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Subexponential Processing Times
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Abstract: This paper studies the asymptotic behavior of the steady-state waiting time, W∞, of the
M/G/1 queue with subexponenential processing times for different combinations of traffic intensities
and overflow levels. In particular, we provide insights into the regions of large deviations where the
so-called heavy traffic approximation and heavy tail asymptotic hold. For queues whose service time

distribution decays slower than e−
√

t we identify a third region of asymptotics where neither the
heavy traffic nor the heavy tailed approximations are valid. These results are obtained by deriving
approximations for P (W∞ > x) that are either uniform in the traffic intensity as the tail value goes to
infinity or uniform on the positive axis as the traffic intensity converges to one. Our approach makes
clear the connection between the asymptotic behavior of the steady-state waiting time distribution
and that of an associated random walk.
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1. Introduction

We study in this paper the asymptotic behavior of the steady-state waiting time distribution of an M/G/1
queue with subexponential service time distribution and first-in-first-out (FIFO) discipline. The goal is to
provide expressions that will allow us to identify the different types of asymptotic behavior that the queue
experiences depending on different combinations of traffic intensity and overflow levels. We give our results
for the special case of an M/G/1 queue with the idea that the insights that we obtain are applicable to more
general queues and even to networks of queues.

The special case of an M/G/1 queue with regularly varying processing times was previously analyzed in [17],
where it was shown that the behavior of P (W∞ > x), the steady-state waiting time distribution, can be fully
described by the so-called heavy traffic approximation and heavy tail asymptotic (see Theorems 2.1 and 2.2
in [17]). As pointed out in that work, the same type of results can be derived for a larger subclass of the

subexponential family, in particular, for service time distributions whose tails decay slower than e−
√
t. As

the main results of this paper show, the behavior of W∞ for lighter subexponential service time distributions
may include a third region where neither the heavy traffic approximation nor the heavy tail asympotic are
valid, and where the higher order moments of the service time distribution start playing a role. The exact
way in which these higher order moments appear in the distribution of W∞ is closely related to the large
deviations behavior of an associated random walk and its corresponding Cramér series.

The approach that we take to understand the asymptotics of P (W∞ > x) over the entire line is to provide
approximations that hold uniformly across all values of the traffic intensity for large values of the tail, or
alternatively, uniformly across all tail values for traffic intensities close to one. From such uniform approxi-
mations it is possible to compute the exact thresholds separating the different regions of deviations of W∞,
which for service time distributions decaying slower than e−

√
t are simply the heavy traffic and heavy tail

regions, and, for lighter subexponential distributions, include a third region where neither the heavy traffic
approximation nor the heavy tail asymptotic hold. Similar uniform approximations have been derived in
the literature for the tail distribution of a random walk with subexponential increments in [6], [7], and [20],
where the uniformity is on the number of summands for large values of the tail or across all tail values as
the number of summands grows to infinity. The results in the paper are in some sense the equivalent for the
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single-server queue.

To explain the idea behind our main results let us recall that one can approximate the tail distribution of
the steady-state waiting time of a single-server queue with subexponential processing times, P (W∞ > x),
via two well known approximations: the heavy traffic approximation and the heavy tail asymptotic

exp

{

− 2(Eτ1 − EV1)

Varτ1 +VarV1
x

}

and
ρ

1− ρ

∫ ∞

x

P (V1 > t)

EV1
dt,

respectively, where V1 denotes the service time, τ1 the inter-arrival time, and ρ the traffic intensity of the
queue. We refer the reader to Chapter X of [1] and the references therein for more details on the history
and the exact formulation of these limit theorems. The heavy traffic approximation is valid for the general
GI/GI/1 queue and can be derived by using a functional Central Limit Theorem type of analysis (see, e.g.
[11, 12]). The theorem that justifies this approximation is obtained by taking the limit as the traffic intensity
approaches one and is applicable for bounded values of x. The heavy tail asymptotic is valid for the GI/GI/1
FIFO queue with subexponential service time distribution (see, e.g., [10]), and is obtained by taking the
limit as x goes to infinity for a fixed traffic intensity, that is, it is applicable for large values of x. One can
then think of combining these two approximations to obtain an expression that is uniformly valid on the
entire positive axis.

The approach we take in the derivation of the main theorems is to start with the Pollaczek-Khintchine formula
for the distribution of the steady-state waiting time of the M/G/1 queue, which expresses it as a geometric
random sum, and use the asymptotics for the tail distribution of the random walk. One of the difficulties
in obtaining uniform asymptotics for the distribution of W∞ lies in the highly complex asymptotic behavior
of the random walk. Surprisingly, most of the cumbersome details of the asymptotics for the random walk
disappear in the queue, but showing that this is indeed the case requires a considerable amount of work. The
qualitative difference between queues with service time distributions with tails decaying slower than e−

√
t

and their lighter-tailed counterparts comes from the asymptotic behavior of the random walk associated to
the geometric random sum. The function e−

√
t has been identified as a threshold in the behavior of heavy

tailed sums and queues in [6, 16], and [3, 13, 14], respectively, to name a few references, and we provide here
yet another example.

As mentioned before, the approximations we provide can be used to derive the exact regions where the heavy
traffic and heavy tail approximations hold, but we do not provide the details in this paper since our focus is
on deriving uniform expressions for P (W∞ > x) under minimal conditions on the service time distribution.
The setting we consider is the same from [3, 14] where the busy period was analyzed. More detailed comments

about the third region of asymptotics that arises when the service time distribution is lighter than e−
√
t can

be found in Remark 2 right after Theorem 3.4. For clarity, we state all our assumptions and notation in the
following section, and our main results in Section 3.

Finally, we mention that the expressions given in the main theorems can be of practical use as numerical
approximations for P (W∞ > x), and based on simulation experiments done for service times with a Pareto
(α > 3) or Weibull (0 < α < 1/2) distribution, they seem to perform very well (see Section 4 in [17]). It
is worth pointing out that the uniform approximations given here are far superior than the heavy traffic or
heavy tail approximations individually even in the regions where these are valid, which is to be expected
since they are based on the entire Pollaczek-Khintchine formula; they are also easy to compute given the
integrated tail distribution of the processing times and its first few moments (cumulants).

2. Model Description

Let (Wn(ρ) : n ≥ 0) be the waiting time sequence for an M/G/1 FIFO queue that is fed by a Poisson arrival
process having arrival rate λ = ρ/EV1 and independent iid processing times (Vn : n ≥ 0). Provided that the
traffic intensity ρ is smaller than one, we denote by W∞(ρ) the steady-state waiting time of the queue. We
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assume that G(x) = P (V1 ≤ x) is such that its integrated tail distribution, given by F (x) =
∫ x

0
G(t)dt/EV1

is subexponential, where G(t) = 1 − G(t). The sequence {Xi}i≥1 will denote iid random variables having
distribution F .

Define Q(t) = − logF (t) to be the cumulative hazard function of F and let q(t) = (EV1)
−1G(t)/F (t) be its

hazard rate function; note that q is the density of Q. Just as in [3] and [4], we define the hazard rate index

r = lim sup
t→∞

tq(t)

Q(t)
. (2.1)

All the results presented in this paper hold for subexponential distributions G (its corresponding integrated
tail distribution F ) satisfying the following assumption.

Assumption 1. a.) 0 ≤ r < 1;

b.) lim inft→∞ tq(t) > a(r), where a(r) =

{

2, if r = 0,

4/(1− r), if r 6= 0.

Assumption 1 is consistent with Conditions B and C in [3] and [4], respectively, and also very closely
related to Definition 1 in [14]. All three of these works study the asymptotic behavior of random sums with
subexponential increments applied to either the study of the busy period of a GI/GI/1 queue or to ruin
probabilities in insurance. Also, by Proposition 3.7 in [3], Assumption 1 (a.) is equivalent to the function
Q(t)/tr+δ being decreasing on t ≥ t0 ≥ 1 for any 0 < δ < 1 − r, which is the same as equation (3) in
[20], where uniform asymptotics for the tail behavior of a random walk with subexponential increments were
derived. As mentioned in [3] and [4], Lemma 3.6 in [3] implies that sup{k : E[Xk

1 ] < ∞} ≥ lim inft→∞ tq(t),
so Assumption 1 (b.) guarantees that E[Xk

1 ] < ∞ for all k ≤ a(r). Furthermore, Assumption 1 (b.) and
Lemma 3.6 in [3] together imply that lim inft→∞ Q(t)/ log t ≥ lim inft→∞ tq(t) > a(r), which in turn implies
that for some β > a(r) ≥ 2 and t0 > 1,

Q(t) ≥ β log t for all t ≥ t0. (2.2)

Although the tail distribution of the busy period in queues with heavy tailed service times is related to that
of its waiting time in the sense that it is determined by G(x) (see [3, 4, 14, 23]), the approach to its analysis
is rather different from that of the waiting time, so the only connection between the results in this paper
and those cited above is the setting.

This family of distributions includes in particular all regularly varying distributions, F (x) = x−αL(x) with
α > 2, and all semiexponential distributions, F (x) = e−xαL(x) with 0 ≤ α < 1; in these definitions L
is a slowly varying function. The regularly varying case with α > 1 was covered in detail in [17]. Some
subexponential distributions that do not satisfy Assumption 1 are those decaying “almost” exponentially
fast, e.g. F (x) = e−x/ log x.

Before stating our main results in the following section, we introduce some more notation that will be used
throughout the paper. Let µ = EX1 = EV 2

1 /(2EV1) and σ2 = Var(X1) = EV 3
1 /(3EV1) − (EV 2

1 /(2EV1))
2.

Also, define

κ = max

{

l ∈ {0, 1, . . .} : lim sup
t→∞

Q(t)

tl/(l+1)
> 0

}

+ 2, (2.3)

and note that by Proposition 3.7 in [3], Q(t)/tr+δ is eventually decreasing for all δ > 0, which implies that
Q(t)/tr+δ → 0 for all δ > 0. In particular, for r ∈ [0, 1/2) this implies that Q(t)/t1/2 → 0 and κ = 2. Also,
we obtain the relation (κ− 2)/(κ− 1) ≤ r, or equivalently, κ ≤ (2− r)/(1− r). Combining this observation
with our previous remark about Assumption 1 (b.) gives that for 0 < r < 1 and any 2 ≤ s ≤ (2 + r)/(1− r)
we have E[Xκ+s

1 ] < ∞.
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3. Main results

As mentioned in the introduction, the idea of this paper is to use the Pollaczek-Khintchine formula to write
the distribution of the steady-state waiting time as

P (W∞(ρ) > x) =

∞
∑

n=0

(1− ρ)ρnP (Sn > x), (3.1)

where Sn = X1 + · · · + Xn and {Xi}i≥1 is a sequence of iid random variables having distribution F , and
then approximate P (Sn > x) by an appropriate asymptotic expression. The approximation that we use for
P (Sn > x) depends on the pair (x, n), and for the heavy-tailed setting that we consider here, one can identify
four different regions of deviations.

The first region is the one described by the Central Limit Theorem (CLT), i.e., where

P (Sn > x) ≈ 1− Φ
(

(x− nµ)/
√
nσ
)

, (3.2)

and Φ(·) is the standard normal distribution function. The second region is the so-called Cramér region,
which provides additional correction terms to the CLT approximation. When the distribution F has finite
exponential moments, the Cramér approximation is given by

P ((Sn − nµ)/σ > x)

1− Φ(x/
√
n)

= exp
(

nλ
(x

n

))

(

1 +O

(

x/
√
n+ 1√
n

))

,

where λ(t) ,
∑∞

j=3 λjt
j/j! is a power series with coefficients depending on the cumulants of X1 known in

the literature as the Cramér series (see [18], Chapter VIII, §2, or [15]). When F is heavy-tailed, nevertheless,
λ(t) diverges for all t and a truncated form of this series replaces λ(·). In the setting of this paper, only the
terms up to κ (as defined by (2.3)) are needed, and we obtain the following approximation for P (Sn > x)

P (Sn > x) ≈
(

1− Φ((x− nµ)/
√
nσ)

)

e
1
2

(

x−nµ
σ
√

n

)2
+nQκ( x−nµ

σn ), (3.3)

where

Qκ(t) =

κ
∑

j=2

λjt
j

j!
, (3.4)

λ2 = −1, and {λj}j≥3 are the coefficients of the Cramér series corresponding to Y1 = (X1 −µ)/σ. Note that
if κ = 2, then approximations (3.2) and (3.3) are the same.

The third region is known in the literature as the “intermediate domain”, and the exact asymptotics for
P (Sn > x) in this region can be considerably complicated (see [7] and [20] for more details). Fortunately, the
range of values corresponding to this region in the Pollaczek-Khintchine formula is negligible with respect
to the rest, and we will only need to use an upper bound for P (Sn > x). The fourth and last region is the
heavy-tailed region, also know as the “big jump domain” (see [6] and [9], for example), where

P (Sn > x) ≈ nF (x − nµ).

In the discussion above we purposefully omitted describing the boundaries between the four different regions,
since that alone requires introducing various (complicated) functions and their corresponding asymptotic
behavior. In terms of the Pollaczek-Khintchine formula, it is enough to consider simpler versions of those
thresholds. We start by defining the functions

ω1(t) = t2/(Q(t) ∨ 1) and ω2(t) = t2/(Q(t) ∨ 1)2,

where x ∨ y = max{x, y} (x ∧ y = min{x, y}), and let ω−1
i (t) = inf{u ≥ 0 : t ≤ ωi(u)}, i = 1, 2. We give

below some properties of the ω−1 operator; the proof is omitted but can be derived through straightforward
analysis.
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Lemma 3.1. For any continuous function ω : [0,∞) → [0,∞) such that limt→∞ ω(t) = ∞, define the
function ω−1 : [0,∞) → [0,∞) as ω−1(t) = inf{u ≥ 0 : t ≤ ω(u)}. Then, the following are true

a.) ω−1 is monotone non decreasing and left-continuous.
b.) ω−1 is a right inverse of ω, that is, ω(ω−1(t)) = t, for all t ≥ ω(0).
c.) if ω(t) = sup0≤s≤t ω(s), then ω−1 is a right inverse of ω for all t ≥ ω(0).
d.) ω−1(ω(t)) ≤ t for all t ≥ 0.

We now define the threshold functions delimiting the different regions of asymptotics for P (Sn > x). Let

Kr(x) =

{

⌊(x− ω−1
2 (x))/µ⌋ ∨ 0, if r ∈ [0, 1/2),

⌊min{ω2(x), x/(2µ)}⌋ ∨ 0, if r ∈ [1/2, 1),

M(x) = ⌊(x− ω−1
1 (x))/µ⌋ ∨ 0, and N(x) = ⌊(x−

√

x log x)/µ⌋ ∨ 0.

Note that if r ∈ [0, 1/2) and if δ > 0 is such that r+δ < 1/2, then ω2(t) ≥ Ct2(1−r−δ) for some constant C > 0,
so ω−1

2 (t) ≤ Ct1/(2(1−r−δ)) = o(t). Also, provided r + δ ∈ (0, 1), ω1(t) ≥ Ct2−r−δ so ω−1
1 (t) ≤ Ct1/(2−r−δ) =

o(t). Therefore, all three functions are strictly positive for large enough x. Moreover, as mentioned in the
previous section, Assumption 1 (b.) implies that Q(t) ≥ β log t for all t ≥ t0 for some β > a(r) ≥ 2, which
gives ω2(t) ≤ ω1(t) ≤ β−1t2/ log t, and ω−1

2 (x) ≥ ω−1
1 (x) ≥

√

(β/2)x log x for all x ≥ x0. We then have that
Kr(x) ≤ M(x) ≤ N(x) for all large enough x.

To better understand the definitions of the threshold functions consider the zero mean case with finite
variance, for which it is well known that the CLT approximation (3.2) holds for x = O(

√
n); translating into

the positive mean case, this gives rise to the threshold n ≥ (x−√
cx)/µ for some constant c > 0. Substituting

the constant by log x gives the thresholdN(x). The Cramér approximation (3.3) holds, in the zero mean case,
uniformly for x ≤ σ1(n), where σ1(n) is the solution to the equation x2 = nh(x) and E[eh(X1) 1(X1 ≥ 0)] < ∞
(see, [8] §5.1 and the references therein); taking h = Q gives the threshold n ≥ ω1(x), and translating into
the positive mean case gives n ≥ (x − ω−1

1 (x/µ))/µ. Note that E[eQ(X1) 1(X1 ≥ 0)] = ∞ but, for example,
E[eQ(x)−2 logQ(x) 1(X1 ≥ 0)] < ∞, so this choice of h is very close to the boundary of the region. Finally,
the asymptotic P (Sn > x) ∼ nF (x) as x → ∞ is known to hold, in the mean zero case, for n ≤ cω2(x) (see
Theorem 1 in [4]), and provided that ω−1

2 (x) = o(x) (which occurs when r ∈ [0, 1/2)), the translation into the
positive mean case gives the threshold n ≤ (x − ω−1

2 (x/µ))/µ. When r ∈ [1/2, 1) we cannot guarantee that
ω2(x) ≤ x/µ, so by taking the minimum between ω2(x) and x/(2µ) we satisfy the condition n ≤ ω2(x−nµ),
and therefore our choice of Kr(x). We point out that since the thresholds do not need to be too precise, we
ignored the constant µ inside of ω−1

1 and ω−1
2 in the definitions of M(x) and Kr(x), respectively, to simplify

the expressions.

