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Abstract

We consider the class of closed generic fluid networks (GFN) models,
which provides an abstract framework containing a wide variety of fluid
networks. Within this framework a Lyapunov method for stability of GFN
models was proposed by Ye and Chen. They proved that stability of a
GFN model is equivalent to the existence of a functional on the set of paths
that is decaying along paths. This result falls short of a converse Lyapunov
theorem in that no state dependent Lyapunov function is constructed. In
this paper we construct state-dependent Lyapunov functions in contrast
to path-wise functionals. We first show by counterexamples that closed
GFN models do not provide sufficient information that allow for a converse
Lyapunov theorem. To resolve this problem we introduce the class of strict
GFN models by forcing the closed GFN model to satisfy a concatenation
and a semicontinuity condition of the set of paths in dependence of initial
condition. For the class of strict GFN models we define a state-dependent
Lyapunov and show that a converse Lyapunov theorem holds. Finally, it
is shown that common fluid network models, like general work-conserving
and priority fluid network models as well as certain linear Skorokhod
problems define strict GFN models.

1 Introduction

An effective tool to model complex manufacturing systems, computer systems
or telecommunication networks is the family of multiclass queueing networks.
An example for this occurs in semiconductor fabrication, where production lines
are modeled as reentrant lines, which are a special case of multiclass queueing
networks. Especially in the pursuit of deriving good control strategies for mul-
ticlass queueing networks the question of stability arises. For a long period a
common belief was that a sufficient condition for stability is that the traffic in-
tensity is strictly less then one. But in 1993 Kumar and Seidman [26] presented
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a network with two stations processing four types of jobs which is unstable
although the traffic intensity at each station is less than one. This example
inspired a number of examples with different service disciplines, like first-in-
first-out (FIFO) and priority, that have surprising properties. In the literature
they are known as the Lu-Kumar network, the Rybko-Stolyar network or the
Bramson network, see e.g. [5] or [6], [16] and [29]. In recent years further disci-
plines like maximum pressure and join-the-shortest-queue are investigated [15],
[17], [18]. Rybko and Stolyar [29] and Dai [12] pursued the strategy of rescaling
the stochastic processes that describe the dynamics of a multiclass queueing
network and considered the limit obtained under scaling. This limit is called
the fluid limit model for the queueing network and is a continuous deterministic
model. Of course, deterministic models are much easier to investigate. The
great benefit of this approach is, that the stability of the corresponding fluid
limit model is sufficient for the stability of a multiclass queueing network [12].
In addition, there are conditions for instability of queueing networks relative
to their fluid limit model [13, 27]. A discussion of the relationship between
queueing networks and fluid models can be found in [6].

Due to this fact the question arises, under which conditions fluid limit models
are stable. A fluid model is called stable if the fluid level process Q with unit
initial level is drained to zero in a uniform finite time τ and remains zero beyond
τ . Of course, conditions that guarantee stability depend on the service discipline
of the network. In [7] Chen states necessary and sufficient conditions for stability
of general work-conserving fluid networks. Stability conditions for fluid networks
under FIFO and priority discipline have been derived by Chen and Zhang [10],
[11]. Often the strategy to prove such conditions is to use a Lyapunov function.
In this context a locally Lipschitz function V : RK

+ → R+ such that V (x) = 0 if
and only if x = 0 is called a Lyapunov function, if there exists a constant ε > 0
such that for each fluid model solution it holds that

d
dt
V (Q(t)) ≤ −ε

whenever Q(t) 6= 0 and the derivative at time t exists for the map s 7→ V (Q(s)).
For more details see [14]. Within this framework linear Lyapunov functions of
the form

V (x) = hTx, x ∈ R
n
+

where h is some positive vector in R
K
+ are used to establish a sufficient condition

for the stability of fluid network models under a priority discipline [11]. The
special case for this where h = (1, ..., 1)T is used the show that a fluid model of a
re-entrant line operating under last-buffer-first-served (LBFS) service discipline
is stable, if the usual traffic condition ρj < 1 is satisfied for all stations j [14].
This special case is also used to prove a stability condition for fluid networks
under the join-the-shortest-queue discipline [15]. Ye and Chen investigated fluid
networks under priority disciplines by using piecewise linear Lyapunov functions
of the form

V (x) = max
1≤j≤N

hT
j x
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for some nonnegative vectors h1, ..., hN , for details see [9]. This approach yields
a sharper stability condition for fluid networks under priority discipline than in
[11]. Furthermore, in the verification of a stability condition for fluid networks
under general work-conserving disciplines a quadratic Lyapunov function

V (x) = xT Ax

with a strictly copositive matrix A is used [7]. What all the works mentioned
above have in common is that the existence of Lyapunov functions is only shown
to be sufficient for stability.

Before we investigate the question whether the existence of a Lyapunov
function is also necessary for the stability of a fluid network, we recall briefly
the basic idea of a Lyapunov function from the theory of dynamical systems.
For a detailed description the reader is referred e.g. to [3], [24]. Consider a
dynamical system

ẋ = f(x), x ∈ R
n, t ∈ [0,∞) (1)

with initial condition x(0) = x0 and continuous f , where the origin is an equi-
librium position, i.e. f(0) = 0. A real valued map V : Br ⊂ R

n → R is called
a strict Lyapunov function for (1) if (i) it is positive definite and proper, i.e.
there exist continuous and strictly increasing function a, b : [0, r) → [0,∞) with
a(0) = b(0) = 0 such that

a(‖x‖) ≤ V (x) ≤ b(‖x‖), x ∈ Br (2)

and (ii) if there exists a continuous and strictly increasing function w : [0, r) →
[0,∞) with w(0) = 0 such that for every solution x(·) and each interval I ⊂
[0,∞) one has

V (x(t2))− V (x(t1)) ≤ −

∫ t2

t1

w(‖x(t)‖)dt (3)

for each t1 < t2 ∈ I provided that x(·) is defined on I and x(t) ∈ Br for t ∈ I.
It is well known that the origin is locally asymptotically stable, if and only if
there is a strict Lyapunov function [3].

