference is to assign to each node an orthogonal channel and there-
fore avoid interference at the price of reduced bandwidth efficiency. The approach
taken in [41], on the other hand, is a scheduling technique designed for network coded
multicast traffic. Its basic idea is, in short, to activate subsets of neighbors in a man-
ner that takes advantage of packets overheard by neighbors (the so-called broadcast
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Fig. 7 Shown on the left-hand side is a wireless network with 12 nodes, one source, and two multicast
groups, each consisting of two nodes. Shown on the right-hand side are two possible rate regions: the
smaller region R∗ is obtained using orthogonal scheduling, and the larger region is obtained using a more
efficient coding scheme [41]

advantage) as well as of frequency reuse in the network due to efficient scheduling
of non-conflicting transmissions. Moreover, if we have two different multicast con-
nections then, while there is no competition for capacity among receivers within a
multicast connection, there may be competition for resources among different mul-
ticast connections. Network coding may alleviate this competition for resources, as
well as reduce the resources used for each multicast connection individually.

To consider the interaction among users, let T1 denote one group or receivers, and
T2 another set of receivers. Consider, to begin with, orthogonal scheduling and the
multicast connections (s, T1,R

∗
1), (s, T2,R

∗
2), and (s, T1 ∪ T2,R

∗
0), where for each

connection the rate is taken to be the maximal rate that can be supported by the net-
work if only this particular connection is present. We have plotted the rate points
(R∗

1 ,0) = (0.23,0), (0,R∗
2) = (0,0.24), and (R∗

0 ,R∗
0) = (0.21,0.21) in Fig. 7. The

extreme point (R∗
0 ,R∗

0) corresponds to transmission to each multicast group simul-
taneously at rate R∗

0 . Interference among users is captured by the fact that R∗
0 is in

general strictly smaller than either R∗
1 or R∗

2 . Without coding we obtain the half-
duplex constraint model in which the minimum cut from the source to the users in
T1 ∪ T2 is min(R∗

1 ,R∗
2).

The potential gain in capacity is illustrated in the plot on the right-hand side of
Fig. 7. The rate region R∗ is obtained using orthogonal coding, and the region R′ is
obtained using the coding approach of [41]. Observe that the rate regions are almost
rectangular. This means that a 4-multicast with random terminals can support almost
the same rate as a 2-multicast and indicates that network coded multicasting scales
well with the number of receivers. However, the main message is that attention to
coding can significantly expand the achievable rate region, as seen in this figure.

3 Relaxations and control

In this section we show how the concepts surveyed in the previous sections can be
used to obtain control solutions for a stochastic network model, and for the physical
network. We assume that rate regions have been determined through a combination
of coding and local scheduling as discussed in Sect. 2. This is the basis of dynamic
network models over which we design our policies.
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We now introduce a stochastic model for the network, defined as a discrete time
analog of the fluid model. Suppose (A,B) is an i.i.d. process with a finite second
moment. For each t , the vector A(t) has non-negative entries with mean α, the entries
of B(t) take on values in {−1,0,1}, and the mean of B(t) is B . The queue-length
process is denoted Q, and evolves in discrete time through the recursion,

Q(t + 1) = Q(t) + B(t + 1)U(t) + A(t + 1), t ≥ 0, Q(0) = x. (14)

The input U(t) is subject to the same constraints as ζ(t), which include the constraint
that the resulting process Q remains in the positive orthant R

�+. We ignore lattice
constraints on the queue-length process, so that Qi(t) is only restricted to be non-
negative for each i and t . In all of the numerical experiments described here the
entries of A(t) and −B(t) are taken to be Bernoulli, with means denoted E[Ai(t)] =
αi and E[Bij (t)] = −μij . The general model was developed in [18, 34] and is now
called the controlled random walk (CRW) network model.

Models of this form were introduced by Lippman in [28] for networks with Pois-
son interarrival times and service times—assumptions justified by the work of Erlang.

3.1 Policy translation

The approach to policy translation advocated in [29] is inspired by the dynamic pro-
gramming equations associated with the fluid and stochastic models. In particular,
suppose that the function J ∗ defined in (7) is a smooth function of x, and let ∇J ∗
denote its gradient. Then, the total cost optimality equation (TCOE) is given by

min
v∈V

vT ∇J ∗(x) = −c(x), x ∈ X. (15)

Moreover, the minimizing v defines an optimal state feedback law v∗(t) = φ∗(q(t)),
with

φ∗(x) := arg min
v∈V

vT ∇J ∗(x), x ∈ X. (16)

Similar equations define optimal policies for the CRW model with respect to a dis-
count or average-cost optimality criteria [2, 34]. Generally, if h : R

� → R+ is a C1

function then we define the h-myopic policy via

φ(x) = arg min
v∈V

vT ∇h(x), x ∈ X,

so that φ = φ∗ if h = J ∗. It is assumed throughout that h is convex, monotone, and
vanishes only at the origin. Under these assumptions it is known that the h-myopic
policy is stabilizing for the fluid model when ρ• < 1 [34].