The first asymptotic for P (W∞(ρ) > x) we propose is given by the following expression based on the
Pollaczek-Khintchine formula, for κ = 2,

Zκ(ρ, x) =

Kr(x)
∑

n=1

(1− ρ)ρnnF (x− nµ) + E
[

ρa(x,Z) 1(σZ ≤ √
µω−1

1 (x)/
√
x)
]

, (3.5)

and for κ > 2,

Zκ(ρ, x) =

Kr(x)
∑

n=1

(1− ρ)ρnnF (x− nµ) +
σ
√
x√

2πµ

N(x)
∑

n=M(x)+1

(1− ρ)ρn
enQκ(x−nµ

σn )

x− nµ

+ E
[

ρa(x,Z) 1(σZ ≤
√

µ log x)
]

, (3.6)

where Z ∼ N(0,1) and a(x, z) =
(

x− σz
√

x/µ
)

/µ. Throughout the paper we use the convention that
∑B

n=A an ≡ 0 whenever B < A. Our first theorem is formally stated below.
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Theorem 3.2. Suppose Assumption 1 is satisfied, and define Zκ(ρ, x) according to (3.5) and (3.6). Then,

lim
x→∞

sup
0<ρ<1

∣

∣

∣

∣

P (W∞(ρ) > x)

Zκ(ρ, x)
− 1

∣

∣

∣

∣

= 0.

Remark 1. (i) We point out that the approximation given by Zκ(ρ, x) is explicit in the sense that given the
exact form of F , all the functions and parameters involved in the approximation are known. In particular,

E
[

ρa(x,Z) 1 (σZ ≤ √
µT )

]

= ρ
x
µ e

σ2(log ρ)2x

2µ3 Φ

(√
µT

σ
+

σ
√
x

µ3/2
log ρ

)

.

(ii) This approximation is suitable for numerical computations since it involves no integrals or infinite sums.
(iii) With some additional work once can show that the first term in (3.5) and (3.6) can be replaced by

F (x)

Kr(x)
∑

n=1

(1− ρ)ρnn,

which is asymptotically equivalent to the heavy tail asymptotic ρF (x)/(1−ρ) for appropriate values of (x, ρ).
We choose not to use this simpler expression because our numerical experiments show that it would result in
a less accurate approximation for P (W∞(ρ) > x). (iv) For the case κ > 2, the middle term in (3.6) provides
a direct connection between the Cramér region of asymptotics for the random walk and the asymptotic
behavior of the queue, and also reiterates the qualitative difference between distributions decaying slower
than e−

√
x (κ = 2) and those with lighter tails (see [16], [13], [14], to name some references). (v) Unlike the

next approximation, given in Theorem 3.4, the expression Zκ(ρ, x) does not work as a uniform asymptotic
in x > 0 as ρ ր 1 for P (W∞(ρ) > x), since it does not converge to one for small values of x. Nevertheless,
it is not difficult to show that

lim
ρր1

sup
x≥x̂(ρ)

∣

∣

∣

∣

P (W∞(ρ) > x)

Zκ(ρ, x)
− 1

∣

∣

∣

∣

= 0

for any x̂(ρ) → ∞ as ρ ր 1 (see the proof of Lemma 3.3 in [17]).

In the same spirit of the heavy traffic approximations in [22] and [5], where P (W∞(ρ) > x) is approximated by
exS(ρ) where S(ρ) is a power series in (1−ρ), our second result derives an approximation that involves a power
series in log ρ. The number of terms in this power series is also determined by κ (as in the definition of Qκ(·)),
and its coefficients are closely related to those of the Cramér series. This other approximation substitutes the
second term in (3.5) and the second and third terms in (3.6) by their corresponding asymptotic expression
as ρ ր 1. The intuition behind this substitution is that these terms only dominate the behavior of Zκ(ρ, x)
when the effects of the heavy traffic are more important than those of the heavy tails. Besides unifying the
cases κ = 2 and κ > 2, this new approximation will also have the advantage of being uniformly good for
x > 0 as ρ ր 1. In order to state our next theorem we need the following definitions.

Let

Λρ(t) = (1− t) log ρ+

κ
∑

i=2

i
∑

j=2

λjµ
j

j!σj

(

i− 1

i− j

)

ti, (3.7)

where λ2 = −1, and {λj}j≥3 are the coefficients of the Cramér series corresponding to Y = (X1−µ)/σ. This
function can be obtained by expanding (1 − t)Qκ(µσ

−1t/(1− t)) into powers of t; the details can be found
in Lemma 6.1. We also need to define u(ρ) to be the smallest positive solution to Λ′

ρ(t) = 0. Some properties
of Λρ and u(ρ) are given in the following lemma.

Lemma 3.3. Define Λρ according to (3.7) and let u(ρ) be the smallest positive solution to Λ′
ρ(t) = 0. Then

Λρ is concave in a neighborhood of the origin,

u(ρ) =

∞
∑

n=1

bn
n!

(log ρ)n
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and

Λρ(u(ρ)) =

{

log ρ+ σ2

2µ2 (log ρ)
2, κ = 2,

log ρ+ σ2

2µ2 (log ρ)
2 +O(| log ρ|3), κ > 2,

as ρ ր 1, where b1 = −σ2

µ2 and for n ≥ 2,

bn =
dn−1

dtn−1

(

t

Pκ(t)

)n∣
∣

∣

∣

t=0

=
∑

(m1,...,mn−1)∈An−1

(n+ sn−1 − 1)!(−1)n
(

σ2

µ2

)n+sn−1 n−1
∏

j=1

1

mj !
(aj 1(j ≤ κ− 2))mj ,

An = {(m1, . . . ,mn) ∈ N
n : 1m1 + 2m2 + · · ·+ nmn = n}, sn = m1 + · · ·+mn, and

Pκ(t) = Λ′
ρ(t) + log ρ , t

κ−2
∑

j=0

ajt
j .

The second approximation for P (W∞(ρ) > x) that we propose is

Aκ(ρ, x) =

Kr(x)
∑

n=1

(1− ρ)ρnnF (x− nµ) + e
x
µΛρ(w(ρ,x)), (3.8)

where w(ρ, x) = min{u(ρ), ω−1
1 (x)/x}. The precise statement of our result is given below.

Theorem 3.4. Suppose Assumption 1 is satisfied, and define Aκ(ρ, x) according to (3.8). Then,

lim
x→∞

sup
0<ρ<1

∣

∣

∣

∣

P (W∞(ρ) > x)

Aκ(ρ, x)
− 1

∣

∣

∣

∣

= 0.

Moreover,

lim
ρր1

sup
x>0

∣

∣

∣

∣

P (W∞(ρ) > x)

Aκ(ρ, x)
− 1

∣

∣

∣

∣

= 0.

Remark 2. (i) As mentioned earlier, the difference between Zκ(ρ, x) and Aκ(ρ, x) is in the terms that
correspond to the behavior of the queue when the effects of the heavy traffic dominate those of the heavy
tails. In particular, what prevents Zκ(ρ, x) from being uniformly good for all values of x as ρ ր 1 is that if
x is bounded, then the second term in (3.5) and the second and third terms in (3.6) do not converge to one
when ρ ր 1, which can be fixed by substituting them by their asymptotic expression as ρ ր 1; evaluating
Λρ at the value w(ρ, x) = min{u(ρ), ω−1

1 (x)/x} guarantees that the contribution of e
x
µΛρ(w(ρ,x)) becomes

negligible when the queue is in the heavy tail regime. (ii) For analytical applications, Lemma 3.3 states that
Λρ(u(ρ)) can be written as a power series in log ρ whose terms of order greater than κ can be ignored. For
numerical implementations, nonetheless, it might be easier to compute u(ρ) by directly optimizing Λρ(t),
since Λρ(t) is just a polynomial of order κ. (iii) By simply matching the leading exponents of the heavy tail
asymptotic and the function x

µΛρ(u(ρ)), that is, by solving the equation

x

µ
log ρ = −Q(x),

we obtain that the heavy tail region is roughly R1 = {(x, ρ) : ρ < e−µQ(x)/x}, whereas on R2 = {(x, ρ) :

ρ > e−µQ(x)/x} one should use e
x
µΛρ(u(ρ)) to approximate P (W∞(ρ) > x). It follows that the heavy traffic

region is given by the subset of R2 where e
x
µΛρ(u(ρ)) is asymptotically equivalent to e−

x
µ (1−ρ), the heavy

traffic approximation for the M/G/1 queue. We note that when κ = 2, the heavy traffic region is the entire
R2, but it is a strict subset of R2 if κ > 2, in which case a third region of asymptotics arises where neither
the heavy traffic nor the heavy tail approximations are valid. (iv) As mentioned before, the coefficients of
Λρ(t) can be easily obtained from the first κ− 2 coefficients of the Cramér series of Y = (X1 − µ)/σ, which
in turn can be obtained from the cumulants of Y .

We end this section with a formula that can be used to compute the coefficients of the Cramér series.
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3.1. Cramér Coefficients

The following formula taken from [21] can be used to recursively compute the coefficients in the Cramér
series, and we include it only for completeness.

Proposition 3.5. Let Y be a random variable having EY = 0, Var(Y ) = 1, and cumulants γ1, γ2, . . . .
Let λ3, λ4, . . . be the coefficients of the (formal) Cramér series of Y , i.e., λ(t) =

∑∞
j=3 λjt

j/j!. Let Aj =

{(n1, . . . , nj) ∈ N
j : 1n1 + 2n2 + · · ·+ jnj = j}. Then, for j ≥ 3 and sj−2 = n1 + · · ·+ nj−2,

λj =
∑

(n1,...,nj−2)∈Aj−2

(j + sj−2 − 2)!(−1)s+1

j−2
∏

m=1

1

nm!

(

γm+2

(m+ 1)!

)nm

,

The first four coefficients are given by

λ3 = γ3, λ4 = γ4 − 3γ2
3 , λ5 = γ5 − 10γ4γ3 + 15γ3

3 ,

λ6 = γ6 − 15γ5γ3 − 10γ2
4 + 105γ4γ

2
3 − 105γ4

3

The rest of the paper consists mostly of the proofs of all the results in Section 3 and is organized as follows.
Section 4 states an approximation for P (Sn > x) that is valid for all pairs (x, n) and that will be used to
derive uniform asymptotics for P (W∞(ρ) > x). Section 5 contains the proof of Theorem 3.2; and Section 6
contains the proofs of Lemma 3.3 and Theorem 3.4. We conclude the paper by giving a couple of numerical
examples comparing the two suggested approximations for the tail distribution of W∞(ρ), Zκ(ρ, x) and
Aκ(ρ, x), in Section 7. A table of notation is included at the end of the paper.

4. Uniform asymptotics for P (Sn > x)

In this section we will state the uniform approximation for P (Sn > x) that we will substitute in the Pollaczek-
Khintchine formula (3.1) outside of the heavy-tail region. This approximation was derived in [20] for mean
zero and unit variance random walks and it works on the whole positive line as n → ∞. Although rather
complicated as an approximation for P (Sn > x), it will be useful in the derivation of simpler expressions for
the queue with the level of generality that we described in Section 2. For the heavy-tail region (small values
of n) we will use in section 4.1 a result from [4] to prove that P (Sn > x) = nF (x− nµ)(1 + o(1)) as x → ∞
uniformly in the region 1 ≤ n ≤ Kr(x).

We start by stating the assumptions needed for the mean zero and unit variance random walk, and after giving
the approximation in this setting we will show that under Assumption 1, the random variable Y1 = (X1−µ)/σ
satisfies these conditions. Then we will apply a slightly modified version of the approximation to the positive
mean case and we will show that it holds uniformly in the region n ≥ Kr(x).

The notation f(t) ≍ g(t) as t → ∞ means 0 < lim inft→∞ f(t)/g(t) ≤ lim supt→∞ f(t)/g(t) < ∞. We will
also use C to denote a generic positive constant, i.e., C = 2C, C = C + 1, etc.

Assumption 2. Let Y be a random variable with E[Y ] = 0, Var(Y ) = 1 and tail distribution

1− V (t) = V (t) ≍ D(t)

t2
e−Q̃(t), t → ∞,

where D(t) =
∫

|u|<t
t2dV (dt), Q̃ has Lebesgue density q̃, and satisfies

lim sup
t→∞

tq̃(t)

Q̃(t)
, r̃ < 1 and lim inf

t→∞
Q̃(t)/ log t > r̃/(1− r̃).
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Suppose further that E[|Y |κ̃+1] < ∞, where

κ̃ = max

{

l ∈ {0, 1, 2, . . .} : lim sup
z→∞

Q̃(z)

zl/(l+1)
> 0

}

+ 2.

Throughout this section let Qκ̃(t) =
∑κ̃

j=2 λjt
j/j!, where λ2 = −1 and {λj}j≥3 are the coefficients of the

Cramér series of Y , and let S̃n = Y1 + · · ·+ Yn, where {Yi} are iid with common distribution V (t). We also
define the functions

b(t) = t2/(Q̃(t) ∨ 1), and b−1(t) = inf{u ≥ 0 : t ≤ b(u)}. (4.1)

We start by proving some properties about the functions Q̃, and b−1.

Lemma 4.1. Suppose Assumption 2 holds. Then, for any s ∈ (r̃, 1) there exists a constant t0 ≥ 1 such that

a.) Q̃(t)/ts is decreasing for all t ≥ t0,
b.) b−1(t) ≤ t1/(2−s) for all t ≥ t0,
c.) b−1(ct) ≤ c1/(2−s)b−1(t) ≤ cb−1(t) for all t ≥ t0 and any c ≥ 1,
d.) b−1(ct) ≥ cb−1(t) for all t ≥ t0 and any c ≤ 1,

Also, the following limit holds

e.) limt→∞ e−Q̃(t/b−1(t))Q̃(b−1(t)) = 0,

Proof. Part (a.) follows directly from Proposition 3.7 in [3]. For part (b.) note that Q̃(t)/ts
′
is eventually

decreasing for any r̃ < s′ < s, so

lim
t→∞

Q̃(t)

ts
≤ sup

z≥1

Q̃(z)

zs′
lim
t→∞

1

ts−s′
= 0.

It follows that Q̃(t) ≤ ts for all t ≥ t0 for some t0 > 0. This in turn implies that b(t) ≥ t2−s for all t ≥ t0,
and therefore, b−1(t) ≤ t1/(2−s).

For part (c.) note that Proposition 3.7 in [3] gives Q̃(cb−1(t)) ≤ csQ̃(b−1(t)) for any c ≥ 1 and all sufficiently
large t, then

b(c1/(2−s)b−1(t)) =
c2/(2−s)(b−1(t))2

Q̃(c1/(2−s)b−1(t))
≥ c(b−1(t))2

Q̃(b−1(t))
= cb(b−1(t)) = ct = b(b−1(ct)).

It follows from noting that b(t) is strictly increasing for large enough t, that

c1/(2−s)b−1(t) ≥ b−1(ct).

For part (d.) let c ≤ 1 and define u(x) = c−1b(x), v(x) = b(c−1x). By Proposition 3.7 in [3], Q̃(x) ≥
csQ̃(c−1x), from where we obtain that

u(x) =
c−1x2

Q̃(x) ∨ 1
≤ c(c−1x)2

csQ̃(c−1x) ∨ 1
=

(c−1x)2

c−1+sQ̃(c−1x) ∨ c−1
≤ v(x).