In order to obtain a so called converse Lyapunov theorem for fluid networks
Ye and Chen followed a different, more general approach [34]. They collected the
characteristic properties of fluid networks and defined a generic fluid network
(GFN) model as set Φ of functions Q : R+ → R

K
+ that satisfy a few natural

properties. A precise description of a GFN model is given in Section 2. They
proved that stability of a GFN model is equivalent to the property that for every
function Q ∈ Φ a Lyapunov functional v : R+ → R+ is decaying along Q. In
particular, v can be chosen as

v(t) =

∫ ∞

t

‖Q(s)‖ds. (4)

It can be seen that this approach differs from the one taken in the theory
of dynamical systems in which Lyapunov functions are state-dependent. The
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dependence on solutions is undesirable, because the benefit of Lyapunov’s second
method is that trajectories need not be known to be able to determine stability,
whereas the method of Ye and Chen requires the knowledge of all solutions. In
this paper we define a state-dependent Lyapunov function and prove a converse
Lyapunov theorem.

This paper is organized as follows. In the Section 2 we recall the definition of
a GFN model from [34]. Further we discuss counterexamples to emphasize that
the class of (closed) GFN models is too general to provide a converse Lyapunov
theorem with state-dependent Lyapunov functions. In the Section 3 we intro-
duce the class of strict GFN models by forcing the closed GFN models to satisfy
additionally a concatenation and a lower semicontinuity property. The concate-
nation property is essential for state-dependent Lyapunov functions whereas
lower semicontinuity gives the additional benefit of continuity. For this model
class we define a state-dependent Lyapunov function and prove that within this
framework the stability of a strict GFN model is equivalently characterized by
the existence of a state-dependent Lyapunov function. In Section 4 we recall
some results from differential inclusions and viability theory that will be useful
in Section 5. There we show that general work-conserving and priority fluid net-
works define strict GFN models. In Section 6 we consider fluid limit models of
queueing networks for a specific class of disciplines and in Section 7 we comment
on linear Skorokhod problems. In Section 8 we explain why the approach of the
current paper is not immediately applicable to FIFO systems. We conclude in
Section 9.

We now collect some notations that will be used throughout the paper. By
R

K
+ we denote the nonnegative orthant {x ∈ R

K : x ≥ 0}, where ≥ has to
be understood component-wise. Throughout the paper we mostly consider the
space (RK

+ , ‖ · ‖) with ‖x‖ :=
∑K

i=1 |xi|. Let D(R+,R
K
+ ) denote the space of

right continuous functions f : R+ → R
K
+ having left limits that is endowed

with the Skorokhod topology [21]. Let C(R+,R
K
+ ) be the subset of continuous

functions. A sequence of functions, denoted by (fn(t))n∈N, in D(R+,R
K
+ ) is

said to converge uniformly on compact sets (u.o.c.) to a continuous function
f(t) ∈ C(R+,R

K
+ ), if for any T > 0

lim
n→∞

sup
t∈[0,T ]

‖fn(t)− f(t)‖ = 0.

We say that a function g : RK
+ → R is upper semicontinuous in a ∈ R

K
+ , if

g(a) ≥ lim supx→a g(x). Of course, g is called upper semicontinuous if it is
upper semicontinuous for every a ∈ R

K
+ . Further a function g : RK

+ → R+ is
lower semicontinuous at a ∈ R

K
+ if −g is upper semicontinuous in a ∈ R

K
+ and g

is called lower semicontinuous if g is lower semicontinuous in every point. We use
 to denote set-valued maps. Let X and Y denote metric spaces. A set-valued
map F : X  Y is a mapping that maps every x ∈ X into a set F (x), called the
value of F at x. The domain of a set-valued map F : X  Y is the subset of
elements x ∈ X such that the values F (x) are non empty. i.e. dom(F ) = {x ∈
X : F (x) 6= ∅}. The image of F is the union of all values F (x) for all x ∈ X .
The graph of a set-valued map F is graph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}.
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A set-valued map F is said to be closed-valued if the values of F are closed, i.e.
for every x ∈ X the set F (x) is closed. Accordingly, F is said to be convex if
the images are convex. Moreover, a set-valued map F : X  Y is called lower
semicontinuous at x ∈ dom(F ) if for any y ∈ F (x) and for any sequence of
elements (xn)n∈N ∈ dom(F ) converging to x, there exists a sequence (yn)n∈N

with yn ∈ F (xn) converging to y. F is said to be lower semicontinuous if it is
lower semicontinuous at every point x ∈ dom(F ). In addition, a set-valued map
F is called upper semicontinuous at x ∈ dom(F ), if for any open neighborhood
U ⊃ F (x) there is an ε > 0 such that for all x′ ∈ B(x, ε) ∩ dom (F ) it holds
that F (x′) ⊂ U . Again F is said to be upper semicontinuous if it is upper
semicontinuous at every point x ∈ dom(F ).