It would be tempting to attempt to apply an h-myopic policy to the CRW model,
with h an approximation to the solution to an optimality equation for the CRW model,
such as the fluid value function. However, this fails because the policy might not be
feasible for the stochastic model. The problem is that in the fluid model it is possible
to have service at an empty buffer, which is impossible in a discrete-time CRW model.
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Fig. 8 Packets will be routed
from buffer three to buffer four
under the MaxWeight policy, for
some values of Q(t)

However, the situation is not so dire—there are many examples of functions h for
which the h-myopic policy is feasible for the CRW model.

The MaxWeight policy provides one example. If h(x) = 1
2‖x‖2, then the result-

ing h-myopic policy coincides with the MaxWeight policy for the models consid-
ered in [16, 37, 39, 40]. The MaxWeight policy has been popular for scheduling and
routing in view of its stability properties. Recent work has developed decentralized
implementations of these policies using consensus-type algorithms (see [35]) and
distributed spanning tree constructions (see [15]).

Many generalizations have been proposed, including a more general quadratic
h(x) = 1

2xT Dx with D > 0 diagonal, or the generalization

h(x) =
∑

i

dix
1+δ
i (17)

with δ > 0 and di > 0 for each i. These generalizations and more recent refinements
introduced in [6, 16, 42] are used to improve the performance of the policy with
respect to delay. Results from experiments show that significant gains are possible by
including additional global information, such as information regarding shortest paths
to desired destinations.

Indeed, it has been observed that delay can be large when using the MaxWeight
policy. An explanation was provided in [38] using the network model shown in Fig. 8
as an example. A centralized routing algorithm intended to minimize delay would
never route any packets to buffer 4. Though stabilizing, the MaxWeight algorithm
will route packets to buffer 4 for certain values of the queue-length vector. This will
definitely increase the average delay.

To obtain a broader class of functions for which the h-myopic policy is feasible
for the CRW model, and also stabilizing, consider again the function defined in (17).
Under general conditions, the h-MaxWeight policy is feasible for the CRW model
when δ > 0, while feasibility typically fails when δ = 0 (the case in which h is linear).
The explanation given in [29] is that the function h satisfies the following boundary
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conditions when δ is strictly positive:

∂

∂xi

h (x) = 0 whenever xi = 0. (18)

Under these assumptions on h, including the boundary condition (18), the resulting h-
myopic policy is called the h-MaxWeight policy in [29, 34]. This boundary condition
is interpreted as zero ‘marginal disutility’ at an empty buffer, which ensures that there
is a disincentive to work on an empty queue. This property is the key for stability
because starvation of resources is avoided.

The condition (18) is easy to arrange. Suppose that h0 : R
� → R+ is any function

satisfying the assumptions imposed above: h0 is convex, monotone, and vanishes
only at the origin. We can then perturb this function to obtain a function satisfy-
ing (18), while maintaining the other desirable properties. One class of perturbations
is of the form h(x) = h0(x̃) where x̃ = (x̃1, . . . , x̃�)

T ∈ R
�+, and each x̃i (x) is con-

vex, monotone, and vanishes only at the origin. Two examples are the exponential
and logarithmic perturbations: For a given parameter θ > 0 these are defined by, re-
spectively,

x̃i := xi + θ
(
e−xi/θ − 1

)
, (19)

x̃i := xi log(1 + xi/θ). (20)

Feasibility of the h-MaxWeight policy requires some assumptions on the velocity
set V. One set of sufficient conditions is given in Proposition 3.1.

Proposition 3.1 Suppose that the following hold for the general fluid model:

(i) ρ• < 1.
(ii) For any v ∈ V and any i ∈ {1, . . . , �}, if vi < 0 then there is a vector v+ ∈ V

satisfying

v+
i = 0 and v+

j ≤ vj for j 
= i.

Then, without loss of generality, the h-myopic policy can be constructed so that for
any x ∈ R

�+, and any i, we have φi(x) ≥ 0 when xi = 0.

Proof By definition we have

φ(x) ∈ arg min
v∈V

�∑

i=1

vi

∂

∂xi

h(x), x ∈ X.