It follows that u−1(x) ≥ v−1(x), where u−1(x) = inf{t ≥ 0 : cx ≤ b(t)} = b−1(cx) and v−1(x) =
inf
{

t ≥ 0 : x ≤ b(c−1t)
}

= c inf{t ≥ 0 : x ≤ b(t)} = cb−1(x).
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For part (e.) let ν = lim inft→∞ Q̃(t)/ log t > r̃/(1− r̃) and note that

lim
t→∞

e−Q̃(t/b−1(t))Q̃(b−1(t)) = lim
t→∞

e−Q̃(t/b−1(t)) (b
−1(t))2

t
= lim

t→∞
e−Q̃(b(b−1(t))/b−1(t)) (b

−1(t))2

b(b−1(t))

= lim
u→∞

e−Q̃(b(u)/u) u2

b(u)
= lim

u→∞
e−Q̃(u/Q̃(u))Q̃(u)

≤ lim
u→∞

e−ν log(u/Q̃(u))Q̃(u)

= lim
u→∞

(

Q̃(u)

uν/(ν+1)

)ν+1

.

By part (a) Q̃(u) ≤ Cus for any s > r̃ and u sufficiently large, and by assumption r̃ < ν/(ν + 1), so simply
choose r̃ < s < ν/(ν + 1) to see that the last limit is zero.

Lemma 4.2. Suppose Assumption 2 holds. Define

L(h) =

∫

√
n

−∞
ehtdV (t), and H(z) = inf

h>0
(n lnL(h)− zh).

Then, for any constant c > 0,

eH(z) = enQk( z
n )(1 + o(1)) (4.2)

as n → ∞, uniformly for
√
n ≤ z ≤ cb−1(n).

Proof. Choose 0 < δ < 1− r̃ and set s = r̃ + δ. Define η(z) = b−1(z2) and

π(z, n) =
(

1− Φ(z/
√
n)
)

1(z ≤
√
n) +

(

1− Φ(z/
√
n)
)

e
z2

2n+H(z). (4.3)

Suppose first that r̃ ∈ [0, 1/2) and note that in this case κ̃ = 2 and nQκ̃(z/n) = −z2/(2n). Note that we can
choose δ above so that s < 1/2. Then, by Lemma 4.1 (a.), Q̃(t)/ts decreases for all sufficiently large t. Also,

z2

D(z)
V (−z) = 0 for all z > µ,

and

D(n/η(
√
n)) =

∫ n/η(
√
n)

−µ

u2dV (t) = 1−
∫ ∞

n/η(
√
n)

(q̃(u) + 2/u)e−Q̃(u)du

= 1 +O
(

e−Q̃(n/η(
√
n))
)

= 1 + o
(

1/Q̃(η(
√
n))
)

(by Lemma 4.1 (e.))

as n → ∞. Define χn = b−1(n) = η(
√
n) and note that

χ2
n

Q̃(χn)n
=

b(χn)

n
= 1.

Then, by Lemma 1a in [20], we have

π(z, n) =
(

1− Φ(z/
√
n)
)

(1 + o(1))

=
(

1− Φ(z/
√
n)
)

e
z2

2n+nQκ̃( z
n )(1 + o(1))
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as n → ∞, uniformly for
√
n ≤ z ≤ γχn, where γ > 0 is an arbitrary constant (see the statement of Remark 1

in [19] to see that the constant γ can be arbitrary).

Suppose now that r̃ ∈ [1/2, 1) and recall that by assumption E[|Y |κ̃+1] < ∞. Then, by Lemma 1b in [20],

π(z, n) =
(

1− Φ
(

z/
√
n
))

e
∑κ̃−2

ν=1

λν+2
(ν+2)!

zν+2

nν+1 (1 + o(1))

=
(

1− Φ(z/
√
n)
)

e
z2

2n+nQκ̃( z
n)(1 + o(1))

as n → ∞, uniformly for
√
n ≤ z ≤ γη(

√
n), where γ > 0 is an arbitrary constant. To see that γ can be

arbitrary see Remark 1 in [19] where the statement of the result is

eH(z) = enQκ̃( x
n )(1 + o(1))

as n → ∞, uniformly for
√
n ≤ z ≤ Λn, for a function Λn that in [20] is taken to be Λn = η(

√
n), and verify

that all the arguments go through if we let Λn = η(
√
γ̄n) for any constant γ̄ > 0. Then, use Lemma 4.1 (c.)

to see that η(
√
γ̄n) = b−1(γ̄n) ≤ (γ̄ ∨ 1)1/(2−s)b−1(n).

The main approximation is given below.

Theorem 4.3. Suppose Assumption 2 holds. Fix ǫ ∈ (0, 1) and set

π̃(y, n) =
(

1− Φ(y/
√
n)
)

1(y ≤
√
n) +

(

1− Φ(y/
√
n)
)

e
y2

2n+nQκ̃( y
n) 1(y >

√
n), (4.4)

J(y, n) =
√
n

{

∫ ∞

y−√
n

V (t)Φ′
(

y − t√
n

)

dt+
1√
2π

∫ y−√
n

√
n∨(y−b−1(2(1+ǫ)n))

V (t)enQκ̃( y−t
n )dt

}

, (4.5)

Cn = min
t≥√

n
t

(

1

2
+

Q̃(t)

t2
n

)

. (4.6)

Then, as n → ∞, uniformly in y,

P
(

S̃n > y
)

= (π̃(y, n) 1(y ≤ (1 + ǫ)Cn) + J(y, n) 1(y ≥ (1− ǫ)Cn)) (1 + o(1)).

Moreover, there exist constants 0 < γ1 ≤ 1 ≤ γ2 such that Cn ∈ [γ1b
−1(n), γ2b

−1(n)].

Proof. Choose 0 < δ < 1− r̃ and set s = r̃+δ. Note that by Lemma 4.1 (a.) Q̃(t)/ts is eventually decreasing.
Also, since Var(Y1) = 1,

P
(

S̃n ≤ t
√
n
)

→ Φ(t)

by the CLT. Define L(h) and H(z) as in Lemma 4.2 and let π(z, n) be given by (4.3).

Set η(z) = b−1(z2) and note that by Lemma 4.1 (b.) b−1(t) ≤ t1/(2−s) for all t sufficiently large, so η(z) =
o(z2). Since D(t) → 1 as t → ∞, we have

D(z2/η(z)) = 1 + o(1) = D(z), z → ∞.

Let γ = 1/(2(1 + ǫ)), and define

ωn = b−1(n/γ), υn = s
√
nQ̃(

√
n)

D(
√
n/Q̃(

√
n))

D(
√
n)

.

Then, by Theorem 2 and Remark 1 from [20],

P
(

S̃n > y
)

=

(

π(y, n) 1(y ≤ (1 + ǫ)Cn) +
√
n

{
∫ ∞

y−√
n

V (t)Φ′
(

y − t√
n

)

dt

+
1√
2π

∫ y−√
n

√
n∨(y−λ)

V (t)eH(y−t)dt

}

1(y ≥ (1− ǫ)Cn)

)

(1 + o(1))
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as n → ∞, uniformly for all y and for any λ ∈ [ωn, υn]. Also, by Lemma 4.2,

eH(z) = enQκ( z
n )(1 + o(1))

uniformly for
√
n ≤ z ≤ cb−1(n) for any c > 0. We will show below that Cn ≤ b−1(2n) ≤ 21/(2−s)b−1(n)

(by Lemma 4.1 (c.)), so we can replace π(y, n) by π̃(y, n). Also, by choosing λ = b−1(2(1 + ǫ)n) and noting
that for t ≥ y− λ we have y − t ≤ λ = b−1(2(1 + ǫ)n) ≤ 41/(2−s)b−1(n) (by Lemma 4.1 (c.)), we can replace

eH(y−t) with enQκ̃( y−t
n ). This gives the statement of the theorem.

To verify the order of magnitude of Cn let h(t) = t
(

1
2 + Q̃(t)

t2 n
)

and note that h is continuous and a.s.

differentiable. Recall that by assumption Q̃ has Lebesgue density q̃, and note that b(t) is eventually increasing,
since by Lemma 4.1 (a.) Q̃(t)/ts is eventually decreasing. Then, for all t0 ≤ t ≤ b−1(2n(1− s)),

h′(t) =
1

2
− n · Q̃(t)− tq̃(t)

t2
≤ 1

2
− n(1− s) · 1

b(t)
≤ 0.

For t ≥ b−1(2n) note that lim inf t→∞ tq̃(t) ≥ lim inft→∞ σtq(σt+ µ)− 2 > a(r) − 2 ≥ 0. It follows that

h′(t) =
1

2
− n · Q̃(t)− tq̃(t)

t2
≥ 1

2
− n · 1

b(t)
≥ 0.

We conclude that Cn ∈ [b−1(2(1− s)n), b−1(2n)], and by by Lemma 4.1 (c.) and (d.),

b−1(2(1− s)n) ≥ (2(1− s) ∧ 1)b−1(n) and b−1(2n) ≤ (2 ∨ 1)1/(2−s)b−1(n).

We now give a lemma stating that under Assumption 1, the random variable Y1 = (X1 − µ)/σ satisfies
Assumption 2. Throughout the rest of the paper,

Q̃(t) = Q(σt+ µ)− 2 log t, (4.7)

and the functions b and b−1, as well as the constant r̃, are defined according to this function.

Lemma 4.4. Suppose Q satisfies Assumption 1, then Y1 = (X1 − µ)/σ satisfies Assumption 2.

Proof. Let Q̃(t) = Q(σt+µ)−2 log t, then V (t) = P (Y1 > t) = e−Q̃(t)/t2, and sinceD(t) =
∫

|u|<t
t2dV (t) → 1

as t → ∞, then V (t) ≍ D(t)t−2e−Q̃(t). Also, since Q has Lebesgue density q, then Q̃ has Lebesgue density
q̃(t) = σq(σt + µ)− 2/t. It follows that

r̃ = lim sup
t→∞

tq̃(t)

Q̃(t)
= lim sup

t→∞

tσq(σt + µ)− 2

Q(σt+ µ)− 2 log t
≤ lim sup

z→∞

zq(z)

Q(z)− 2 log z

≤ r lim sup
z→∞

Q(z)

Q(z)− 2 log z
.

By (2.2), there exists β > a(r) ≥ 2 such that Q(t) ≥ β log t for all sufficiently large t. It follows that

r lim sup
z→∞

r

1− 2(log z)/Q(z)
<

r

1− 2/β
,

where if r > 0 we have r/(1 − 2/β) < r/(1 − 2/a(r)) = 2r/(1 + r) < 1. Therefore, r ≤ r̃ < 1 and

lim inf
t→∞

Q̃(t)

log t
= lim inf

t→∞
Q(σt+ µ)

log t
− 2 ≥ β − 2.
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Clearly, if r = 0 then r̃ = 0 and β−2 > 0 = r̃/(1− r̃). If r = 0 we already showed that r̃ < βr/(β−2), which
combined with β > a(r) = 4/(1− r) gives r̃ < 1− 2/(β − 2), which in turn implies that β − 2 > 2/(1− r̃) >
r̃/(1− r̃).

We also note that for any l ∈ {0, 1, 2, . . .}

lim sup
t→∞

Q̃(t)

tl/(l+1)
= σl/(l+1) lim sup

u→∞

Q(u)− 2 log u+ 2 logσ

ul/(l+1)
.

Since for any l ∈ {1, 2, 3, . . .} we have lim supt→∞ Q̃(t)/tl/(l+1) = σl/(l+1) lim supu→∞ Q(u)/ul/(l+1), it fol-
lows that κ̃ = κ. Finally, from the discussion following the definition of κ, equation (2.3), we have that
E[Xκ+s

1 ] < ∞ for any 2 ≤ s ≤ (2 + r)/(1 − r), which implies E[|Y1|κ̃+1] < ∞.

We are now ready to give a uniform approximation for P (Sn > x) that will work over the region n ≥ Kr(x).
We choose not to use this approximation in the heavy tail region 1 ≤ n ≤ Kr(x) to avoid having to show
that it is equivalent to the heavy tail asymptotic nF (x−nµ). Instead, we use a result from [3] that will give
us without much additional work the heavy tail asymptotic directly.

We point out that we will not apply Theorem 4.3 to the positive mean exactly the way it is stated, but
instead we use a slight modification that will work better when applied to the queue. In particular, we will
substitute the function π̃(y, n) given by (4.4), where y = (x− nµ)/σ, with the following

π̂κ(x, n) =

{

Φ(−y/
√

x/µ), κ = 2,

Φ(−y/
√

x/µ) 1(n > N(x)) +
√
x

y
√
2πµ

enQκ( y
n) 1(n ≤ N(x)), κ > 2.

(4.8)

The function J(y, n) given in (4.5) does not need to be modified since its contribution will be shown to be
negligible in the queue.

Lemma 4.5. Suppose Q satisfies Assumption 1. Let y = (x− nµ)/σ, fix ǫ ∈ (0, 1) and define

Bκ(x, n) = π̂κ(x, n) 1(y ≤ (1 + ǫ)Cn) + J(y, n) 1(y ≥ (1− ǫ)Cn),

where π̂κ(x, n), J(y, n) and Cn are given by (4.8), (4.5) and (4.6), respectively. Then,

lim
x→∞

sup
n≥Kr(x)

∣

∣

∣

∣

P (Sn > x)

Bκ(x, n)
− 1

∣

∣

∣

∣

= 0.

Moreover, there exist constants 0 < γ1 ≤ 1 ≤ γ2 such that Cn ∈ [γ1b
−1(µn), γ2b

−1(µn)].

Proof. By Theorem 4.3 and Lemma 4.4, we have that

P (Sn > x) = (π̃(y, n) 1(y ≤ (1 + ǫ)Cn) + J(y, n) 1(y ≥ (1− ǫ)Cn)) (1 + o(1))

as x → ∞ for all n ≥ Kr(x), where π̃(y, n) is given in (4.4). Furthermore, by the same theorem and
Lemma 4.1 (c.) and (d.), there exist constants 0 < γ1 ≤ 1 ≤ γ2 such that Cn ∈ [γ1b

−1(µn), γ2b
−1(µn)]. It

can be verified that

{y ≤ (1 + ǫ)Cn} ⊂ {y ≤ 2γ2b
−1(µn)} ⊂ {x− 2σγ2b

−1(x) ≤ nµ} = {n > l(x)}

for sufficiently large x, where l(x) = (x − 2σγ2b
−1(x))/µ, so all that remains to show is that π̃(y, n) =

π̂κ(x, n)(1 + o(1)) as x → ∞ for all n > l(x).

Note that after some algebra we can obtain the equivalence

{y ≤
√
n} = {n ≥ m(x)}, where m(x) =

x

µ
+

σ2

2µ2
− σ

√
x

µ3/2

√

1 +
σ2

4µx
.
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Since N(x) = ⌊(x−
√
x log x)/µ⌋ < m(x) for sufficiently large x, it follows that for κ > 2,

|π̂κ(x, n)− π̃(y, n)| 1(n > l(x))

=
∣

∣

∣
Φ
(

−y/
√

x/µ
)

1(n > N(x)) − Φ
(

−y/
√
n
)

1(n > m(x))

+

√
x

y
√
2πµ

enQκ( y
n ) 1(l(x) < n ≤ N(x))− Φ(−y/

√
n)e

y2

2n+nQκ( y
n ) 1(l(x) < n ≤ m(x))

∣

∣

∣

∣

≤
∣

∣

∣
Φ
(

−y/
√

x/µ
)

− Φ
(

−y/
√
n
)

∣

∣

∣
1(n > m(x)) (4.9)

+

∣

∣

∣

∣

Φ
(

−y/
√

x/µ
)

− Φ(−y/
√
n)e

y2

2n+nQk( y
n)
∣

∣

∣

∣

1(N(x) < n ≤ m(x)) (4.10)

+

∣

∣

∣

∣

√
x

y
√
2πµ

enQκ( y
n ) − Φ(−y/

√
n)e

y2

2n+nQκ( y
n )
∣

∣

∣

∣

1(l(x) < n ≤ N(x)), (4.11)

while for κ = 2 we have y2/(2n) + nQκ(y/n) = 0 and

|π̂κ(x, n) − π̃(y, n)| 1(n > l(x)) =
∣

∣

∣
Φ
(

−y/
√

x/µ
)

− Φ
(

−y/
√
n
)

∣

∣

∣
1(n > l(x)). (4.12)

To analyze (4.9) and the corresponding segment of (4.12) define s(x) = (x +
√
x log x)/µ, then

∣

∣

∣
Φ
(

−y/
√

x/µ
)

− Φ
(

−y/
√
n
)

∣

∣

∣
1(n > m(x))

≤
∣

∣

∣
Φ
(

y/
√

x/µ
)

− Φ
(

y/
√
n
)

∣

∣

∣
1(m(x) < n ≤ s(x)) + 2Φ

(

y/
√
n
)

1(n > s(x))

≤ Φ′(0)|y| |
√
n−

√

x/µ|
√

nx/µ
1(m(x) < n ≤ s(x)) + 2Φ

(

−(s(x)µ − x)/
√

σ2s(x)
)

1(n > s(x))

≤ C
(x − nµ)2

x3/2
1(m(x) < n ≤ s(x)) + 2Φ

(

−
√
µ log x

σ(1 + o(1))

)

1(n > s(x))

≤ Cmin

{

(log x)2√
x

, Φ

(

−
√
µ log x

2σ

)}

1(n > m(x)).