Finally, by K we denote the set of continuous functions w : R+ → R+ that
satisfy w(0) = 0 and are strictly increasing.

2 Generic fluid network models

In this section we consider generic fluid network models introduced by Ye and
Chen in [34]. They present a trajectory-based Lyapunov method for character-
izing the stability of fluid networks, in which the Lyapunov function depends
on the path of the closed GFN model. First we recall from [34] the definition
of a closed generic fluid network (closed GFN) model and the conditions for a
function to be a Lyapunov function. Then we define a candidate for a Lyapunov
function that does not depend on the path and show that in the setting it is
not continuous in general. Further we give a counterexample that shows that
within the class of closed GFN models the concatenation of two paths is not
automatically contained in a closed GFN model, if the queue lengths at the time
of concatenation coincide.

Definition 2.1. [34] A nonempty set Φ of functions Q(·) : R+ → R
K
+ is said

to be a GFN model, if

(a) there is a L > 0, such that for any Q(·) ∈ Φ and t, s ∈ R+ it holds that

‖Q(t)−Q(s)‖ ≤ L |t− s|.

(b) Q(·) ∈ Φ implies 1
r
Q(r·) ∈ Φ for all r > 0.

(c) Q(·) ∈ Φ implies Q(s+ ·) ∈ Φ for all s ≥ 0.

Furthermore, if the following condition is also satisfied, then we call Φ a closed
GFN model.

(d) if a sequence (Qn)n∈N ⊂ Φ converges to Q∗ u.o.c, then Q∗ ∈ Φ.

Any element Q(·) of Φ is called a path (of Φ) and the set of paths with initial
level one is denoted by Φ(1) = {Q(·) ∈ Φ : ‖Q(0)‖ = 1}. Condition (a) states
that the functions Q(·) are Lipschitz continuous, where condition (b) is a scaling
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property and condition (c) is a shift property. We note that the terminology
closed is not related to closed queueing networks where a fixed number of job
circulate in the network. Rather, the content of condition (d) is that the set Φ
is closed in the topology of uniform convergence on compact sets. For future use
we also introduce for x ∈ R

K
+ the set Φx = {Q(·) ∈ Φ : Q(0) = x}. Moreover we

recall from [34] the definition of stability of a GFN model.

Definition 2.2. A GFN model Φ is said to be stable, if there exists a τ > 0,
such that Q(τ + ·) ≡ 0 for any path Q(·) ∈ Φ(1).

From a dynamical systems perspective the definition of stability for a closed
GFN model Φ seems to deviate from the asymptotic stability in the Lyapunov
sense, where asymptotic stability is described by the following. The zero path
is said to be asymptotically stable, provided that

Lemma 2.3. Φ is stable if and only if the zero path is asymptotically stable in
the sense of Lyapunov.

Proof. Suppose that Φ is stable, i.e. there is a τ < ∞ such that Q(t) = 0
for all Q ∈ Φ(1) and all t ≥ τ . Let Q(·) ∈ Φ and denote q := ‖Q(0)‖. The
scaling property implies that 1

q
Q(q t) ∈ Φ(1) and consequently, Q(qt) = 0 for all

t ≥ q−1τ . This implies limt→∞ ‖Q(t)‖ = 0 and attractivity holds true. In [32]
Theorem 6.1 it is shown that the stability of Φ is equivalent to the condition

inf
t≥0

‖Q(t)‖ ≤ 1

for all Q(·) ∈ Φ(1). This means that there is no Q(·) ∈ Φ such that ‖Q(t)‖ ≥
‖Q(0)‖ for all t ≥ 0. Stability then follows by choosing ε = δ.
Conversely, let Q(·) ≡ 0 be asymptotically stable in the sense of Lyapunov.
Due to the scaling property it suffices to consider a Q(·) ∈ Φ(1). Then, by
attractivity it holds that limt→∞ ‖Q(t)‖ = 0. Proceeding exactly as in the
proof of Theorem 6.1 in [32] shows the assertion.

The notion of stability of a GFN may also be expressed by saying that the
zero fluid level process Q0(·) ≡ 0 is the unique stable and attractive fixed point
of the shift operator δτQ (·) := Q(·+ τ) defined on Φ.

The Lyapunov method to characterize stability of closed GFN models pre-
sented in [34] is as follows. A GFN model Φ is said to satisfy the L-condition, if
there exist class K-functions wi : R+ → R+, i = 1, 2, 3 such that for any GFN
path Q ∈ Φ there exists an absolutely continuous function v : R+ → R+ such
that

w1(‖Q(t)‖) ≤ v(t) ≤ w2(‖Q(t)‖), (5)

v̇(t) ≤ −w3(‖Q(t)‖) (6)

for almost all t ≥ 0. The corresponding converse Lyapunov theorem is then
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Theorem 2.4. A GFN model Φ is stable if and only if the L-condition is
satisfied. In particular, given Q ∈ Φ the function v can be chosen as

v(t) :=

∫ ∞

t

‖Q(s)‖ds. (7)

We note that an equivalent way of interpreting v is as a functional v̄ : Φ →
R+ on the GFN model with the following properties. There are comparison
function such that for each path Q(·) ∈ Φ its value under the functional v̄ can
be estimated from below and above by its initial value. That is, for any Q(·) ∈ Φ
it holds that

w1(‖Q(0)‖) ≤ v̄(Q) ≤ w2(‖Q(0)‖).