If v0 achieves the minimum, then there exists v+ satisfying v+
i = 0 whenever xi = 0

and vi < 0, and v+
j ≤ vj otherwise. Monotonicity of h implies that v0T ∇h(x) ≥

v+T ∇h(x). �

To see how this applies to policy translation, we show how to translate an optimal
policy for the fluid model relaxation to the CRW model. The translation is performed
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Fig. 9 A network with 100
nodes. There are four classes of
links, differentiated by their
respective capacities 0.5, 0.25,
0.2 and 0.15, and indicated in
the figure by the four different
styles shown. The two arrivals
and one exit are indicated by the
arrows

in two steps. In the first step we modify the value function for the relaxation. For a
one-dimensional relaxation, and with linear cost, the value function Ĵ ∗ is a quadratic
function of workload w = ξT x. To attempt to faithfully track the relaxation, we in-
troduce a penalty term that introduces a large cost when c(x) � c(w):

h0(x) := Ĵ ∗(w) + b

2

(
c(x) − c(w)

)2
, w = ξT x, x ∈ R

�+, (21)

where b > 0 is a constant. In the second step we perturb h0 to obtain h satisfying (18).
It is shown in [29] that the resulting h-MaxWeight policy is approximately optimal

under general conditions. While the arguments are general, this result is proven for
a version of the scheduling model described below (4). Note however that to obtain
such exact performance guarantees it is necessary to demand far greater information
than when using the standard MaxWeight policy. In practice trade-offs must be made
between information and performance. Moreover, network structure may change with
time, in which case the policy must adapt to these changes.

3.2 h-MaxWeight for dynamic routing

In this final section we describe how these techniques apply to networks found in
telecommunication applications.

Figure 9 shows a network with 100 nodes, two arrival streams, and one node from
which the packets from these two sources exit the network. The network was con-
structed by first selecting at random the positions of nodes. A link between two nodes
was created whenever the distance was less than a threshold. These links were chosen
to be unidirectional, and each direction was also randomly selected. The capacity on
a link between nodes i and j is denoted μij . Its value was set to one of four possible
values: 0.5, 0.25, 0.2 or 0.15. Generally, smaller rates were assigned for links in the
central region of the network.

The two dashed lines shown in Fig. 9 represent a single cut between the two in-
flows, and the single outflow. The total number of packets in the shaded region coin-
cide with the workload (in units of packets) corresponding to this cut.
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Fig. 10 Comparison of the average cost using the h-MaxWeight with “shortest path squared” compo-
nent shown in (26) and the ordinary MaxWeight policy. The rates for the two arrivals are 0.283 and 0.33
respectively. The network load ρ• is 0.95. In the simulation, n is set to be 1

In all of the numerical experiments described here, the arrival process A = {A(t) :
t ≥ 1} was taken to be an i.i.d. sequence with distribution,

P
(
Ai(t) = n

) = αi/n, P
(
Ai(t) = 0

) = 1 − αi/n, 1 ≤ i ≤ 2, (22)

where n is a constant used to capture variability. The mean and variance of Ai(t) are
given by, respectively,

mAi(t) = αi, σ 2
Ai(t)

= nαi − α2
i . (23)

Due to lack of space, the plots shown here are based on the model using n = 1. The
entries of −B(t) were taken to be Bernoulli with distribution

P
(−B(t)ij = 1

) = μij , P
(−B(t)ij = 0

) = 1 − μij , 1 ≤ i, j ≤ �. (24)

The queue-length process Q was constrained to evolve in the positive lattice Z
�+.

Our goal is to find a policy that approximately minimizes the average cost: the
cost function is taken to be the total population, c(x) = ∑�

i=1 xi . The average cost
is simply the running average of c(Q(t)). Figure 10 compares the average cost us-
ing two policies: the h-MaxWeight policy for a particular function h, and the or-
dinary MaxWeight policy. The average cost is reduced by more than 50% with the
h-MaxWeight policy in this experiment. The function h0 is described in (26) that fol-
lows, and h was obtained via h(x) = h0(x̃), with x̃ the exponential perturbation (19).
Histograms of delay are shown in Fig. 11 for this example under various load condi-
tions. Further details are provided at the end of this section.

We first consider the approach introduced in [29] using the function h0 defined
in (21),

h0(x) := Ĵ ∗(w) + b

2

(
c(x) − c(w)

)2
, w = ξT x, x ∈ R

100+ , (25)

where Ĵ ∗ is a quadratic function of workload, as in (11). With this version of the
h-MaxWeight policy, the average workload is reduced significantly when compared
to the ordinary MaxWeight policy. Results from one simulation are shown in Fig. 12.
The explanation for this is that the h-MaxWeight policy results in far fewer packets
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Fig. 11 Histogram of delays experienced by packets for different loads. The arrival rates for the load 0.6,
0.8, 0.95 are (0.179, 0.208), (0.238, 0.278) and (0.283, 0.33), respectively. The function h in the h-MW
policy was taken to be the exponential perturbation of (26)

Fig. 12 Simulation results for the h-MaxWeight policy using the exponential perturbation of the function
h0 given in (25)

that double-back across the network cut. Denote by L(t) the number of packets that
cross the cut in the upstream direction at time t ≥ 0. The cumulative sum of this
quantity was obtained for the two policies, and the results are shown in Fig. 12. It is
seen that the number of “loopy packets” is reduced by approximately one half when
compared to the MaxWeight policy.