Since for n > m(x) we have Φ
(

−y/
√

x/µ
)

≥ Φ
(

−(x− µm(x))/
√

σ2x/µ
)

→ Φ(−1), it follows that (4.9)

and the corresponding segment of (4.12) are bounded by

Cϕ1(x)Φ
(

−y/
√

x/µ
)

1(n > m(x)),

where ϕ1(x) = min
{

(log x)2/
√
x, Φ

(

−√
µ log x/(2σ)

)}

. To bound (4.10) and the corresponding segment

of (4.12) we note that for N(x) < n ≤ m(x) we have nQκ(y/n) = −y2/(2n) + O
(

y3/n2
)

(recall that
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nQκ(y/n) = −y2/(2n) if κ = 2), so

∣

∣

∣

∣

Φ
(

−y/
√

x/µ
)

− Φ(−y/
√
n)e

y2

2n+nQκ( y
n )
∣

∣

∣

∣

≤
∣

∣

∣
Φ
(

−y/
√

x/µ
)

− Φ(−y/
√
n)
∣

∣

∣
+

∣

∣

∣

∣

1− e
y2

2n+nQκ( y
n)
∣

∣

∣

∣

Φ(−y/
√
n)

≤ Φ′
(

y/
√

x/µ
)

y
(
√

x/µ−√
n)

√

nx/µ
+ C

y3

n2
Φ
(

−y/
√

x/µ
)

≤ C
(y2/(x/µ) + 1)

y/
√

x/µ
Φ
(

−y/
√

x/µ
) (x− nµ)2

x3/2
+ C

(x− nµ)3

x2
Φ
(

−y/
√

x/µ
)

≤ C

(

(y2 + x)(x − nµ)

x2
+

(x− nµ)3

x2

)

Φ
(

−y/
√

x/µ
)

≤ C
(log x)3/2√

x
Φ
(

−y/
√

x/µ
)

,

where for the third inequality we used the relation Φ(−z) ≥ Φ′(z)z/(z2 + 1) for all z > 0. Therefore, (4.10)
and the corresponding segment of (4.12) are bounded by

Cϕ2(x)Φ
(

−y/
√

x/µ
)

1(N(x) < n ≤ m(x)),

where ϕ2(x) = (log x)3/2/
√
x. To bound the last segment of (4.12) note that the preceding calculation yields

∣

∣

∣
Φ
(

−y/
√

x/µ
)

− Φ
(

−y/
√
n
)

∣

∣

∣
1(l(x) < n ≤ N(x))

≤ C
(y2 + x)(x − nµ)

x2
Φ
(

−y/
√

x/µ
)

1(l(x) < n ≤ N(x))

≤ C
((b−1(x))2 + x)b−1(x)

x2
Φ
(

−y/
√

x/µ
)

1(l(x) < n ≤ N(x)).

Since κ = 2 implies that Q̃(t)/
√
t → 0, then

lim
x→∞

(b−1(x))2

x
= lim

x→∞
(b−1(x))2

b(b−1(x))
= lim

t→∞
t2

t2/Q̃(t)
= ∞,

so

C
((b−1(x))2 + x)b−1(x)

x2
≤ C

(b−1(x))3

x2
, Cϕ3(x),

where

lim
x→∞

ϕ3(x) = lim
x→∞

(b−1(x))3

(b(b−1(x)))2
= lim

t→∞
t3

(t2/Q̃(t))2
= lim

t→∞
Q̃(t)2

t
= 0.

We have thus shown that when κ = 2,

∣

∣

∣
Φ
(

−y/
√

x/µ
)

− Φ
(

−y/
√
n
)

∣

∣

∣
1(n > l(x)) ≤ C max

i∈{1,2,3}
ϕi(x)Φ

(

−y/
√

x/µ
)

1(n > l(x)).
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Finally, to bound (4.11) we use the inequalitvy Φ′(z)z/(z2 + 1) ≤ Φ(−z) to obtain, for l(x) < n ≤ N(x),

∣

∣

∣

∣

√
x

y
√
2πµ

enQκ( y
n) − Φ(−y/

√
n)e

y2

2n+nQκ( y
n)
∣

∣

∣

∣

=

( √
x

y
√
µ
− Φ(−y/

√
n)

Φ′(y/
√
n)

)

1√
2π

enQκ( y
n )

≤
( √

x

y
√
µ
− y/

√
n

y2/n+ 1

)

1√
2π

enQκ( y
n )

≤
(

√

x/µ−
√
n+

n3/2

y2

)

1

y
√
2π

enQκ( y
n)

≤ C

(

x− nµ

x
+

x

(x− nµ)2

) √
x

y
√
2πµ

enQκ( y
n )

≤ C

(

b−1(x)

x
+

1

log x

) √
x

y
√
2πµ

enQκ( y
n ).

It follows that (4.11) is bounded by

Cϕ4(x)

√
x

y
√
2πµ

enQκ( y
n ) 1(l(x) < n ≤ N(x)),

where ϕ4(x) = b−1(x)/x + 1/ logx. We conclude that

|π̂κ(x, n)− π̃(x, n)| ≤ C max
i∈{1,2,3,4}

ϕi(x)π̂κ(x, n).

for all n > l(x). This completes the proof.

4.1. A first approximation for P (W∞(ρ) > x)

We will now give an approximation for P (W∞(ρ) > x), that although too complicated to be used in practice,
will serve as an intermediate step towards obtaining the more explicit approximations given in Theorems 3.2
and 3.4.

The idea of this section is to substitute P (Sn > x) in the Pollaczek-Khintchine formula (3.1) the heavy-tail
approximation nF (x − nµ) in the range 1 ≤ n ≤ Kr(x), and by Bκ(x, n), as defined in Lemma 4.5, in the
range n > Kr(x).

The intermediate approximation for P (W∞(ρ) > x) is given by

Sκ(ρ, x) =

Kr(x)
∑

n=1

(1 − ρ)ρnnF (x− nµ) +

∞
∑

n=Kr(x)+1

(1 − ρ)ρnπ̂k(x, n) 1(y ≤ (1 + ǫ)Cn)

+
∞
∑

n=Kr(x)+1

(1− ρ)ρnJ(y, n) 1(y ≥ (1− ǫ)Cn), (4.13)

where y = (x − µn)/σ, and π̂κ(x, n), J(y, n) and Cn are given by (4.8), (4.5) and (4.6), respectively. The
last term in (4.13) corresponds to the so-called “intermediate domain”, where as mentioned in Section 3, the
asymptotic behavior of P (Sn > x) is rather complicated. Under additional (differentiability) assumptions on
Q, more explicit asymptotics for J(y, n) have been derived in [20] (see also [7] for other results applicable
to this region). We point out that Sκ(ρ, x) is “very close” to being the approximation in Theorem 3.2 if we
replace 1(y ≤ (1 + ǫ)Cn) with 1(n ≥ M(x)) and ignore the entire third term of Sκ(ρ, x), to see this sum the
tail of the second term of Sκ(ρ, x) to write it as the expectation of a function of a normal random variable.

We will now show the asymptotic equivalence of P (W∞(ρ) > x) and Sκ(ρ, x).
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Lemma 4.6. Suppose Q satisfies Assumption 1, then

lim
x→∞

sup
1≤n≤Kr(x)

∣

∣

∣

∣

P (Sn > x)

nF (x− nµ)
− 1

∣

∣

∣

∣

= 0.

Proof. Recall that ω2(x) = x2/(Q(x)∨ 1)2 and ω−1
2 (x) = inf{u ≥ 0 : x ≤ ω2(u)}. By Lemma 3.1, ω−1

2 is non
decreasing, ω2(ω

−1
2 (x)) = x and ω−1

2 (ω2(x)) ≤ x. Let tn = ω−1
2 ((µ ∧ 1)n)/2, and note that

lim sup
n→∞

√
n
Q(tn)

tn
≤ lim sup

n→∞

√
n
Q(ω−1

2 ((µ ∧ 1)n)/2)

ω−1
2 ((µ ∧ 1)n)/2

≤ 2

(µ ∧ 1)1/2
lim sup
s→∞

√
s
Q(ω−1

2 (s))

ω−1
2 (s)

=
2

(µ ∧ 1)1/2
lim sup
n→∞

√
s

{ω2(ω
−1
2 (s))}1/2

=
2

(µ ∧ 1)1/2
.

Then by Theorem 3.1 in [4],

lim
n→∞

sup
t≥tn

∣

∣

∣

∣

P (Sn − µn > t)

nF (t)
− 1

∣

∣

∣

∣

= 0.

Next, we will show that for n ≤ Kr(x) we have x− µn ≥ tn.

First, when 0 ≤ r < 1/2 we have Kr(x) = ⌊(x− ω−1
2 (x))/µ⌋, so n ≤ Kr(x) implies

x− µn ≥ x− µKr(x) ≥ ω−1
2 (x) ≥ ω−1

2 (µKr(x)) ≥ tKr(x) ≥ tn.

Similarly, when 1/2 ≤ r < 1 and Kr(x) = ⌊min{ω2(x), x/(2µ)}⌋, we have that n ≤ Kr(x) implies

x− µn ≥ x− µKr(x) ≥ max{x− µω2(x), x/2} ≥ ω−1
2 (ω2(x))/2

≥ ω−1
2 (Kr(x))/2 ≥ tKr(x) ≥ tn.

These observations, combined with the fact that the subexponentiality of F implies that P (Sn > x) =
nF (x)(1 + o(1)) as x → ∞ uniformly for 1 ≤ n ≤ a(x) for some a(x) → ∞ completes the proof.

Combining Lemmas 4.6 and 4.5 gives the following result.

Proposition 4.7. Define Sκ(ρ, x) according to (4.13) and suppose Q satisfies Assumption 1, then,

lim
x→∞

sup
0<ρ<1

∣

∣

∣

∣

P (W∞(ρ) > x)

Sκ(ρ, x)
− 1

∣

∣

∣

∣

= 0.

This first approximation for P (W∞(ρ) > x) might not very useful in practice since it involves two integrals,
those in the definition of J(y, n), that are not in general closed-form, and two indicator functions that depend
on the quantity Cn (the solution to a certain optimization problem). The approximation given in Theorem 3.2
is more explicit, and thus more suitable for computations, both numerical and analytical.

5. Proof of Theorem 3.2

The proof of Theorem 3.2 is rather technical, so we divide into several lemmas, the first of which gives some
more properties of the functions b−1 and ω−1

1 .

Lemma 5.1. Suppose Q satisfies Assumption 1. Let Q̃ and b−1 be defined according to (4.7) and (4.1),
respectively. Then,
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a.) limt→∞ Q(t)/ω−1
1 (t) = limt→∞ Q(t)/b−1(t) = 0,

b.) limt→∞
√
t/ω−1

1 (t) = 0.

Proof. To show the first limit in (a.) use Proposition 3.7 in [3] with some r < s < 1 as follows,

lim
t→∞

Q(t)

ω−1
1 (t)

= lim
t→∞

Q(ω1(ω
−1
1 (t)))

ω−1
1 (t)

= lim
u→∞

Q( u2

Q(u) )

u

≤ lim
u→∞

(u/Q(u))sQ(u)

u
= lim

u→∞

(

Q(u)

u

)1−s

= 0.

For the second limit we first note that the same arguments used above give limt→∞ Q̃(t)/b−1(t) = 0, so all
we need to show is that lim supt→∞ Q(t)/Q̃(t) < ∞. That this is the case follows from

0 ≤ lim sup
t→∞

Q(t)

Q̃(t)
≤ lim sup

t→∞

Q(t)

Q(σt)− 2 log t
≤ lim sup

u→∞

(σ−1 ∨ 1)sQ(u)

Q(u)− 2 log u+ 2 logσ
= lim sup

u→∞

C

1− 2 logu/Q(u)

and (2.2), which gives Q(u)/ logu ≥ β > a(r) ≥ 2 for large u.

For part (b.)

lim
t→∞

√
t

ω−1
1 (t)

= lim
t→∞

√

ω1(ω
−1
1 (t))

ω−1
1 (t)

= lim
u→∞

√

u2/Q(u)

u
= lim

u→∞
1

√

Q(u)
= 0.

Next define Zκ(ρ, x) according to (3.5) and (3.6), and Sκ(ρ, x) according to (4.13). Let

E1(ρ, x) =

∣

∣

∣

∣

∣

∣

∞
∑

n=Kr(x)+1

(1 − ρ)ρnπ̂κ(x, n) {1(y ≤ (1 + ǫ)Cn)− 1(n > M(x))}

∣

∣

∣

∣

∣

∣

,

E2(ρ, x) =







∣

∣

∣

∑∞
n=M(x)+1(1 − ρ)ρnπ̂κ(x, n) − E

[

ρa(x,Z) 1
(

σZ ≤ √
µω−1

1 (x)/
√
x
)]

∣

∣

∣
, κ = 2,

∣

∣

∣

∑∞
n=N(x)+1(1− ρ)ρnπ̂κ(x, n)− E

[

ρa(x,Z) 1
(

σZ ≤
√
µ log x

)]

∣

∣

∣
, κ > 2,

E3(ρ, x) =
∞
∑

n=Kr(x)+1

(1− ρ)ρnJ(y, n) 1(y > (1 − ǫ)Cn).

Then,
|Sκ(ρ, x)− Zκ(ρ, x)| ≤ E1(ρ, x) + E2(ρ, x) + E3(ρ, x).

We will split the proof of Theorem 3.2 into three propositions, each of them showing that Ei(ρ, x) =
o(Zκ(ρ, x)) as x → ∞ uniformly for 0 < ρ < 1, and some auxiliary lemmas. We start by giving a result that
provides lower bounds for Zκ(ρ, x).

Lemma 5.2. Fix c > 0 and let ρ̂(x) = e−cµQ(x)/x. Then, for any 0 < ρ ≤ ρ̂(x),

Zκ(ρ, x) ≥
Cρ

1− ρ
F (x),

while for ρ̂(x) ≤ ρ < 1,

Zκ(ρ, x) ≥ Ce−
x
µΛρ(u(ρ)),

where Λρ(u(ρ)) was defined in Lemma 3.3.
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Proof. Let J(x) = ⌊x/
√

Q(x)⌋ ≤ Kr(x) and note that

Zκ(ρ, x) ≥
J(x)
∑

n=1

(1− ρ)ρnnF (x− nµ)

≥ (1 − ρ)F (x)

J(x)
∑

n=1

nρn

= F (x)
ρ

1 − ρ

(

1− ρJ(x) − (1− ρ)J(x)ρJ(x)
)

.

The first statement follows from the observation that for 0 < ρ ≤ ρ̂(x) we have

ρJ(x) ≤ e−
cµQ(x)

x J(x) = e−cµ
√

Q(x)+o(1) → 0.

For the second statement consider first the case κ = 2, for which e
x
µΛρ(u(ρ)) = e

x
µ log ρ+σ2x(log ρ)2

2µ3 and

Zκ(ρ, x) ≥ E
[

ρa(x,Z) 1(σZ ≤ √
µω−1

1 (x)/
√
x)
]

= e
x
µ log ρ+ σ2x(log ρ)2

2µ3 Φ

(√
µω−1

1 (x)

σ
√
x

+
σ
√
x

µ3/2
log ρ

)

≥ e
x
µΛρ(u(ρ))Φ

(√
µω−1

1 (x)

σ
√
x

− σcQ(x)√
µx

)

= e
x
µΛρ(u(ρ))(1 + o(1))

as x → ∞, for all ρ̂(x) ≤ ρ < 1 (since Q(x)/ω−1
1 (x) → 0 by Lemma 5.1 (a.)). For κ > 2 we split the interval

[ρ̂(x), 1) into two parts as follows. Define ρ̃(x) = e
−µ2√

log x

σ2√
x . Then, for ρ̃(x) ∨ ρ̂(x) ≤ ρ < 1,

Zκ(ρ, x) ≥ E
[

ρa(x,Z) 1
(

Z ≤
√

µ log x/σ
)]

≥ Φ(0)e
x
µ log ρ+ σ2

2µ3 x(log ρ)2 ≥ Ce
x
µΛρ(u(ρ)).

