Skip to main content
Log in

Inverse problems in queueing theory and Internet probing

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Queueing theory is typically concerned with the solution of direct problems, where the trajectory of the queueing system, and laws thereof, are derived based on a complete specification of the system, its inputs and initial conditions. In this paper we point out the importance of inverse problems in queueing theory, which aim to deduce unknown parameters of the system based on partially observed trajectories. We focus on the class of problems stemming from probing based methods for packet switched telecommunications networks, which have become a central tool in the measurement of the structure and performance of the Internet. We provide a general definition of the inverse problems in this class and map out the key variants: the analytical methods, the statistical methods and the design of experiments. We also contribute to the theory in each of these subdomains. Accordingly, a particular inverse problem based on product-form queueing network theory is tackled in detail, and a number of other examples are given. We also show how this inverse problem viewpoint translates to the design of concrete Internet probing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouf, S., Nain, P., Towsley, D.F.: Inferring network characteristics via moment-based estimators. In: INFOCOM, pp. 1045–1054 (2001)

  2. Arya, V., Duffield, N., Veitch, D.: Multicast inference of temporal loss characteristics. In: IFIP Performance 2007, Special Issue, Performance Evaluation, Cologne, Germany, 2–5 October 2007. Elsevier, Amsterdam (2007)

    Google Scholar 

  3. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the em algorithm. Scand. J. Stat. 23(4), 419–441 (1996)

    Google Scholar 

  4. Baccelli, F., Bremaud, P.: Elements of Queueing Theory Applications of Mathematics, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  5. Baccelli, F., Machiraju, S., Veitch, D., Bolot, J.: The role of PASTA in network measurement. Comput. Commun. Rev. 36(4), 231–242 (2006). Proceedings of ACM SIGCOMM 2006

    Article  Google Scholar 

  6. Baccelli, F., Machiraju, S., Veitch, D., Bolot, J.: On optimal probing for delay and loss measurement. In: Proc. ACM SIGCOMM Internet Measurement Conf., San Diego, California, 23–26 October 2007, pp. 291–302 (2007)

  7. Baccelli, F., Massey, W., Towsley, D.: Acyclic fork-join queuing networks. J. ACM 36(3), 615–642 (1989)

    Article  Google Scholar 

  8. Bolot, J.C.: Characterizing end-to-end packet delay and loss in the Internet. J. High-Speed Netw. 2(3), 305–323 (1993)

    Google Scholar 

  9. Caceres, R., Duffield, N., Horowitz, J., Towsley, D.: Multicast-based inference of network-internal loss characteristics. IEEE Trans. Inf. Theory 45, 2462–2480 (1999)

    Article  Google Scholar 

  10. Cao, J., Cleveland, W.S., Lin, D., Sun, D.X.: On the nonstationarity of Internet traffic. In: SIGMETRICS’01: Proc. ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 102–112. ACM, New York (2001)

    Google Scholar 

  11. Claffy, K., Miller, G., Thompson, K.: The nature of the beast: recent traffic measurements from an Internet backbone. In: INET’98, Geneva, Switzerland, 21–24 July 1998. Internet Society (1998)

  12. Coates, M., Nowak, R.: Network tomography for internal delay estimation. In: Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake City, Utah, May 2001

  13. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (1), 1–38 (1977)

  14. Duffield, N., Horowitz, J., Presti, F.L., Towsley, D.: Multicast topology inference from measured end-to-end loss. IEEE Trans. Inf. Theory 48(1), 26–45 (2002)

    Article  Google Scholar 

  15. Glynn, P., Sigman, K.: Independent sampling of a stochastic process. Stoch. Process. Appl. 78, 151–164 (1998)

    Article  Google Scholar 

  16. Golub, G.H., Loan, C.V.: An analysis of the total least squares problem. Technical Report, Ithaca, NY, USA (1980)

  17. Gradshteyn, L., Ryzhik, L.: Table of Integrals, Series and Products, 6th edn. Academic Press, San Diego (2000)

    Google Scholar 

  18. Grenouille. http://grenouille.com/cest_quoi.php

  19. Hohn, N., Veitch, D., Abry, P.: Cluster processes, a natural language for network traffic. IEEE Trans. Signal Process. 51(8), 2229–2244 (2003). Special issue “Signal Processing in Networking”