Furthermore, the evolution of v̄(Q) can also be estimated in terms of a compar-
ison function. Precisely, the mapping t 7→ v̄(Q)(t+ ·) satisfies

d

dt
v̄(Q)(t+ ·) ≤ −w3(‖Q(t)‖).

For this reason we refer to v, interpreted as v(0) =: v̄(Q), as a Lyapunov func-
tional. As mentioned in the introduction the drawback of this definition is that
the Lyapunov functional is path-dependent as opposed to be state-dependent,
which is the basic idea of a Lyapunov function for a dynamical system. The
definition of a Lyapunov function that only uses information of the state is as
follows. We denote by A(Φ) = {x ∈ R

K
+ : ∃Q(·) ∈ Φ, Q(0) = x}.

Definition 2.5. Given a GFN model Φ a function V : A(Φ) → R+ is said to be
a Lyapunov function, if there exist class K functions wi : R+ → R+, i = 1, 2, 3
such that

w1(‖x‖) ≤ V (x) ≤ w2(‖x‖) , x ∈ A(Φ) (8)

V (Q(t))− V (Q(s)) ≤ −

∫ t

s

w3(‖Q(r)‖) dr (9)

for all 0 ≤ s ≤ t ∈ R+ and all paths Q(·) ∈ Φ.

For our purposes a certain candidate is useful; we consider in particular
V : A(Φ) → R+ ∪ {∞} defined by

V (x) = sup
Q(·)∈Φx

∫ ∞

0

‖Q(s)‖ds. (10)

In the sequel we assume that A(Φ) = R
K
+ . The function V defined in (10)

can be interpreted as a measurement of the state x in the sense that V (x) rep-
resents the total possible fluid mass that the network has to deal with. An
interesting question concerns the regularity of V . Of course, we aim for con-
tinuous dependence on the state, as this would entail robustness of stability,
see [33], [25]. Note that for stable closed GFN models the supremum in (10) is
actually attained because of the requirement of closedness in Definition 2.1 (d).
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Proposition 2.6. If Φ is a stable closed GFN model, then the function V :
A(Φ) → R+ defined in (10) is well defined and upper semicontinuous.

Proof. It is an easy consequence of Lipschitz continuity, scaling property and
stability that V (x) as defined in (10) is finite. Let x ∈ R

K
+ and (xn)n∈N ⊂ R

K
+

be a sequence that converges to x. As Φ is stable the set {V (xn) : n ∈ N} is
bounded. Hence there exists a subsequence (xnl

)l∈N such that

lim sup
n→∞

V (xn) = lim
l→∞

V (xnl
) = lim

l→∞

∫ ∞

0

‖Qnl
(s)‖ds

with Qnl
(0) = xnl

. Now, consider the family {Qnl
(·) : l ∈ N }. Since Φ is stable

the family {Qnl
(·) : l ∈ N } is bounded. By condition (a) in Definition 2.1 there

is a single Lipschitz constant for any path Qnl
(·) of the family {Qnl

(·) : l ∈ N }
and thus the family is equicontinuous. By the theorem of Arzelà-Ascoli there
exists a subsequence which converges u.o.c. to some Q∗(·) with Q∗(0) = x.
Since the model is closed it follows that Q∗(·) ∈ Φ. Hence by the definition of
V it holds that

lim sup
n→∞

V (xn) = lim
l→∞

∫ ∞

0

‖Qnl
(s)‖ds =

∫ ∞

0

‖Q∗(s)‖ds ≤ V (x).

This shows the assertion.

As we are interested in the continuity of V the question remains whether V
is also lower semicontinuous.

Example 2.7. Let K = 2 and

Φ =

{(

(x1 − t)+

(x2 − t)+

)

,

(

(c− 1
2 t)

+

(c− 1
2 t)

+

)

: x1, x2, c ∈ R+

}

.

It is easy to check that Φ is a stable closed GFN model. We consider x0 = (1 1)T

and xn = (1 + 1
n
1− 1

n
)T . It holds that

lim
n→∞

V (xn) = lim
n→∞

∫ ∞

0

(1 +
1

n
− t)+ + (1 −

1

n
− t)+dt

= lim
n→∞

1

2

(

(1 +
1

n
)2 + (1−

1

n
)2
)

= 1

< 2 =

∫ 2

0

2(1−
1

2
t)dt = V (x0).

So V defined by (10) is not necessarily lower semicontinuous for stable closed
GFN models.

Remark 2.8. The example shows that in the frame of Definition 2.1 our candi-
date V is not continuous in general. The problem with this example is that along
the diagonal a particular solution exists which is not approximated by solutions
starting close to but not on the diagonal.
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The key property of a Lyapunov function V for a dynamical system is, that
V is decreasing along trajectories. The trajectories in the context of closed
GFN models are the paths. The next example addresses this problem. Here the
concatenation of paths plays a key role. For this reason we provide a definition.

Definition 2.9. Let Φ be a closed GFN model and suppose that Q1(·), Q2(·)
are paths of Φ such that for some t∗ ≥ 0 it holds that Q1(t

∗) = Q2(0). Then
Q1 ⋄t∗ Q2 defined by

Q1 ⋄t∗ Q2(t) :=

{

Q1(t) for 0 ≤ t ≤ t∗,

Q2(t− t∗) for t ≥ t∗

is called the concatenation of Q1(·) and Q2(·) at t∗.

In the previous definition note that if Q1(t
∗) = Q2(s) for an arbitrary

s ≥ 0, then because of the shift property we can consider the concatenation
of Q1(·), Q2(s+ ·). In this sense evaluation of Q2 at 0 in the definition poses no
restriction.