For the interval [ρ̂(x), ρ̃(x)∨ ρ̂(x)) (assuming ρ̃(x) > ρ̂(x)), let un = (x−nµ)/x and use Lemma 6.1 to obtain

Zκ(ρ, x) ≥
C(1 − ρ)√

µx

N(x)
∑

n=M(x)+1

e
x
µΛρ(un)

un
≥ C(1 − ρ)

√
x

∫ uM(x)

uN(x)−1

e
x
µΛρ(u)

u
du.

By Lemma 3.3, Λρ is concave on [0, uM(x)], and its maximizer, u(ρ), satisfies

u(ρ) = −σ2

µ2
log ρ+O(| log ρ|2), Λρ(u(ρ)) = log ρ+

σ2

2µ2
(log ρ)2 +O(| log ρ|3).

Also, the derivatives of Λρ satisfy

Λ′
ρ(t) = − log ρ− µ2

σ2
t+O(t2) and Λ′′

ρ(t) = −µ2

σ2
+O(t).

Then, for some ξt between t and u(ρ) and some constant ζ > µ/σ2,

Λρ(t) = Λρ(u(ρ)) +
Λ′′
ρ(ξt)

2
(t− u(ρ))2 ≥ Λρ(u(ρ))−

ζµ

2
(t− u(ρ))2.
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Note that for ρ ≤ ρ̃(x) we have u(ρ) ≥
√

log x/x+O(log x/x). Therefore, for any 0 < δ < 1 and x sufficiently
large,

(1 − ρ)
√
x

∫ uM(x)

uN(x)−1

e
x
µΛρ(u)

u
du

≥ (1− ρ)
√
xe

x
µΛρ(u(ρ))

∫

√
ζxδu(ρ)

√
ζx(uN(x)−1−u(ρ))

e−z2/2

z +
√
ζxu(ρ)

dz

≥ Ce
x
µΛρ(u(ρ))

(

Φ
(

√

ζxδu(ρ))
)

− Φ
(

−
√

ζx(u(ρ)− uN(x)−1)
))

≥ Ce
x
µΛρ(u(ρ))

(

since
√
xu(ρ) → ∞ for ρ ≤ ρ̃(x)

)

.

The next lemma will be useful in showing the uniformity in 0 < ρ < 1 of our bounds.

Lemma 5.3. Let α(n, x) be any function that does not depend on ρ. Then, for any l(x) ≥ 4µ−1x/Q(x) and
m(x) ≤ x

µ , we have

sup
0<ρ<1

1

Zκ(ρ, x)

m(x)
∑

n=l(x)

(1− ρ)ρnα(n, x) ≤ CQ(x)

x

m(x)
∑

n=l(x)

eQ(x)−µnQ(x)
x α(n, x),

for sufficiently large x.

Proof. Define ρ̂(x) = e−µQ(x)/x. By Lemma 5.2, we have that for 0 < ρ ≤ ρ̂(x),

sup
0<ρ≤ρ̂(x)

1

Zκ(ρ, x)

m(x)
∑

n=l(x)

(1 − ρ)ρnα(n, x) ≤ sup
0<ρ≤ρ̂(x)

C

m(x)
∑

n=l(x)

(1− ρ)2ρn−1α(n, x)

F (x)
.

Define hn(ρ) = (1− ρ)2ρn−1 and compute h′
n(ρ) = (1− ρ)ρn−2(n(1− ρ)− 1− ρ). Note that for ρ ∈ (0, ρ̂(x)]

we have
n(1− ρ)− 1− ρ ≥ n(1− ρ̂(x)) − 1− ρ̂(x),

so h′
n(ρ) ≥ 0 on (0, ρ̂(x)] for all n ≥ (1 + ρ̂(x))/(1− ρ̂(x)) (note that (1 + ρ̂(x))/(1− ρ̂(x)) ∼ 2µ−1x/Q(x) as

x → ∞). Therefore,

sup
0<ρ≤ρ̂(x)

m(x)
∑

n=l(x)

(1− ρ)2ρn−1α(n, x)

F (x)
=

m(x)
∑

n=l(x)

(1 − ρ̂(x))2ρ̂(x)n−1eQ(x)α(n, x)

≤ CQ(x)2

x2

m(x)
∑

n=l(x)

eQ(x)−µnQ(x)
x α(n, x).
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For the range ρ̂(x) ≤ ρ < 1 fix ǫ ∈ (0, 1) and use Lemma 5.2 again to obtain

sup
ρ̂(x)≤ρ<1

1

Zκ(ρ, x)

m(x)
∑

n=l(x)

(1− ρ)ρnα(n, x) ≤ sup
ρ̂(x)≤ρ<1

C

e
x
µ log ρ+(1−ǫ) σ2

2µ3 x(log ρ)2

m(x)
∑

n=l(x)

(1− ρ)ρnα(n, x)

≤ CQ(x)

x

m(x)
∑

n=l(x)

sup
ρ̂(x)≤ρ<1

e−
x
µ log ρ+n log ρα(n, x)

=
CQ(x)

x

m(x)
∑

n=l(x)

e−(
x
µ−n) log ρ̂(x)α(n, x) (for all n ≤ x/µ)

=
CQ(x)

x

m(x)
∑

n=l(x)

e(
x
µ−n)µQ(x)

x α(n, x).

Proposition 5.4. Under the assumptions of Theorem 3.2,

lim
x→∞

sup
0<ρ<1

E1(ρ, x)

Zκ(ρ, x)
= 0.

Proof. Define mǫ(x) = min{n ∈ {1, 2, . . .} : nµ+(1+ǫ)σCn ≥ x}, and recall that M(x) = ⌊(x−ω−1
1 (x))/µ⌋.

Let y = (x− nµ)/σ. Then,

E1(ρ, x) =
∞
∑

n=Kr(x)+1

(1 − ρ)ρnπ̂κ(x, n) 1(min{mǫ(x),M(x)} < n ≤ max{mǫ(x),M(x)}).

Choose 0 < δ < 1. By Lemma 4.5 there exist constants 0 < γ1 ≤ 1 ≤ γ2 such that Cn ∈ [γ1b
−1(µn), γ2b

−1(µn)].
Then, for any n ≥ l(x) , (x − γ1σb

−1(x))/µ and x sufficiently large,

y ≤ γ1b
−1(x) ≤

(

x

µn
∨ 1

)

γ1b
−1(µn) < (1 + ǫ)Cn,

where in the second inequality we used Lemma 4.1 (c.). Similarly, for any n ≤ k(x) , (x − 2γ2σb
−1(x))/µ

and x sufficiently large,
y ≥ 2γ2b

−1(x) ≥ 2γ2b
−1(µn) ≥ (1 + ǫ)Cn.

It follows that ⌊k(x)⌋ ≤ mǫ(x) ≤ ⌊l(x)⌋ for sufficiently large x. Hence,

E1(ρ, x) ≤
max{⌊l(x)⌋,M(x)}

∑

n=min{⌊k(x)⌋,M(x)}+1

(1− ρ)ρnπ̂κ(x, n),

and by Lemma 5.3,

sup
0<ρ<1

E1(ρ, x)

Zκ(ρ, x)
≤ CQ(x)

x

max{⌊l(x)⌋,M(x)}
∑

n=min{⌊k(x)⌋,M(x)}+1

eQ(x)−µnQ(x)
x π̂k(x, n).

By using the inequality Φ(−z) ≤ Φ′(z)/z for any z > 0, and observing that n = (x/µ)(1 + o(1)) for all
min{⌊k(x)⌋,M(x)} < n ≤ max{⌊l(x)⌋,M(x)}, we obtain, for such n and all sufficiently large x,

π̂κ(x, n) ≤
√
x

y
√
2πµ

e−
µy2

2x +

√
x

y
√
2πµ

enQκ( y
n) ≤ C

√
x

y
√
µ
e−

µy2

2x (1+o(1)) ≤ Ce−(1−δ)µy2

2x .
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It follows that

sup
0<ρ<1

E1(ρ, x)

Zκ(ρ, x)
≤ CQ(x)

x

max{⌊l(x)⌋,M(x)}
∑

n=min{⌊k(x)⌋,M(x)}+1

e
σyQ(x)

x −(1−δ)µy2

2x

≤ CQ(x)

x

max{⌊l(x)⌋,M(x)}
∑

n=min{⌊k(x)⌋,M(x)}+1

e
−(1−δ)µy2

2x

(

1− 2σ2Q(x)
(1−δ)µ(x−µ(l(x)∨M(x)))

)

.

Note that by Lemma 5.1 (a.),

lim
x→∞

Q(x)

x− µ(⌊l(x)⌋ ∨M(x))
≤ C lim

x→∞
Q(x)

b−1(x) ∧ ω−1
1 (x)

= 0, (5.1)

which implies that for sufficiently large x,

sup
0<ρ<1

E1(ρ, x)

Zκ(ρ, x)
≤ CQ(x)

x

max{⌊l(x)⌋,M(x)}
∑

n=min{⌊k(x)⌋,M(x)}+1

e−(1−δ)2 µy2

2x

≤ CQ(x)

x

∫ x−µmin{⌊k(x)⌋,M(x)}

x−µmax{⌊l(x)⌋,M(x)}
e−(1−δ)2 µu2

2σ2x du

≤ CQ(x)√
x

∫ ∞

(1−δ)
√

µ

σ
√

x
(γ1σb−1(x)∧ω−1

1 (x))

e−v2/2dv.

Finally, by using the inequality Φ(−z) ≤ Φ′(z)/z for z > 0 again, and (5.1), we obtain that

lim
x→∞

sup
0<ρ<1

E1(ρ, x)

Zκ(ρ, x)
≤ lim

x→∞
CQ(x)e−

(1−δ)2µ

2σ2x
(γ1σb

−1(x)∧ω−1
1 (x))2

γ1σb−1(x) ∧ ω−1
1 (x)

= 0.

Lemma 5.5. Let hκ(x) = ω−1
1 (x) if κ = 2 and hκ(x) =

√
x log x, if κ > 2, then

E2(ρ, x) ≤
C
√
x

hκ(x)
ρ(x−hκ(x))/µe−

µ(hκ(x))2

2σ2x + (1− ρ)E
[

ρa(x,Z) 1
(

σZ ≤ √
µhκ(x)/

√
x
)

]

.

Proof. Recall that a(x, z) = µ−1
(

x− σz
√

x/µ
)

and Z ∼ N(0,1). Define Lκ(x) = ⌊(x − hκ(x))/µ⌋. Note
that exact computation gives,

∞
∑

n=Lκ(x)+1

(1 − ρ)ρnΦ
(

−y/
√

x/µ
)

= E





∞
∑

n=Lκ(x)+1

(1 − ρ)ρn 1(Z > y/
√

x/µ)





= E
[

ρmax{⌊a(x,Z)⌋+1,Lκ(x)+1}
]

= E
[

ρ⌊a(x,Z)⌋+1 1(a(x, Z) ≥ Lκ(x))
]

+ ρLκ(x)+1P (a(x, Z) < Lk(x))

= E
[

ρ⌊a(x,Z)⌋+1 1
(

Z ≤ (x− µLκ(x))/
√

σ2x/µ
)]

+ ρLκ(x)+1Φ
(

−(x− µLκ(x))/
√

σ2x/µ
)

.
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Observe that hκ(x)/
√

σ2x/µ ≤ (x−µLκ(x))/
√

σ2x/µ ≤ hκ(x)/
√

σ2x/µ+µ3/2/
√
σ2x, from where it follows

that E2(ρ, x) can further be bounded by

E2(ρ, x) ≤ E
[

ρ⌊a(x,Z)⌋+1 1
(

hκ(x)/
√

σ2x/µ < Z ≤ (x− µLκ(x))/
√

σ2x/µ
)]

(5.2)

+
∣

∣

∣
E
[(

ρ⌊a(x,Z)⌋+1 − ρa(x,Z)
)

1
(

Z ≤ hκ(x)/
√

σ2x/µ
)]
∣

∣

∣
(5.3)

+ ρLκ(x)+1Φ
(

−(x− µLκ(x))/
√

σ2x/µ
)

. (5.4)

Next, note that since a(x, z) is decreasing in z, we obtain that (5.2) is bounded by

ρ
⌊a

(

x,(x−µLκ(x))/
√

σ2x/µ
)

⌋+1
E
[

1
(

hκ(x)/
√

σ2x/µ < Z ≤ hκ(x)/
√

σ2x/µ+ µ3/2/
√
σ2x

)]

= ρLκ(x)+1
(

Φ
(

hκ(x)/
√

σ2x/µ+ µ3/2/
√
σ2x

)

− Φ
(

hκ(x)/
√

σ2x/µ
))

≤ ρ⌊
1
µ (x−hκ(x))⌋+1Φ′

(

hκ(x)/
√

σ2x/µ
) µ3/2

σ
√
x

≤ C√
x
ρ

1
µ (x−hκ(x))e−

µ(hκ(x))2

2σ2x .

For (5.3) we use the simple bound

(1 − ρ)E
[

ρa(x,Z) 1
(

Z ≤ hκ(x)/
√

σ2x/µ
)]

.

And for (5.4) we use the inequality Φ(−z) ≤ Φ′(z)/z for any z > 0 to obtain the bound

ρ(x−hκ(x))/µΦ
(

−hκ(x)/
√

σ2x/µ
)

≤ C
√
x

hκ(x)
ρ

1
µ (x−hκ(x))e−

µ(hκ(x))2

2σ2x .

Proposition 5.6. Under the assumptions of Theorem 3.2,

lim
x→∞

sup
0<ρ<1

E2(ρ, x)

Zκ(ρ, x)
= 0.

Proof. Let hκ(x) = ω−1
1 (x) if κ = 2 and hκ(x) =

√
x log x, if κ > 2, then, by Lemma 5.5, we have that

E2(ρ, x) ≤
C
√
x

hκ(x)
ρ(x−hκ(x))/µe−

µ(hκ(x))2

2σ2x + (1− ρ)E
[

ρa(x,Z) 1
(

σZ ≤ √
µhκ(x)/

√
x
)

]

.

Fix c > 1 and define ρ̂(x) = e−
cµQ(x)

x . We will first show that E2(ρ, x) is o(Zk(ρ, x)) as x → ∞ uniformly for
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0 < ρ ≤ ρ̂(x). Before we proceed note that hκ(x)/
√
x → ∞ as x → ∞ (by Lemma 5.1 (b.) for κ = 2) and

E
[

ρa(x,Z) 1
(

σZ ≤ √
µhκ(x)/

√
x
)

]

= e
x
µ log ρ+σ2x(log ρ)2

2µ3 Φ

(√
µhκ(x)

σ
√
x

+
σ
√
x log ρ

µ3/2

)

≤ e
x
µ log ρ+

σ2x(log ρ)2

2µ3 Φ′
(√

µhκ(x)

σ
√
x

+
σ
√
x log ρ

µ3/2

)

1

(√
µhκ(x)

σ
√
x

+
σ
√
x log ρ

µ3/2
≤ −1

)

+ e
x
µ log ρ+ σ2x(log ρ)2

2µ3 1

(√
µhκ(x)

σ
√
x

+
σ
√
x log ρ

µ3/2
> −1

)

=
1√
2π

ρ(x−hκ(x))/µe−
µ(hκ(x))2

2σ2x 1

(

| log ρ| ≥ µ2hκ(x)

σ2x
+

µ3/2

σ
√
x

)

+ e
x
µ log ρ+ σ2x(log ρ)2

2µ3 1

(

| log ρ| < µ2hκ(x)

σ2x
+

µ3/2

σ
√
x

)

,

where for the inequality we used Φ(−z) ≤ Φ′(z)/z for z > 0. Furthermore,

e
x
µ log ρ+σ2x(log ρ)2

2µ3 1

(

| log ρ| < µ2hκ(x)

σ2x
+

µ3/2

σ
√
x

)

≤ e
x
µ

(

1−hκ(x)
2x − σ

2
√

µx

)

log ρ
.

It follows that for sufficiently large x, E2(ρ, x) is bounded by

Cρ(x−hκ(x))/µ + ρ

(

x−hκ(x)
2 − σ

√
x

2
√

µ

)

/µ
.