However, there is one aspect of this policy that is not satisfactory. Recall that
an optimal solution for the workload relaxation requires c(Q(t)) − c(W(t)) ≡ 0
for t > 0. The error c(Q(t)) − c(W(t)) is proportional to the number of packets
downstream of the network cut. Hence, in an optimal solution for the relaxation, all
nodes downstream of the network cut are free of packets. The running average of
c(Q(t)) − c(W(t)) was obtained for the two policies, and the results are also dis-
played in Fig. 12. We see that the result is similar for either policy, and the average
value is approximately half of the total average cost.

To better approximate the idealization c(Q(t)) − c(W(t)) ≡ 0, we now introduce
an additional penalty term in h0 to more aggressively move traffic towards the exit
node. The idea is to introduce information regarding the shortest path to the exit,
following a similar modification of the MaxWeight policy introduced in [42]. For
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Fig. 13 Simulation results for the h-MaxWeight policy with shortest path component. The solid line
shows result for the MaxWeight policy, while the dashed line shows the result for the h-MaxWeight with
“shortest path squared” component shown in (26)

each i, denote by s(i) the length (in hops) of the shortest path from node i to the
exit node. For a given p > 0, the corresponding vector of powers of {s(i)} is denoted
by dsp = [s(1)p, s(2)p, . . . , s(�)p]T . The definition of h0 in (21) is then modified to
include the linear function of x obtained as the dot product with dsp:

h0(x) := Ĵ ∗(w) + b

2

(
c(x) − c(w)

)2 + bspd
spT

x, w = ξT x, x ∈ R
�+, (26)

where bsp is a constant.
Figure 13 shows results obtained under the same conditions as described following

Fig. 10, but using this function in the definition of the h-MaxWeight policy, with
p = 2 (so that d

sp
i = s(i)2). The average value of c(Q(t)) − c(W(t)) is reduced by

nearly one half, as compared to the previous version of the h-MaxWeight policy.
In each simulation the delay for each packet entering the network was also

recorded. This is the total time from arrival to the network, to the time of exit from the
network. Histograms of delay are shown in Fig. 11. This includes the network under
the same statistical setting as in the prior experiments, with network load ρ• = 0.95.
Two other experiments were conducted with reduced arrival rates, resulting in loads
ρ• = 0.6 and 0.8. The average delay, and the variability of delay are reduced dramat-
ically using this policy, as compared to ordinary MaxWeight.

4 Conclusions

We have seen that a careful look at deterministic aspects of a communication net-
work can provide insight regarding network control, as well as practical algorithms.
As illustrated by examples, it is possible to develop models and solutions for broad
classes of networks, and to take into account many network issues, including those
related to multiple-access interference and coding.
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There are many promising directions for future research; we highlight just two:
the interplay between network control and information theory, and the decentralized
implementation of network algorithms.

Information theory characterizes the fundamental gains and limits of coding, while
network control is concerned primarily with policies and performance bounds. Infor-
mation theory is an indispensable tool to guide the design of network algorithms;
however, techniques from information theory have only recently begun to have im-
pact on communication network design. This tension between the two disciplines
(the unconsummated union [12]), is yet to be resolved in a satisfactory way. Working
from both directions to create a more cohesive bridge is a very promising avenue of
further research. The applications described here to multiple-access communication
and network coded multicasting are just two examples.

The second direction concerns the decentralized implementation of network con-
trol algorithms. Centralized coordination is limited in most wireless networks owing
to physical limitations and choice of architecture. There have been two recent ap-
proaches for designing decentralized network control algorithms. The first approach
uses insights from game theory to design dynamic update mechanisms among users
competing for network resources (see for example [7]). While being fully decentral-
ized and flexible in modeling heterogeneous user metrics, this approach may lead to
inefficiencies in the overall network performance due to strategic interactions among
users. In environments where there are no strategic interactions, a more direct ap-
proach can be used that relies on optimization decomposition methods and consen-
sus algorithms. Some of the techniques described in this paper, in particular network
coding for multicasting, can be naturally decentralized using this approach. The con-
struction of decentralized implementations of the h-MaxWeight policy is also possi-
ble using consensus algorithms, but the need for high reliability and efficiency will
drive further research in this direction.
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