Example 2.10. Let K = 2 and define for given x1, x2 ∈ R+ the paths

Q1(t) =























(

x1 − t

x2 + t

)

if 0 ≤ t ≤ x1,

(

0

x1 + x2 − t

)+

if t ≥ x1.

and

Q2(t) =























(

x1 + t

x2 − t

)

if t ≤ x2,

(

x1 + x2 − t

0

)+

if t ≥ x2.

Then consider the stable closed GFN model

Φ = {Q1(·), Q2(·) : x1, x2 ∈ R+} .

In this GFN model it is obvious that paths cannot be concatenated. However,
let us assume that V is a state-dependent Lyapunov function which is decaying
along paths. The closed GFN model Φ has the following property. For every
state z = (z1, z2) there is a state y = (y1, y2) such that there two paths that
go to zero, where one path starts in z and passes through y and the other path
starts in y and passes through z. As V is decaying along paths it follows that

V (z) < V (y) and V (y) < V (z),

which is a contradiction.

Example 2.10 shows that in the framework of Definition 2.1 there are GFNs
that are stable and for which no Lyapunov function in the sense of Definition 2.5
can be defined. It will thus be the aim of the following section to identify
situations where this is possible.
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3 A Converse Lyapunov Theorem

In this section we present a way out of the dilemma. We restrict the class of
closed GFN models by adding two conditions, namely a concatenation property
and a lower semicontinuity property. Fluid models with these properties are
called strict GFN model. The main result of this section is that the Lyapunov
function candidate (10) is appropriate to prove a converse Lyapunov theorem for
the class of strict GFN models. The road map is as follows. First we present the
two additional conditions for the closed GFN model. After that we show that
under this conditions the candidate (10) is continuous. In the sequel we prove
the main theorem. Similar to the closed GFN model we introduce the following
notations Q(1) = {Q(·) ∈ Q : ‖Q(0)‖ = 1} and Qx = {Q(·) ∈ Q : Q(0) = x} for
x ∈ R

K
+ .

Definition 3.1. A set Q of functions Q(·) : R+ → R
K
+ is a strict GFN model,

if

(a’) it is a closed GFN model

(e) for GFN paths Q1(·), Q2(·) ∈ Q with Q1(t
∗) = Q2(0) for some t∗ ∈ R+,

the concatenation Q1 ⋄t∗ Q2(·) is also a path of Q.

(f) there is a T > 0 such that the set-valued map x  Qx

∣

∣

[0,T ]
is lower

semicontinuous.

It is possible that a closed GFN model satisfies (e) and not (f). We do not
introduce yet another name for such GFN models but simply speak of a closed
GFN model satisfying (e).

Remark 3.2. We note for further reference, that for GFN models satisfying
(e) the semicontinuity condition (f) can be stated equivalently as

(f ’) for each x0 so that Qx0 6= ∅ there exists a T (x0) > 0 such that the set-
valued map x Qx

∣

∣

[0,T (x0)]
is lower semicontinuous at x0.

It is clear that (f) implies (f ’). Conversely, note first that the uniform Lipschitz
constant guaranteed by Definition 2.1 (a) implies that if a sequence of paths
(Qn)n∈N converges u.o.c. on an interval [0, T1), T1 < ∞, then the sequence
converges uniformly on the closed interval [0, T1]. Now fix any T > 0, x0 and
a T0 := T (x0) such that (f ’) holds. Choose Q(·) ∈ Qx0 and a sequence (xn)n∈N

converging to x0. We have to construct a sequence Qn(·) ∈ Qxn
such that

Qn(·) → Q(·) uniformly on [0, T ]. We may assume that T0 < T as otherwise
there is nothing to show. By assumption there exist Q1

n(·) ∈ Qxn
such that

Q1
n(·) → Q(·) uniformly on [0, T0]. In particular, Q1

n(T0) → Q(T0). By the shift
property Q(T0 + ·) ∈ QQ(T0) and so for T1 := T (Q(T0)) we may by (f ’) choose

a sequence Q̃1
n(·) ∈ QQ1

n(T0) such that Q̃1
n(·) → Q(T0 + ·) uniformly on [0, T1].

Now define the concatenation Q2
n := Q1

n⋄T0 Q̃
1
n(·) and note that Q2

n(·) → Q(·)
uniformly on [0, T0 + T1]. Repeating this step countably often, we can construct

10



an open interval [0, T̄ ) such that there exist Q̄n(·) ∈ Qxn
such that Qn(·) → Q(·)

u.o.c. on [0, T̄ ). Assume that T̄ < ∞ is chosen as the maximal real for which
this u.o.c. convergence is possible.

Then by our first remark Qn(·) → Q(·) uniformly on [0, T̄ ]. Then we can
repeat the argument and extend the uniform convergence to the interval [0, T̄ +
T (Q(T̄ ))]. This contradicts the assumption that T̄ was chosen to be maximal.
This shows the equivalence, as T̄ can be arbitrarily large and so chosen to be
bigger than T .

We have seen that the absence to certain concatenations is an impediment
to the existence of Lyapunov function in Example 2.10. Next we show that
conditions (e) and (f) close the gap from upper semicontinuity to continuity.

Proposition 3.3. If Q is a stable strict GFN model, then V defined in (10) is
continuous.