Now we use Lemma 5.2 and the observation that hκ(x)/x → 0 as x → ∞ to obtain

sup
0<ρ≤ρ̂(x)

E2(ρ, x)

Zκ(ρ, x)
≤ C sup

0<ρ≤ρ̂(x)

ρ(x−hκ(x))/µ + ρ

(

x−hκ(x)
2 − σ

√
x

2
√

µ

)

/µ

ρ(1− ρ)−1e−Q(x)

≤ CeQ(x) sup
0<ρ≤ρ̂(x)

(

ρ(x−hκ(x)−µ)/µ + ρ

(

x−hκ(x)
2 − σ

√
x

2
√

µ −µ
)

/µ
)

= CeQ(x)

(

e−
1
µ (x−hκ(x)−µ) cµQ(x)

x + e
− 1

µ

(

x−hκ(x)
2 − σ

√
x

2
√

µ −µ
)

cµQ(x)
x

)

≤ C

(

e−(c−1− chκ(x)
x )Q(x) + e

−
(

c−1− chκ(x)
2x − cσ

2
√

µx

)

Q(x)
)

→ 0

as x → ∞.

For the range ρ̂(x) ≤ ρ < 1 we first note that Zκ(ρ, x) ≥ E
[

ρa(x,Z)I
(

σZ ≤ √
µhκ(x)/

√
x
)]

, so we have

sup
ρ̂(x)≤ρ<1

(1− ρ)E
[

ρa(x,Z) 1
(

σZ ≤ √
µhκ(x)/

√
x
)]

Zκ(ρ, x)
≤ 1− ρ̂(x) → 0

as x → ∞. To analyze the remaining term we use Lemmas 5.2 and 3.3 to obtain Zκ(ρ, x) ≥ C
x
µΛρ(u(ρ)) ≥

Ce
x
µ

(

log ρ+ σ2

2µ2 (log ρ)2−η 1(κ>2)| log ρ|3
)

for some η > 0. It follows that

sup
ρ̂(x)≤ρ<1

C
√
x

hκ(x)
· ρ

(x−hκ(x))/µe−
µ(hκ(x))2

2σ2x

Zκ(ρ, x)

≤ C
√
x

hκ(x)
e−

µ(hκ(x))2

2σ2x sup
ρ̂(x)≤ρ<1

e
1
µ (x−hκ(x)) log ρ

e
x
µ

(

log ρ+ σ2

2µ2 (log ρ)2−η 1(κ>2)| log ρ|3
)

=
C
√
x

hκ(x)
e−

µ(hκ(x))2

2σ2x sup
0<s≤cµQ(x)/x

e
1
µhκ(x)s− σ2x

2µ3 s2+ η 1(κ>2)x
µ s3

. (5.5)
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When κ = 2 and hκ(x) = ω−1
1 (x), (5.5) becomes

C
√
x

ω−1
1 (x)

sup
0<s≤cµQ(x)/x

e
− 1

2

(

σ
√

x

µ3/2 s−
√

µω
−1
1

(x)

σ
√

x

)2

≤ C
√
x

ω−1
1 (x)

,

which by Lemma 5.1 (b.), converges to zero as x → ∞. When κ > 2 and hκ(x) =
√
x log x we split the

supremum and bound (5.5) with

C√
log x

e−
µ log x

2σ2

{

sup
0<s≤min{cµQ(x)/x,x−1/3}

e
√

x log x
µ s− σ2x

2µ3 s2+ ηx
µ s3

+ sup
x−1/3<s≤cµQ(x)/x

e

√
x log x
µ s− σ2x

2µ3 s2+ ηx
µ s3

1(x−1/3 < cµQ(x)/x)

}

≤ C√
log x

{

sup
s≥0

e
− 1

2

(

σ
√

x

µ3/2
s−

√
µ log x
σ

)2

+ sup
s>x−1/3

e
−µ log x

2σ2 +
√

x log x
µ s− σ2x

2µ3

(

1− 2cµ3ηQ(x)

σ2x

)

s2
}

≤ C√
log x

{

1 + sup
s>x−1/3

e
−σ2x

2µ3

(

1− 2cµ3ηQ(x)

σ2x
− 2µ2√

log x

σ2x1/6

)

s2
}

→ 0

as x → ∞. This completes the proof.

Lemma 5.7. Let y = (x − nµ)/σ and fix 0 < δ < 1/2 and 0 < c < 1. Define cδ = δ−1(4µ−1 ∨ 1)σ. Then,
under the assumptions of Theorem 3.2, for all n ≤ (x− cb−1(x))/µ and x sufficiently large,

J(y, n) ≤ CnF (σy + µ)e
δµn
x Q(σy) +

Cn3/2

y
F (σ

√
n+ µ)e−

σyQ(x)
x − δ2y2

8n 1(µn > x− cδb
−1(x)).

Proof. Let βǫ(t) = b−1(2(1 + ǫ)t/µ) and V (t) = P (X1 > σt + µ) = F (σt + µ). Then from (4.5) we obtain
that

J(y, n) ≤ nV (y) + n

∫ 1

0

V (y −
√
nz)Φ′ (z) dz + Cn

∫ ((y−√
n)∧βǫ(µn))/

√
n

1

V (y − z
√
n)e

nQκ̃

(

z√
n

)

dz.

To analyze the integral involving Qκ first note that if κ = 2, then nQκ(z/
√
n) = −z2/2, while if κ > 2 then

nQκ(z/
√
n) = −z2/2 + O(z3/

√
n). Therefore, for 1 ≤ z ≤ ((y −√

n) ∧ βǫ(µn))/
√
n and n sufficiently large

we have

nQκ(z/
√
n) ≤ − (1− δ)z2

2
,

from where it follows that

J(y, n) ≤ nV (y) + Cn

∫ ((y−√
n)∧βǫ(µn))/

√
n

0

V (y − z
√
n)e−

(1−δ)z2

2 dz.

We now bound the remaining integral with

Cn

∫ δy/
√
n

0

V (y − z
√
n)e−

(1−δ)z2

2 dz (5.6)

+ Cn

∫ (y−√
n)/

√
n

δy/
√
n

V (y − z
√
n)e−

(1−δ)z2

2 dz 1(βǫ(µn) > δy) (5.7)
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We start by analyzing (5.7), which is further bounded by

CnV (
√
n)

∫ (y−√
n)/

√
n

δy/
√
n

e−
(1−δ)z2

2 dz 1(βǫ(µn) > δy)

≤ CnV (
√
n)Φ

(

−
√
1− δδy√

n

)

1(βǫ(x) > δy)

≤ CnV (
√
n)

√
n

y
e−

(1−δ)δ2y2

2n 1(βǫ(x) > δy)

=
Cn3/2

y
V (

√
n)e−

σyQ(x)
x e

− (1−δ)δ2y2

2n

(

1− 2σnQ(x)

(1−δ)δ2xy

)

1(βǫ(x) > δy),

where in the second inequality we used the relation Φ(−z) ≤ Φ′(z)/z for z > 0. To obtain the second term
in the statement of the lemma note that for n ≤ (x − cb−1(x))/µ we have

2σnQ(x)

(1 − δ)δ2xy
≤ 2σ2Q(x)

(1− δ)δ2µcb−1(x)
,

which converges to zero as x → ∞ by Lemma 5.1 (a.). Then, for sufficiently large x,

e
− (1−δ)δ2y2

2n

(

1− 2σnQ(x)

(1−δ)δ2xy

)

≤ e−
(1−δ)2δ2y2

2n ≤ e−
δ2y2

8n (δ < 1/2).

Also, by Lemma 4.1 (c.), βǫ(x) ≤ (4µ−1 ∨ 1)b−1(x) = σ−1δcδb
−1(x). If follows that (5.7) is bounded by

Cn3/2

y
V (

√
n)e−

σyQ(x)
x − δ2y2

8n 1(µn > x− cδb
−1(x)).

To bound (5.6) we first note that by Assumption 1, q(t) ≤ (r + δ)Q(t)/t for sufficiently large t. Also, by
Proposition 3.7 in [3], Q(t)/t is eventually decreasing, so we obtain

V (y − u) = V (y)e
∫ σy+µ
σ(y−u)+µ

q(t)dt ≤ V (y)e(r+δ)
Q(σ(y−u))

y−u u.

Then, the change of variables u = z
√
n yields the bound

C
√
nV (y)

∫ δy

0

e
∫ σy+µ
σ(y−u)+µ

q(t)dte−
(1−δ)u2

2n du

≤ C
√
nV (y)

∫ δy

0

e(r+δ)Q(σ(y−u))
y−u u− (1−δ)u2

2n du

≤ C
√
nV (y)

∫ δy

0

e(r+δ) Q(σy)
(1−δ)y

u− (1−δ)u2

2n du

= CnV (y)e
(r+δ)2nQ(σy)2

2(1−δ)3y2

∫

√
1−δ√
n

(

δy− (r+δ)nQ(σy)

(1−δ)2y

)

−
√

1−δ√
n

· (r+δ)nQ(σy)

(1−δ)2y

1√
2π

e−
z2

2 dz. (5.8)

Now, define the set A =
{

σy ≥ ω−1
1

(

(r+δ)2σ2x
(1−δ)3δµ

)}

and note that t2/Q(t) = ω1(t) is eventually increasing. It

follows that for large enough x,

A ⊆
{

ω1(σy) ≥
(r + δ)2σ2x

(1− δ)3δµ

}

=

{

(r + δ)2Q(σy)

(1− δ)3y2
≤ δµ

x

}

.

Also,

Ac ⊆
{

ω1(σy) ≤
(r + δ)2σ2x

(1− δ)3δµ

}

=

{

(r + δ)nQ(σy)

(1− δ)2y
≥ δy(1− δ)nµ

(r + δ)x

}

.
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We then have that for z(x, n) =
√
1−δ√
n

(

(r+δ)nQ(σy)
(1−δ)2y − δy

)

, (5.8) is bounded by

CnV (y)

{

e
δµnQ(σy)

2x 1(A) + e
(r+δ)2nQ(σy)2

2(1−δ)3y2
− z2(x,n)

2 sup
t≥z(x,n)

Φ(−t)

Φ′(t)
1(Ac)

}

≤ CnV (y)







e
δµnQ(σy)

2x 1(A) + e
δ(r+δ)Q(σy)

(1−δ)
− (1−δ)δ2y2

2n sup
t≥

√
1−δδy√

n ( (1−δ)nµ
(r+δ)x −1)

Φ(−t)

Φ′(t)
1(Ac)







.

Finally, we note that on Ac =
{

nµ > x− ω−1
1

(

(r+δ)2σ2x
(1−δ)3δµ

)}

, and for sufficiently large x, (1−δ)nµ/((r+δ)x) ≥
1, so (5.8) is bounded by

CnV (y)

{

e
δµnQ(σy)

x 1(A) + e
δµnQ(σy)

x sup
t≥0

Φ(−t)

Φ′(t)
1(Ac)

}

≤ CnV (y)e
δµnQ(σy)

x .

Proposition 5.8. Under the assumptions of Theorem 3.2,

lim
x→∞

sup
0<ρ<1

E3(ρ, x)

Zκ(ρ, x)
= 0.

Proof. Set y = (x− nµ)/σ and recall that by assumption there exists β > a(r) ≥ 2 such that Q(t) ≥ β log t
for all sufficiently large t. Now choose 0 < δ < min{(1− r̃)/2, (1−r−2/β)/2}. Note that by Lemma 4.5 there
exists a constant 0 < γ1 ≤ 1 such that Cn ≥ γ1b

−1(µn). Define cǫ = (1 − ǫ)2γ1σ and cδ = δ−1(4µ−1 ∨ 1)σ.
Then, for any n ≥ lǫ(x) , (x− cǫb

−1(x))/µ and x sufficiently large,

y ≤ (1− ǫ)2γ1b
−1(x) ≤

(

x

µn
∨ 1

)

(1 − ǫ)2γ1b
−1(µn) < (1− ǫ)Cn.

Therefore, {y > (1 − ǫ)Cn} ⊂ {n < lǫ(x)}, and

E3(ρ, x) ≤
⌊lǫ(x)⌋
∑

n=Kr(x)+1

(1− ρ)ρnJ(y, n).

By Lemma 5.3,

sup
0<ρ<1

E3(ρ, x)

Zκ(ρ, x)
≤ CQ(x)

x

⌊lǫ(x)⌋
∑

n=Kr(x)+1

e
σyQ(x)

x J(y, n), (5.9)

for sufficiently large x. Define mδ(x) = (x− cδb
−1(x))/µ. Then, by Lemma 5.7,

Q(x)

x

⌊lǫ(x)⌋
∑

n=Kr(x)+1

e
σyQ(x)

x J(y, n) ≤ CQ(x)

x

⌊lǫ(x)⌋
∑

n=Kr(x)+1

e
σyQ(x)

x nF (σy + µ)e
δµn
x Q(σy) (5.10)

+
CQ(x)

x

⌊lǫ(x)⌋
∑

n=⌊mδ(x)⌋+1

n3/2

y
F (σ

√
n+ µ)e−

δ2y2

8n . (5.11)
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We start by showing that (5.10) converges to zero. To do so we first bound it with the following integral

CQ(x)

∫ x−Kr(x)µ

x−⌊lǫ(x)⌋µ
e

uQ(x)
x F (u)e

δ(x−u+µ)
x Q(u)du

≤ CQ(x)

∫ x−µKr(x)

x−µlǫ(x)

e
uQ(x)

x −Q(u)+ δ(x−u)
x Q(u)du. (5.12)

Now, by Proposition 3.7 in [3] we have that Q(x) ≤ (x/u)r+δQ(u) for all u ≤ x, from where it follows that

uQ(x)

x
−Q(u) +

δ(x− u)

x
Q(u) ≤ Q(u)

(

(u

x

)1−r−δ

− 1 +
δ(x− u)

x

)

≤ Q(u)

(

(1− r − δ)
(u

x
− 1
)

+
δ(x− u)

x

)

= −Q(u)(x− u)

x
(1− r − 2δ) .

Let η = δ1/(1−r−δ). Next we will split (5.12) into three integrals and use one of the above inequalities to
bound the exponent as follows

CQ(x)

∫ min{x−µKr(x),ηx}

x−µlǫ(x)

e
Q(u)

(

(u
x )

1−r−δ−1+ δ(x−u)
x

)

du (5.13)

+ CQ(x)

∫ min{x−µKr(x),x/2+µ}

min{x−µKr(x),ηx}
e−

Q(u)(x−u)
x (1−r−2δ)du (5.14)

+ CQ(x)

∫ x−µKr(x)

min{x−µKr(x),x/2+µ}
e−

Q(u)(x−u)
x (1−r−2δ)du. (5.15)

To see that (5.13) converges to zero we note that it is bounded by

CQ(x)

∫ ηx

x−µlǫ(x)

e−Q(u)(1−2δ)du ≤ CQ(x)

∫ ∞

x−µlǫ(x)

e−β(1−2δ) log udu

= CQ(x)(x − µlǫ(x))
−β(1−2δ)+1

≤ CQ(x)

x− µlǫ(x)
(since β(1 − 2δ) > 2)

≤ CQ(x)

b−1(x)
,

where the last expression converges to zero by Lemma 5.1 (a.). To see that (5.14) converges to zero note
that it is bounded by

CQ(x)

∫ x/2+µ

ηx

e−
Q(ηx)(x−u)

x (1−r−2δ)du 1(x− µKr(x) > ηx)

=
CxQ(x)

Q(ηx)

∫ − (1−r−2δ)
2 (1−2µ/x)Q(ηx)

−(1−r−2δ)(1−η)Q(ηx)

evdv 1(x− µKr(x) > ηx)

≤ CxQ(x)

Q(ηx)
e−

(1−r−2δ)
2 Q(ηx) ≤ Cxe−

(1−r−2δ)β
2 log(ηx),

where in the last inequality we used Proposition 3.7 in [3] to obtain Q(x) ≤ η−(r+δ)Q(ηx) and then the
assumption Q(t) ≥ β log t. The last thing to notice is that our choice of δ guarantees that (1−r−2δ)β/2 > 1.
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Next, to analyze (5.15) we follow a similar approach and use the fact that Q(t)/t is eventually decreasing to
obtain the bound

CQ(x)

∫ x−µKr(x)

x/2+µ

e−
Q(x)u(x−u)

x2 (1−r−2δ)du 1(x− µKr(x) > x/2 + µ)

≤ CQ(x)

∫ x−µKr(x)

x/2

e−
µQ(x)Kr (x)u

x2 (1−r−2δ)du 1(µ(Kr(x) + 1) < x/2)

≤ Cx2

Kr(x)
e−

µQ(x)Kr (x)
2x (1−r−2δ) 1(µ(Kr(x) + 1) < x/2). (5.16)

Now note that µ(Kr(x)+1) < x/2 implies that r ∈ [1/2, 1), since for r ∈ (0, 1/2) we have x−µKr(x) = o(x);
and in this case,

{µ(Kr(x) + 1) < x/2} ⊂ {min{µω2(x), x/2} < x/2} = {µω2(x) < x/2}.