    Article  Google Scholar 

  20. Hohn, N., Veitch, D., Papagiannaki, K., Diot, C.: Bridging router performance and queuing theory. In: Proc. ACM SIGMETRICS, New York, 12–16 June 2004, pp. 355–366 (2004)

  21. Kapoor, R., Chen, L.-J., Lao, L., Gerla, M., Sanadidi, M.: CapProbe: a simple and accurate capacity estimation technique. In: Proc. ACM SIGCOMM, pp. 67–78. ACM, New York (2004)

    Google Scholar 

  22. Kauffmann, B., Baccelli, F., Veitch, D.: Towards multihop available bandwidth estimation. ACM SIGMETRICS Perform. Eval. Rev. 37(2), 84 (2009)

    Google Scholar 

  23. Kelly, F.: Reversibility and Stochastic Networks. Wiley, New York (1979)

    Google Scholar 

  24. Lai, K., Baker, M.: Measuring link bandwidths using a deterministic model of packet delay. In: Proc. ACM SIGCOMM’00, Stockholm, September 2000, pp. 283–294 (2000)

  25. Larson, R.: The queue inference engine: deducing queue statistics from transactional data. Manag. Sci. 36(5), 586–60 (1990)

    Article  Google Scholar 

  26. Liu, X., Ravindran, K., Liu, B., Loguinov, D.: Single-hop probing asymptotics in available bandwidth estimation: sample-path analysis. In: Proc. ACM Internet Measurement Conf., October 2004

  27. Liu, X., Ravindran, K., Loguinov, D.: Multi-hop probing asymptotics in available bandwidth estimation: stochastic analysis. In: Proc. ACM/USENIX Internet Measurement Conf., October 2005

  28. Machiraju, S., Veitch, D., Baccelli, F., Bolot, J.: Adding definition to active probing. ACM Comput. Commun. Rev. 37(2), 17–28 (2007)

    Article  Google Scholar 

  29. Novak, A., Taylor, P., Veitch, D.: The distribution of the number of arrivals in a subinterval of a busy period in a single server queue. Queueing Syst. 53(3), 105–114 (2006)

    Article  Google Scholar 

  30. Ott, T.: The covariance function of the virtual waiting time process in an M/G/1 queue. Adv. Appl. Probab. 9 (1997)

  31. Parker, B.: Design of experiments for packet networks. Ph.D. Thesis, Queen Mary, University of London, School of Mathematical Sciences (2009)

  32. Pásztor, A., Veitch, D.: On the scope of end-to-end probing methods. IEEE Commun. Lett. 6(11), 509–511 (2002)

    Article  Google Scholar 

  33. Paxson, V.: End-to-end Internet packet dynamics. IEEE/ACM Trans. Netw. 7(3), 277–292 (1999)

    Article  Google Scholar 

  34. Paxson, V., Floyd, S.: Wide-area traffic: the failure of Poisson modeling. IEEE/ACM Trans. Netw. 3(3), 226–244 (1994)

    Article  Google Scholar 

  35. Petersen, K.: Ergodic Theory. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  36. Prasad, R.S., Murray, M., Dovrolis, C., Claffy, K.: Bandwidth estimation: metrics, measurement techniques, and tools. IEEE Netw. Mag. 17(6), 27–35 (2003)

    Article  Google Scholar 

  37. Schervish, M.: Theory of Statistics. Springer, New York (1995)

    Google Scholar 

  38. Sharma, V., Mazumdar, R.: Estimating traffic parameters in queueing systems with local information. Perform. Eval. 32, 217–230 (1998)

    Article  Google Scholar 

  39. Strauss, J., Katabi, D., Kaashoek, F.: A measurement study of available bandwidth estimation tools. In: Proc. ACM SIGCOMM Internet Measurement Conf., 2003

  40. Takács, L.: Introduction to the Theory of Queues. Oxford University Press, New York (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Baccelli.

Additional information

The work of F. Baccelli and B. Kauffmann is funded in part by the Euro NF Network of Excellence and by the French ANR Cmon project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baccelli, F., Kauffmann, B. & Veitch, D. Inverse problems in queueing theory and Internet probing. Queueing Syst 63, 59 (2009). https://doi.org/10.1007/s11134-009-9150-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11134-009-9150-9

Mathematics Subject Classification (2000)

Navigation