Proof. We show that V is lower semicontinuous as the continuity of V then
follows together with Proposition 2.6. Let x∗ ∈ R

K
+ and Q∗(·) ∈ Qx∗ be such

that

V (x∗) =

∫ ∞

0

‖Q∗(s)‖ds.

Further let (xn)n∈N be a sequence that converges to x∗. By condition (f) in

Definition 3.1 there exists a T > 0 and a sequence
(

Qn(·)
∣

∣

[0,T ]

)

n∈N

in Qxn

∣

∣

[0,T ]

that converges uniformly to Q∗(·)
∣

∣

[0,T ]
. In particular, x1

n := Qn(T )
∣

∣

[0,T ]
con-

verges to x1 := Q∗(T )
∣

∣

[0,T ]
as n → ∞. Moreover, for Q1

∗(·)
∣

∣

[0,T ]
∈ Qx1

∣

∣

[0,T ]
such

that Q1
∗(·)
∣

∣

[0,T ]
= Q∗(·)

∣

∣

[T,2T ]
condition (f) yields the existence of a sequence

Q1
n(·) ∈ Qx1

n

∣

∣

[0,T ]
satisfying

lim
n→∞

Q1
n(·)

∣

∣

[0,T ]
= Q1

∗(·)
∣

∣

[0,T ]
uniformly .

Using the concatenation property (e) we have a sequence (Qn(·)|[0,2T ])n∈N ∈
Qxn

|[0,2T ] that converges u.o.c. to Q∗(·)|[0,2T ] ∈ Qx∗ |[0,2T ]. A successive con-
tinuation in this manner yields the existence of a sequence Qn(·) ∈ Qxn

that
converges u.o.c. to Q∗(·) ∈ Qx∗ . As Q is stable and using the same arguments
as in the proof of Proposition 2.6 we have

V (x∗) =

∫ ∞

0

‖Q∗(s)‖ds = lim
n→∞

∫ ∞

0

‖Qn(s)‖ds ≤ lim inf
n→∞

V (xn).

That is, V is lower semicontinuous.

Now we state the main theorem.

Theorem 3.4. A strict GFN model Q is stable if and only if it admits a Lya-
punov function. In particular, V can be chosen as

V (x) = sup
Q(·)∈Qx

∫ ∞

0

‖Q(s)‖ds

11



and V is continuous.

Proof. First we show that the existence of a Lyapunov function is sufficient
for stability. Let V be a Lyapunov function for Q. From (8) it follows that
V (Q(t)) ≥ 0 and inequality (9) implies that

V (Q(t2))− V (Q(t1)) ≤ 0

for all t1 ≤ t2 ∈ R+. So V (Q(·)) is monotone decreasing and bounded. In order
to show that V (Q(t)) tends to zero as t goes to infinity assume that

lim
t→∞

V (Q(t)) =: c > 0.

Then for all t ≥ 0 it holds that

0 < c ≤ V (Q(t)) ≤ w2(‖Q(t)‖) (11)

and further 0 < w−1
2 (c) ≤ ‖Q(t)‖. It also holds that

0 < w3(w
−1
2 (c)) ≤ w3(‖Q(t)‖).

Now observe that from (9) it follows that

V (Q(t))− V (Q(0)) ≤ −

∫ t

0

w3(‖Q(s)‖)ds ≤ −

∫ t

0

w3(w
−1
2 (c))ds ≤ −w3(w

−1
2 (c)) t

and hence limt→∞ V (Q(t)) = −∞, which is a contradiction to (11). Conse-
quently

lim
t→∞

V (Q(t)) = 0. (12)

By (8) it follows that

lim
t→∞

‖Q(t)‖ = 0.

So the zero path is asymptotically stable and this implies by Lemma 2.3 the
stability of the strict GFN model Q.

Conversely suppose that Q is stable. Then there is a τ > 0 such that
Q(τ + ·) ≡ 0 for all paths Q(·) ∈ Q(1). We define the following comparison
functions

w1(r) :=
r2

2L
, w2(r) := r2 (1 + Lτ) τ, w3(r) := r

and show that our candidate

V (x) = sup
Q(·)∈Qx

∫ ∞

0

‖Q(s)‖ds

12



is a Lyapunov function. As Q satisfies the Lipschitz condition (a) it follows that

‖Q(s)‖ ≥ ‖Q(t)‖ − L(s− t) (13)

for all Q ∈ Q and s ≥ t. In particular for t = 0 this implies

‖Q(s)‖ ≥ ‖Q(0)‖ − Ls. (14)

Using the last inequality we get the following estimate from below

V (x) = sup
Q(·)∈Qx

∫ ∞

0

‖Q(s)‖ ds ≥ sup
Q(·)∈Qx

∫
‖x‖
L

0

‖Q(s)‖ ds

≥ sup
Q(·)∈Qx

∫
‖x‖
L

0

(‖x‖ − Ls ) ds

= sup
Q(·)∈Qx

{

‖x‖
‖x‖

L
−

‖x‖2

2L

}

=
‖x‖2

2L
= w1(‖x‖).

To obtain an estimate from above consider Q(·) ∈ Qx. Note that by the scaling
property it follows that 1

‖x‖ Q(‖x‖·) ∈ Q(1) and further the stability ofQ implies

that
Q(s) = 0 ∀ s ≥ ‖x‖τ. (15)

The triangle inequality together with the Lipschitz condition imply that for all
s ∈ [0, ‖x‖τ ] it holds that

‖Q(s)‖ ≤ ‖Q(0)‖ + L‖x‖τ = ‖x‖ (1 + Lτ). (16)

With (15) and (16) an estimate from above is derived as follows

V (x) = sup
Q(·)∈Qx

∫ ‖x‖τ

0

‖Q(s)‖ ds ≤ sup
Q(·)∈Qx

∫ ‖x‖τ

0

‖x‖ (1 + L τ) ds

= ‖x‖2 (1 + Lτ) τ = w2(‖x‖).