It follows that (5.16) is bounded by

Cx2

ω2(x)
e−

µQ(x)ω2(x)
2x (1−r−2δ) 1(µω2(x) < x/2) ≤ CQ(x)2e−

µx
2Q(x)

(1−r−2δ)

≤ Cx2e−
µ(1−r−2δ)

2 x1−r−δ → 0,

where in the second inequality we used Proposition 3.7 in [3] to obtain that Q(x) ≤ xr+δ for large enough x.

Finally, to prove that (5.11) converges to zero we first bound it with

CQ(x)

x

∫ (lǫ(x)+1)µ

mδ(x)µ

s3/2

x− s
F (σ

√

s/µ)e−
δ2µ(x−s)2

8σ2s ds

≤ C
√
xQ(x)

x− (lǫ(x) + 1)µ
F
(

σ
√

mδ(x)
)

∫ (lǫ(x)+1)µ

mδ(x)µ

e−
δ2µ(x−s)2

8σ2x ds

≤ CxQ(x)

b−1(x)
F
(

σ
√

mδ(x)
)

∫ ∞

δ
√
µ(x−(lǫ(x)+1)µ)/(2σ

√
x)

e−
z2

2 dz.

Clearly, the last integral is bounded by a constant, and for the other terms we have

lim
x→∞

xF
(

σ
√

mδ(x)
)

=
µ

σ2
lim
t→∞

t2F (t) = 0,

since E[X2
1 ] < ∞, and, by Lemma 5.1 (a.), limx→∞ Q(x)/b−1(x) = 0. This completes the proof.

Proof of Theorem 3.2. Propositions 5.4, 5.6 and 5.4 give

lim
x→∞

sup
0<ρ<1

∣

∣

∣

∣

Sκ(ρ, x)

Zκ(ρ, x)
− 1

∣

∣

∣

∣

= 0,

which combined with Proposition 4.7 give

lim
x→∞

sup
0<ρ<1

∣

∣

∣

∣

P (Wρ(∞) > x)

Zκ(ρ, x)
− 1

∣

∣

∣

∣

= 0.
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6. Proof of Theorem 3.4

In this section we prove Lemma 3.3 and Theorem 3.4. To ease the reading we restate the definition of Aκ(ρ, x)
below.

Aκ(ρ, x) =

Kr(x)
∑

n=1

(1− ρ)ρnnF (x− nµ) + e
x
µΛρ(w(ρ,x)),

where Λρ is given by (3.7), w(ρ, x) = min{u(ρ), ω−1
1 (x)/x} and u(ρ) is the smallest positive solution to

Λ′
ρ(t) = 0.

We start with the proof of Lemma 3.3 and then split the proof of Theorem 3.4 into three parts.

Proof of Lemma 3.3. That Λρ is concave in a neighborhood of the origin follows from

Λ′
ρ(t) = − log ρ− µ2

σ2
t+O(t2) and Λ′′

ρ(t) = −µ2

σ2
+O(t).

If κ = 2 we have Λρ(t) = (1 − t) log ρ − µ2

2σ2 t
2, which is maximized at u(ρ) = −σ2

µ2 log ρ and satisfies

Λρ(u(ρ)) = log ρ+ σ2

2µ2 (log ρ)
2.

In general, for κ ≥ 2 recall that Pκ(t) = Λ′
ρ(t) + log ρ, so u(ρ) is the solution to the equation Pκ(t) = log ρ.

By Lagrange’s inversion theorem,

u(ρ) =
∞
∑

n=1

dn−1

dtn−1

(

t

Pκ(t)

)n∣
∣

∣

∣

u=0

(log ρ)n

n!
,

where
Pκ(t)

t
=

κ
∑

i=2

i
∑

j=2

λjµ
j

j!σj

(

i− 1

i− j

)

iti−2 ,

κ−2
∑

j=0

ajt
j .

Furthermore, by Faà di Bruno’s formula,

bn =
dn−1

dtn−1

(

t

Pκ(t)

)n∣
∣

∣

∣

t=0

=
∑

(m1,...,mn−1)∈An−1

(n+ sn−1 − 1)!(−1)sn−1a
−n−sn−1

0

n−1
∏

j=1

1

mj !
(aj1(j≤κ−2))

mj ,

where Aj = {(m1, . . . ,mj) ∈ N
j : 1m1 + 2m2 + · · · + jmj = j}, sj = m1 + · · · +mj , and a0 = −µ2

σ2 . Note
that b1 = −σ2/µ2. Finally, since

Λρ(t) = (1− t) log ρ− µ2t2

2σ2
+O(t3),

we have

Λρ(u(ρ)) = log ρ+
σ2

2µ2
(log ρ)2 +O(| log ρ|3).

We now prove two preliminary results before we proceed to the proof of Theorem 3.4.
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Lemma 6.1. Let Λρ be given by (3.7) and set un = (x− nµ)/x. Then,

sup
0<ρ<1

∣

∣

∣

∣

∣

∣

∣

∑N(x)
n=M(x)+1 ρ

n e
nQκ( x−nµ

σn )
x−nµ

∑N(x)
n=M(x)+1

e
x
µ

Λρ(un)

xun

− 1

∣

∣

∣

∣

∣

∣

∣

→ 0

as x → ∞.

Proof. Define the function

Λ̃ρ(t) = (1 − t) log ρ+ (1− t)Qκ

(

µt

σ(1 − t)

)

and note that
N(x)
∑

n=M(x)+1

ρn
enQκ(x−nµ

σn )

x− nµ
=

1

x

N(x)
∑

n=M(x)+1

e
x
µ Λ̃ρ(un)

un
.

By expanding 1/(1− t)j into its Taylor series centered at zero we obtain

(1− t)Qκ

(

µt

σ(1− t)

)

=
κ
∑

j=2

λjµ
jtj

j!σj
· 1

(1 − t)j−1

=
κ
∑

j=2

λjµ
jwj

j!σj

∞
∑

i=0

(

j + i− 1

i

)

ti

=

κ
∑

j=2

κ−j
∑

i=0

λjµ
j

j!σj

(

j + i− 1

i

)

ti+j +O(tκ+1)

=
κ
∑

j=2

κ
∑

r=j

λjµ
j

j!σj

(

r − 1

r − j

)

tr + O(tκ+1)

=

κ
∑

r=2

r
∑

j=2

λjµ
j

j!σj

(

r − 1

r − j

)

tr + O(tκ+1).

Recall from Section 2 (after equation (2.3)) that κ ≤ (2 − r)/(1 − r) and ω−1
1 (x) ≤ Cx1/(2−r−δ) for any

0 < δ < (1− r)2/(2− r) and x sufficiently large. It follows that for 0 ≤ t ≤ uM(x)+1 ≤ ω−1
1 (x)/x we have

xtk+1 ≤ x

(

ω−1
1 (x)

x

)

2−r
1−r+1

≤ Cx
(

x
−(1−r−δ)

2−r−δ

)

3−2r
1−r

= Cx
−(1−r)2+δ(2−r)
(2−r−δ)(1−r) → 0

as x → ∞. Hence,
N(x)
∑

n=M(x)+1

ρn
enQκ( x−nµ

σn )

x− nµ
=

1

x

N(x)
∑

n=M(x)+1

e
x
µΛρ(un)

un
(1 + o(1))

as x → ∞, uniformly in 0 < ρ < 1.

The second preliminary result is an application of Laplace’s method, which states that the asymptotic
behavior of an integral of the form

∫ d

c

e−xφ(t)f(t)dt,

as x → ∞, is determined by the value of the integral in a small interval around the maximizer of φ on the
interval [c, d]. What makes the proof below very technical is that the limits of integration are functions of x.
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Lemma 6.2. Let ρ̂(x) = e−cµQ(x)/x, c > 0, κ > 2, and define γ(x, ρ) =
√
µ log x/σ+ σ

√
x log ρ/µ3/2. Then,

under the assumptions of Theorem 3.4, as x → ∞,

sup
ρ̂(x)≤ρ<1

1

e
x
µΛρ(u(ρ))

∣

∣

∣

∣

∣

∣

σ
√
x√

2πµ

N(x)
∑

n=M(x)+1

(1− ρ)ρn
enQκ(x−nµ

σn )

x− nµ
− e

x
µΛρ(u(ρ))Φ (−γ(ρ, x))

∣

∣

∣

∣

∣

∣

→ 0.

Proof. Let un = (x− nµ)/x and define c(x) =
√

log x/x, d(x) = ω−1
1 (x)/x. Then by Lemma 6.1,

√
x

N(x)
∑

n=M(x)+1

ρn
enQκ(x−nµ

σn )

x− nµ
=

1√
x

N(x)
∑

n=M(x)+1

e
x
µΛρ(un)

wn
(1 + o(1))

=

√
x

µ

N(x)
∑

n=M(x)+1

∫ un

un+1

e
x
µΛρ(t)

t
dt (1 + o(1))

=

√
x

µ

∫ d(x)

c(x)

e
x
µΛρ(t)

t
dt (1 + o(1))

as x → ∞, uniformly for ρ̂(x) < ρ < 1. It remains to show that

sup
ρ̂≤ρ<1

1

e
x
µΛρ(u(ρ))

∣

∣

∣

∣

∣

σ
√
x(1 − ρ)

µ3/2
√
2π

∫ d(x)

c(x)

e
x
µΛρ(t)

t
dt− e

x
µΛρ(u(ρ))Φ (−γ(ρ, x))

∣

∣

∣

∣

∣

→ 0

We start by computing the derivatives of Λρ(t):

Λ′
ρ(t) = − log ρ− µ2

σ2
t+O(t2) and Λ′′

ρ(t) = −µ2

σ2
+O(t),

and note that t → 0 for all 0 ≤ t ≤ d(x). Also, we have u(ρ) = −σ2

µ2 log ρ + O((log ρ)2) = σ2

µ2 (1 − ρ) +

O((1 − ρ)2) ∈ (0, d(x)) for all ρ̂(x) ≤ ρ < 1. Set ε = ε(x) = 1/ log log x and note that for ρ̂(x) ≤ ρ < 1,
u(ρ) = o(d(x)), so for sufficiently large x we have

E(ρ, x) ,

∣

∣

∣

∣

∣

σ
√
x(1− ρ)

µ3/2
√
2π

∫ d(x)

c(x)

e
x
µΛρ(t)

t
dt− e

x
µΛρ(u(ρ))Φ (−γ(ρ, x))

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

σ
√
x(1 − ρ)

µ3/2
√
2π

∫ c(x)∨(1+ε)u(ρ)

c(x)∨(1−ε)u(ρ)

e
x
µΛρ(t)

t
dt− e

x
µΛρ(u(ρ))Φ (−γ(ρ, x))

∣

∣

∣

∣

∣

(6.1)

+ C
√
x(1 − ρ)

(

∫ d(x)

c(x)∨(1+ε)u(ρ)

e
x
µΛρ(t)

t
dt+

∫ c(x)∨(1−ε)u(ρ)

c(x)

e
x
µΛρ(t)

t
dt

)

(6.2)

To bound (6.1) note that for some ξt between t and u(ρ),

∫ c(x)∨(1+ε)u(ρ)

c(x)∨(1−ε)u(ρ)

e
x
µΛρ(t)

t
dt = e

x
µΛρ(u(ρ))

∫ c(x)∨(1+ε)u(ρ)

c(x)∨(1−ε)u(ρ)

e
xΛ′′

ρ (ξt)

2µ (t−u(ρ))2

t
dt,

so (6.1) is bounded by e
x
µΛρ(u(ρ))F (ρ, x), where

F (ρ, x) =

∣

∣

∣

∣

∣

∣

σ
√
x(1− ρ)

µ3/2
√
2π

∫ c(x)∨(1+ε)u(ρ)

c(x)∨(1−ε)u(ρ)

e
xΛ′′

ρ (ξt)

2µ (t−u(ρ))2

t
dt− Φ (−γ(ρ, x))

∣

∣

∣

∣

∣

∣

.
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To see that supρ̂(x)≤ρ<1 F (ρ, x) → 0 note that for (1 − ε)u(ρ) ≤ t ≤ (1 + ε)u(ρ) we have Λ′′
ρ(t) = −µ2

σ2 +

O(| log ρ|) and also t = u(ρ)(1+o(1)) = −σ2

µ2 log ρ(1+o(1)) = σ2

µ2 (1−ρ)(1+o(1)). Let A = {c(x) < (1−ε)u(ρ))

and let ζ(ρ) = max(1−ε)u(ρ)≤t≤(1+ε)u(ρ) |Λ′′
ρ(t)|. We start by analyzing F (ρ, x) 1(A), for which we have

F (ρ, x) 1(A)

≤
{∣

∣

∣

∣

∣

√
xµ

σ
√
2π

(1 + o(1))

∫ (1+ε)u(ρ)

(1−ε)u(ρ)

e
xΛ′′

ρ (ξt)

2µ (t−u(ρ))2dt− 1

∣

∣

∣

∣

∣

+Φ(γ(ρ, x))

}

1(A)

≤







1− µ

σ
√

ζ(ρ)
(1 + o(1))

∫

√
xζ(ρ)√

µ εu(ρ)

−
√

xζ(ρ)√
µ εu(ρ)

e−
z2

2

√
2π

dz +Φ

(√
µx(1 − ε)u(ρ)

σ
+

σ
√
x log ρ

µ3/2

)







1(A)

≤
{

1− (1 + o(1))

(

1− 2Φ

(

−
√

xζ(ρ)
√
µ

εu(ρ)

))

+Φ

(

−
√
µxεu(ρ)

σ
(1 +O(u(ρ)/ε))

)

}

1(A)

≤ 3Φ

(

−
√
µxεc(x)

σ
(1 + o(1))

)

+ o(1) → 0

as x → ∞, uniformly for ρ̂(x) ≤ ρ < 1. To analyze F (ρ, x) 1(Ac) we note that onAc we have e
xΛ′′

ρ (ξt)

2µ (t−u(ρ))2 =

e−
xµ

2σ2 (t−u(ρ))2+O(xε2u(ρ)3) = (1 + o(1))e−
xµ

2σ2 (t−u(ρ))2 , which yields

F (ρ, x) 1(Ac)

=

∣

∣

∣

∣

∣

√
xµ

σ
√
2π

(1 + o(1))

∫ c(x)∨(1+ε)u(ρ)

c(x)

e−
xµ

2σ2 (t−u(ρ))2dt− Φ(−γ(ρ, x))

∣

∣

∣

∣

∣

1(Ac)

=

∣

∣

∣

∣

∣

(1 + o(1))

∫

√
xµ

σ εu(ρ)

√
xµ

σ (c(x)−u(ρ))

e−
z2

2

√
2π

dz 1(c(x) < (1 + ε)u(ρ))− Φ(−γ(ρ, x))

∣

∣

∣

∣

∣

1(Ac)

≤
∣

∣

∣

∣

Φ

(√
µx

σ
(u(ρ)− c(x))

)

− Φ(−γ(ρ, x))

∣

∣

∣

∣

1(c(x) < (1 + ε)u(ρ)) 1(Ac)

+ Φ

(

−
√
µx

σ
εu(ρ)

)

1(c(x) < (1 + ε)u(ρ)) + Φ(−γ(ρ, x)) 1(c(x) ≥ (1 + ε)u(ρ)) + o(1)

≤ C

∣

∣

∣

∣

√
µx

σ
(u(ρ)− c(x)) + γ(ρ, x)

∣

∣

∣

∣

1(c(x) < (1 + ε)u(ρ)) 1(Ac)

+ Φ

(

−
√
µx

σ(1 + ε)
εc(x)

)

+Φ

(

−
√
µx

σ(1 + ε)
εc(x) + O(xc(x)2)

)

+ o(1)

≤ C
√
xc(x)2 + 2Φ

(

−
√
µx

σ
εc(x)(1 + o(1))

)

+ o(1) → 0

as x → ∞. We have thus shown that (6.1) i s o
(

e
x
µΛρ(u(ρ))

)

as x → ∞, uniformly for ρ̂(x) ≤ ρ < 1. We now

need to show that the same is true of (6.2).