Now consider the decrease condition

V (Q(t2))− V (Q(t1)) = sup
Q(·)∈QQ(t2)

∫ ∞

0

‖Q(s)‖ ds− sup
Q(·)∈QQ(t1)

∫ ∞

0

‖Q(s)‖ ds.

From condition (e) it follows that

V (Q(t1)) = sup
Q(·)∈QQ(t1)

∫ ∞

0

‖Q(s)‖ ds

≥

∫ t2

t1

‖Q(s)‖ ds+ sup
Q(·)∈QQ(t2)

∫ ∞

0

‖Q(s)‖ ds

=

∫ t2

t1

‖Q(s)‖ ds+ V (Q(t2)).

13



and hence

V (Q(t2))− V (Q(t1)) ≤ −

∫ t2

t1

‖Q(s)‖ ds = −

∫ t2

t1

w3(‖Q(s)‖) ds.

Thus together with Proposition 3.3 we see that V is a Lyapunov function.

From the proof of the previous theorem we see that the semicontinuity prop-
erty (f) is only needed to conclude continuity of V . Thus we have also proved

Corollary 3.5. A closed GFN model Φ that satisfies the concatenation property
(e) is stable if and only if it admits a Lyapunov function. In particular V can
be chosen as in (10) and V is upper semicontinuous.

Remark 3.6. Since upper semicontinuous Lyapunov function do not imply ro-
bustness statements the benefit of Lyapunov functions that are upper semicon-
tinuous is restricted compared to continuous Lyapunov functions, see [25], [33].

4 Fluid networks as differential inclusions

We want to apply the main theorem to fluid network models that work under
a specific discipline. So we need to show that the additional conditions (e) and
(f) are satisfied in each case. In order to obtain condition (e) we make use of
concepts from the theory of differential inclusions. Clearly a detailed description
of the dynamics of a fluid network depends on the specific discipline that is used.
But one part of the dynamics of fluid network models that all service disciplines
have in common is the so called flow balance relation

Q(t) = Q(0) + αt− (I − PT )MT (t). (17)

Here α ∈ R
K
+ represents the inflow rate, µ ∈ R

K
+ denotes the outflow rate,

M = diag(µ) and P is the routing matrix. The initial value or level of the
fluid network is given by Q(0) = x. A basic property of the fluid level process
Q as well as the allocation process T (t) is that both processes are Lipschitz
continuous [7] and hence differentiable almost everywhere. So for almost all
t ∈ R+ the flow balance relation (17) can also be written as

Q̇(t) = α− (I − PT )MṪ (t), Q(0) = x. (18)

Now we consider the derivative of the allocation process as the control variable,
i.e. we define u(t) := Ṫ (t) a.e. . Note that u is measurable. The allocation
process is determined through the service discipline. So each service discipline
has a set of admissible controls U(Q), where u ∈ U(Q) if and only if u ∈
R

K
+ satisfies some allocation conditions that are specific to the discipline. As

mentioned in [7] the allocation process need not be unique and so for every
Q ∈ R

K
+ there are different choices of u possible. But the admissible control

values u depend on the fluid level processQ(t) through the allocation conditions.

14



Consequently we consider the set of admissible control values as a set U(Q).
Thus, the flow balance relation (18) can also be expressed by a differential
inclusion of the form

Q̇(t) = α− (I − PT )Mu(t) =: f(Q(t), u(t)), Q(0) = Q0

with u(t) ∈ U(Q(t)). Often U is referred to as the feedback map. By setting

F (Q) = {f(Q, u) : u ∈ U(Q)} (19)

we rewrite this as a closed loop differential inclusion

Q̇(t) ∈ F (Q(t)), Q(0) = Q0. (20)

In the following we state some results from the theory of differential inclu-
sions that will be useful to show that specific fluid networks satisfy the conditions
(e) and (f). Let K ⊂ R

n and consider the differential inclusion

ẋ(t) ∈ F (x(t)). (21)

Let SF (x0) denote the set of solutions to (21) starting at x0 ∈ K. The existence
theorem is as follows [31, Theorem 5.2].

Theorem 4.1. Let K ⊂ R
n be a closed set. Assume that the set-valued map

F : K  R
n with closed convex values contained in a ball of radius b > 0 is

upper semicontinuous. Then the following conditions are equivalent.

(1) For any x0 ∈ K there is a solution x(·) ∈ SF (x0) satisfying x(t) ∈ K for
all t ≥ 0.

(2) For any x ∈ K it holds that F (x) ∩ TK(x) 6= ∅.

Here TK(x) denotes the contingent cone to K ⊂ R
n at x, which is defined as

the set of v ∈ R
n such that there is a sequence (hn)n∈N ⊂ int(R+) converging

to 0 and a sequence (vn)n∈N ⊂ R
n converging to v such that for all n ∈ N it

holds that x+ hn vn ∈ K. A useful criterion to conclude upper semicontinuity
of a parameterized set-valued map is the following [2, Proposition 1.4.14].