Note that (6.2) is bounded by

C
√
x(1 − ρ)

(

e
x
µΛρ(c(x)∨(1+ε)u(ρ)) + e

x
µΛρ((1−ε)u(ρ)) 1(c(x) < (1− ǫ)u(ρ))

)

∫ d(x)

c(x)

1

t
dt

≤ C
√
x(1− ρ) log

(

ω−1
1 (x)√
x log x

)

(

e
x
µΛρ((1+ε)u(ρ)) 1((1 + ε)u(ρ) > c(x))

+e
x
µΛρ(c(x)) 1((1 + ε)u(ρ) ≤ c(x)) + e

x
µΛρ((1−ε)u(ρ)) 1((1− ε)u(ρ) > c(x))

)

.
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Note that for any t and some ξt between t and u(ρ),

Λρ(t) = Λρ(u(ρ))− |Λ′
ρ(t)||u(ρ) − t|+

|Λ′′
ρ(ξt)|
2

(u(ρ)− t)2,

which gives that for (1± ε)u(ρ) > c(x), Λ′
ρ((1± ε)u(ρ)) = ∓ εµ2u(ρ)

σ2 +O(u(ρ)2), and

Λρ((1± ε)u(ρ)) ≤ Λρ(u(ρ))− |Λ′
ρ((1 ± ε)u(ρ))|εu(ρ) + µ2

2σ2
ε2u(ρ)2(1 + o(1))

= Λρ(u(ρ))−
µ2

2σ2
ε2u(ρ)2(1 + o(1))

≤ Λρ(u(ρ))−
µ2

2σ2
ε2c(x)2(1 + o(1)).

For (1 + ε)u(ρ) < c(x), Λ′
ρ(c(x)) = −µ2

σ2 (c(x)− u(ρ)) +O(c(x)2), and

Λρ(c(x)) ≤ Λρ(u(ρ))− |Λ′
ρ(c(x))||u(ρ) − c(x)|+ µ2

2σ2
(u(ρ)− c(x))2(1 + o(1))

= Λρ(u(ρ))−
µ2

2σ2
(c(x) − u(ρ))2(1 + o(1))

≤ Λρ(u(ρ))−
µ2

2σ2
ε2c(x)2(1 + o(1)).

Therefore, (6.2) is bounded by

C
√
x(1− ρ)(log x)e

x
µΛρ(u(ρ))− xµ

2σ2 ε2c(x)2(1+o(1)) = o
(

e
x
µΛρ(u(ρ))

)

.

This completes the proof.

Finally, we give below the proof of Theorem 3.4.

Proof of Theorem 3.4. Note that by Theorem 3.2 we know that

lim
x→∞

sup
0<ρ<1

∣

∣

∣

∣

P (Wρ(∞) > x)

Zκ(ρ, x)
− 1

∣

∣

∣

∣

= 0,

so for the first statement of Theorem 3.4 it suffices to show that

lim
x→∞

sup
0<ρ<1

∣

∣

∣

∣

Aκ(ρ, x)

Zκ(ρ, x)
− 1

∣

∣

∣

∣

= 0. (6.3)

The second statement, which refers to the uniformity in x as ρ ր 1 will follow from Lemma 3.3 in [17] once
we show that sup0<x<(1−ρ)−1/4 |Aκ(ρ, x) − 1| → 0 as ρ ր 1. To see this is the case simply note that for all

0 < x < (1 − ρ)−1/4

|Aκ(ρ, x) − 1| ≤ (1− ρ)

Kr(x)
∑

n=1

n+
∣

∣

∣
e

x
µΛρ(w(ρ,x)) − 1

∣

∣

∣
≤ C(1 − ρ)Kr(x)

2 +
∣

∣

∣
e

x
µΛρ(w(ρ,x)) − 1

∣

∣

∣

≤ C(1− ρ)x2 + Cx| log ρ| ≤ C(1 − ρ)1/2 + C(1− ρ)−1/4| log ρ| → 0

as ρ ր 1. We now proceed to establish (6.3).
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Let hκ(x) = ω−1
1 (x) if κ = 2 and hκ(x) =

√
x log x if κ > 2, and set un = (x− nµ)/x. Then,

|Zκ(ρ, x)−Aκ(ρ, x)| =

∣

∣

∣

∣

∣

∣

σ
√
x√

2πµ

N(x)
∑

n=M(x)+1

(1− ρ)ρn
enQk(x−nµ

σn )

x− nµ
1(κ > 2)

+ E
[

ρa(x,Z) 1
(

σZ ≤ √
µhk(x)/

√
x
)

]

− e
x
µΛρ(w(ρ,x))

∣

∣

∣

∣

∣

≤ σ
√
x(1 − ρ)√
2πµ

∣

∣

∣

∣

∣

∣

N(x)
∑

n=M(x)+1

ρn
enQk(x−nµ

σn )

x− nµ
−

N(x)
∑

n=M(x)+1

e
x
µΛρ(un)

xun

∣

∣

∣

∣

∣

∣

1(κ > 2)

+

∣

∣

∣

∣

∣

∣

σ(1− ρ)√
2πµx

N(x)
∑

n=M(x)+1

e
x
µΛρ(un)

un
1(κ > 2)

+E
[

ρa(x,Z) 1
(

σZ ≤ √
µhκ(x)/

√
x
)

]

− e
x
µΛρ(w(ρ,x))

∣

∣

∣
.

Define ρ̂(x) = e−2µQ(x)/x. We separate our analysis into two cases.

Case 1: ρ̂(x) ≤ ρ < 1.

Note that for this range of values of ρ we have, by Lemma 3.3, that u(ρ) = −σ2

µ2 log ρ(1 + o(1)), and by

Lemma 5.1 (a.), that u(ρ̂(x)) ≈ 2σ2Q(x)
µx ≤ ω−1

1 (x)
x for all sufficiently large x. It follows that w(ρ, x) =

min{u(ρ), ω−1
1 (x)/x} = u(ρ). Also, by Lemma 6.1 we have that there exists a function ϕ1(x) ↓ 0 as x → ∞

such that

|Zκ(ρ, x) −Aκ(ρ, x)|

≤ ϕ1(x)
σ
√
x(1− ρ)√
2πµ

N(x)
∑

n=M(x)+1

e
x
µΛρ(un)

xun
1(κ > 2) (6.4)

+

∣

∣

∣

∣

∣

∣

σ(1− ρ)√
2πµx

N(x)
∑

n=M(x)+1

e
x
µΛρ(un)

un
− e

x
µΛρ(u(ρ))Φ(−γ(ρ, x))

∣

∣

∣

∣

∣

∣

1(κ > 2) (6.5)

+
∣

∣

∣
e

x
µΛρ(u(ρ))Φ(−γ(ρ, x)) 1(κ > 2) + E

[

ρa(x,Z) 1
(

σZ ≤ √
µhκ(x)/

√
x
)

]

− e
x
µΛρ(u(ρ))

∣

∣

∣

where γ(x, ρ) =
√
µ log x/σ + σ

√
x log ρ/µ3/2. Furthermore, by Lemma 6.2 we have that (6.4) and (6.5) are

bounded by
ϕ1(x)e

x
µΛρ(u(ρ)) (Φ(−γ(ρ, x)) + ϕ2(x)) + ϕ2(x)e

x
µΛρ(u(ρ))

for some other ϕ2(x) ↓ 0. Since by Lemma 5.2 we have that Zκ(ρ, x) ≥ Ce
x
µΛρ(u(ρ)) on ρ̂(x) ≤ ρ < 1, it only

remains to show that the term following (6.5) is o
(

e
x
µΛρ(u(ρ))

)

. First we notice that exact computation gives

∣

∣

∣
e

x
µΛρ(u(ρ))Φ(−γ(ρ, x)) 1(κ > 2) + E

[

ρa(x,Z) 1
(

σZ ≤ √
µhk(x)/

√
x
)

]

− e
x
µΛρ(u(ρ))

∣

∣

∣

= e
x
µΛρ(u(ρ))

∣

∣

∣

∣

∣

Φ(−γ(ρ, x)) 1(κ > 2) + e
x
µ

(

log ρ+σ2(log ρ)2

2µ2 −Λρ(u(ρ))

)

Φ

(√
µhκ(x)

σ
√
x

+
σ
√
x log ρ

µ3/2

)

− 1

∣

∣

∣

∣

∣

=















e
x
µΛρ(u(ρ))Φ

(

−
√
µω−1

1 (x)

σ
√
x

− σ
√
x log ρ
µ3/2

)

, κ = 2,

e
x
µΛρ(u(ρ))Φ (γ(ρ, x))

∣

∣

∣

∣

∣

e
x
µ

(

log ρ+ σ2(log ρ)2

2µ2 −Λρ(u(ρ))

)

− 1

∣

∣

∣

∣

∣

, κ > 2.
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When κ = 2 we simply have

sup
ρ̂(x)≤ρ<1

Φ

(

−
√
µω−1

1 (x)

σ
√
x

− σ
√
x log ρ

µ3/2

)

= Φ

(

−
√
µω−1

1 (x)

σ
√
x

+
2σQ(x)

µ1/2
√
x

)

→ 0

as x → ∞, since by Lemma 5.1 (a.) Q(x)/ω−1
1 (x) → 0. When κ > 2 note that

sup
ρ̂(x)≤ρ<1

Φ (γ(ρ, x))

∣

∣

∣

∣

∣

e
x
µ

(

log ρ+
σ2(log ρ)2

2µ2 −Λρ(u(ρ))

)

− 1

∣

∣

∣

∣

∣

≤ C sup
ρ̂(x)≤ρ<1

Φ

(√
µ log x

σ
− σ

√
x| log ρ|
µ3/2

)

x| log ρ|3

≤ C√
x

sup
0<t≤2σQ(x)/

√
µx

Φ

(√
µ log x

σ
− t

)

t3

≤ C

x1/8
+

C√
x

sup
t≥x1/8

Φ

(

−t

(

1−
√
µ log x

σx1/8

))

t3 → 0

as x → ∞.

Case 2: 0 < ρ ≤ ρ̂(x).

For this range of values of ρ we use Lemma 5.2 to obtain that Zκ(ρ, x) ≥ Cρ(1− ρ)−1e−Q(x), which together
with Lemma 6.1 gives, for 0 < ρ ≤ ρ̂(x),

|Zκ(ρ, x)−Aκ(ρ, x)|
Zκ(ρ, x)

≤ C(1 − ρ)eQ(x)

ρ







(1− ρ)√
x

N(x)
∑

n=M(x)+1

e
x
µΛρ(un)

un
1(κ > 2)

+ E
[

ρa(x,Z) 1
(

σZ ≤ √
µhκ(x)/

√
x
)

]

+ e
x
µΛρ(w(ρ,x))

}

≤ Cρ−1eQ(x)

{

√
xe

x
µΛρ(w(ρ,x))

∫ ω−1
1 (x)+µ

√
x log x

1

u
du 1(κ > 2)

+e
x
µ log ρ+σ2x(log ρ)2

2µ3 Φ

(√
µhκ(x)

σ
√
x

+
σ
√
x log ρ

µ3/2

)

+ e
x
µΛρ(w(ρ,x))

}

.

Let ζ = max{1, 2µ2/σ2} and ρ̄(x) = e−ζω−1
1 (x)/x and note that

sup
0<ρ<ρ̄(x)

|Zκ(ρ, x)−Aκ(ρ, x)|
Zκ(ρ, x)

≤ sup
0<ρ<ρ̄(x)

Cρ−1eQ(x)

{√
x log x e

x
µΛρ(ω

−1
1 (x)/x)

+e
x
µ log ρ+ σ2x(log ρ)2

2µ3 Φ

(

−σ
√
x| log ρ|
µ3/2

(

1− µ2hκ(x)

σ2x| log ρ|

))}

≤ sup
0<ρ<ρ̄(x)

Cρ−1eQ(x)

{

xe
x
µΛρ(ω

−1
1 (x)/x) +

1√
x| log ρ|e

x
µ log ρ+

σ2x(log ρ)2

2µ3 − σ2x(log ρ)2

2µ3

(

1− µ2hκ(x)

σ2x| log ρ|

)2}

≤ CeQ(x) sup
0<ρ<ρ̄(x)

{

xe
(x−ω

−1
1 (x)−µ)

µ log ρ+O

(

(ω
−1
1 (x))2

x

)

+
1√

x| log ρ|e
(x−hκ(x)−µ)

µ log ρ

}

= CeQ(x)

{

xe−
ζω

−1
1 (x)

µ (1+o(1)) +

√
x

ω−1
1 (x)

e−
ζω

−1
1 (x)

µ (1+o(1))

}

,



M. Olvera-Cravioto and P. Glynn/Uniform Approximations for the M/G/1 Queue 37

which converges to zero as x → ∞ since by Lemma 5.1, Q(x)/ω−1
1 (x) → 0 and

√
x/ω−1

1 (x) → 0. For the
range ρ̄(x) ≤ ρ ≤ ρ̂(x) we have, by Lemma 3.3,

sup
ρ̄(x)≤ρ≤ρ̂(x)

|Zκ(ρ, x)−Aκ(ρ, x)|
Zκ(ρ, x)

≤ sup
ρ̄(x)≤ρ≤ρ̂(x)

CeQ(x)

{√
x log xe

x
µΛρ(u(ρ)) 1(κ > 2) + e

x
µ log ρ+σ2x(log ρ)2

2µ3 + e
x
µΛρ(u(ρ))

}

≤ sup
ρ̄(x)≤ρ≤ρ̂(x)

CeQ(x)xe
x
µ log ρ+σ2x(log ρ)2

2µ3 (1+o(1))

= CxeQ(x)+ x
µ log ρ̂(x)(1+o(1)) = Cxe−Q(x)(1+o(1)),

which also converges to zero as x → ∞ since Q(x) ≥ 2 logx by (2.2). This completes the proof.

7. Numerical examples

We conclude the paper with two examples comparing simulated values of P (W∞(ρ) > x) to the approxima-
tions Zκ(ρ, x) and Aκ(ρ, x) suggested by Theorems 3.2 and 3.4. For illustration purposes we also plot the
heavy-tail and heavy-traffic approximations

ρ

1− ρ
F (x) and exp

{

−x

µ
(1− ρ)

}

.

The simulated values of P (W∞(ρ) > x) were obtained using the conditional Monte Carlo algorithm from
[2], and each point was estimated using 100,000 simulation runs. We point out that simulating heavy-tailed
queues in heavy traffic is very difficult, and in particular, the simulated values of P (W∞(ρ) > x) for pairs
(x, ρ) in the region around the point where the queue’s behavior transitions from the heavy traffic regime into
the heavy tail regime, are highly unreliable. In terms of the approximations Zκ(ρ, x) and Aκ(ρ, x) suggested
in this paper, they tend to be sensitive to the mean and variance of the integrated tail distribution, µ and
σ, respectively, so we suggest first scaling the queue in such a way that both parameters are small (of order
one). We give two examples below, one in which the integrated tail distribution is lognormal and one where
it is heavy-tailed Weibull; note that no M/G/1 queue can have exactly Weibull integrated tail distribution,
since its density is not monotone, but there are valid distributions (with decreasing densities) whose tail is
asymptotically Weibull. For the lognormal(α, β) example we used Q(x) = (log x−α)2/(2β2), which although
an approximation to logF (x) works well in practice.
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Fig 1. Lognormal(α, β) integrated tail with ρ = 0.9, α = 0, β = 1.
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Table of Notation
(in order of appearance, first time it appears)

F (t), F (t) §2 Λρ(t) (3.7)
G(t), G(t) §2 u(ρ) §3 in Lemma 3.3
Q(t) §2 Pκ(ρ, x) §3 in Lemma 3.3
q(t) §2 Aκ(ρ, x) (3.8)
r (2.1) w(ρ, x) (3.8)

a(r) §2 in Assumption 1 V (t), V (t) §4 in Assumption 2

β (2.2) Q̃(t) §4 in Assumption 2 and (4.7)
µ §2 D(t) §4 in Assumption 2
σ2 §2 r̃ §4 in Assumption 2

κ (2.3) S̃n §4
W∞(ρ) §3 b(t), b−1(t) (4.1)
Sn §3 L(h) §4 in Lemma 4.2
Φ(t) (3.2) H(z) §4 in Lemma 4.2
Qκ(t) (3.4) π(z, n) (4.3)
Y1 §3 π̃(y, n) (4.4)
ω1(t), ω

−1
1 (t) §3 J(y, n) (4.5)

ω2(t), ω
−1
2 (t) §3 Cn (4.6)

Kr(x) §3 π̂κ(x, n) (4.8)
M(x) §3 Sκ(ρ, x) (4.13)
N(x) §3 ρ̂(x) §5 in Lemma 5.2
Zκ(ρ, x) (3.5) and (3.6) Ei(ρ, x), i = 1, 2, 3 §5
Z §3 in (3.5) and (3.6) hκ(x) §5 in Lemma 5.5
a(x, z) §3 in (3.5) and (3.6) γ(x, ρ) §6 in Lemma 6.2
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