Proposition 4.2. Let X,Y and Z be metric spaces and U : X  Z be a
set-valued map. Assume that f : graph(U) → Y is continuous. If U is upper
semicontinuous with compact values then F : X  Y defined by

F (x) := {f(x, u) : u ∈ U(x)}.

is upper semicontinuous.
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5 Applications to some fluid networks

In this section we show that our main result can be applied to some special
fluid networks. In particular, we show that fluid networks under general work-
conserving and priority disciplines satisfy the additional conditions (e) and (f)
given in Definition 3.1. The following description of a fluid network is taken from
[34]. A fluid network consists of K different fluid classes and J stations, where
the fluids are served. There is a (not necessarily injective) map s that prescribes
which fluid class is served at which station. Fluid class k is exclusively served at
station s(k). For every station the set C(j) := {k ∈ {1, ...,K} : s(k) = j} can
without loss of generality assumed to be nonempty. The corresponding J ×K

matrix C is called the constituency matrix, where cjk = 1 if s(k) = j and zero
else. Further we introduce two nonnegative vectors α, µ ∈ R

K
+ and a K×K sub-

stochastic matrix P . Where αk denotes the exogenous inflow rate of fluid class k
and µk denotes the potential outflow rate of fluid class k. The matrix P will be
referred to as the routing matrix. The element pkl of P denotes the proportion
of the outflow of class k which turns into fluid class l. So 1−

∑K

l=1 pkl is the part
of the outflow of class k that leaves the network. The routing matrix is assumed
to have spectral radius strictly less than one, i.e. all fluids eventually leave
the network. The initial fluid level is represented through the K-dimensional
vector Q0. The fluid network is described by (α, µ, P, C) with initial fluid level
Q0. The time-evolution is described by the K-dimensional fluid level process
{Q(t) : t ≥ 0} and the K-dimensional allocation process {T (t) : t ≥ 0}, where
Qk(t) denotes the amount of class k fluids in the network at time t and Tk(t)
denotes the total amount of time during the interval [0, t] that station s(k) has
devoted to serve fluid class k. We note that the processes are Lipschitz contin-
uous and hence differentiable almost everywhere by Rademacher’s Theorem. A
precise description of the dynamics of a fluid network depends on the service
discipline.

5.1 Fluid networks under general work-conserving disci-

plines

The dynamics of a fluid network under a general work-conserving service disci-
pline can be summarized as follows

Q(t) = Q0 + α t− (I − PT )MT (t) ≥ 0, (22)

T (0) = 0 and T (·) is nondecreasing, (23)

I(t) = et− C T (t) and I(·) is nondecreasing, (24)

0 =

∫ ∞

0

(C Q(t))T dI(t), (25)

where M = diag(µ). Equation (25) describes the work-conserving property of
the network and relation (22) is called the flow balance relation. In general the
allocation process is not unique. Any pair (Q(·), T (·)) that satisfies (22)-(25) is
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called fluid solution of the work-conserving fluid network. The set of all feasible
fluid level processes is denoted as

QC = {Q(·) : ∃T (·) such that (Q(·), T (·)) is a fluid solution }.

To prove the existence of a work-conserving allocation process we bring the
conditions (23)-(25) into the context of differential inclusions. To this end, we
define Ṫ (t) =: u(t) and consider the differential form of the flow balance equation

Q̇(t) = α− (I − PT )Mu(t). (26)

For Q ∈ R
K
+ the conditions defining the admissible values of u are

u ≥ 0, e− Cu ≥ 0, (CQ)T · (e− Cu) = 0 . (27)

These are immediate consequences of (23), (24) and (25) in their differentiation.
Note the discontinuity of these conditions on the boundary of RK

+ , because in
this case zeros may appear in (CQ)T . Now the set of admissible controls is

UC(Q) :=
{

u ∈ R
K : (27) is satisfied

}

.

Using f(Q, u) := α − (I − PT )Mu this leads to a differential inclusion of the
form

Q̇(t) ∈ {f(Q(t), u) : u ∈ UC(Q(t))} . (28)

For brevity, we define the following set-valued map F : RK
+  R

K by

F (Q) = {f(Q, u) : u ∈ UC(Q)} (29)

so that the corresponding differential inclusion compactly reads as

Q̇(t) ∈ F (Q(t)), Q(0) = Q0. (30)

Using this approach we are able to give an alternative proof for the Theorem
2.1 in [7].

Theorem 5.1. For any work-conserving fluid network (α, µ, P, C) with an ini-
tial level Q0 the set QC is nonempty.

Proof. From the conditions (27) it follows that the set UC(Q) is compact and
convex and upper semicontinuous. Further, the set-valued map UC(·) is upper
semicontinuous and f(Q, u) is continuous. Hence, by Proposition 4.2 the set-
valued map F is upper semicontinuous. Moreover, F has closed convex values
that are contained in some ball with radius b > 0. Also the conditions (27) imply
that F (Q) ∩ TRK

+
(Q) 6= ∅ for all Q ∈ R

K
+ . Then by Theorem 4.1 there exists a

solution to (30). To show the existence of an allocation T let Q(·) be a solution
to (30). Note that f(Q, u) is continuous in u and the that U(t) := {u ∈ R

K
+ :

e−Cu ≥ 0, (C Q(t))T (e−Cu) = 0} is closed and bounded. Also, we note that
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t  U(t) is upper semicontinuous. Then, by the Filippov measurable selection
Lemma in [22, p. 78/79], there is a measurable selection u(·) of u(t) ∈ UC(Q(t))
such that

Q̇(t) = α− (I − PT )M u(t) for almost all t ≥ 0.

Thus, integrating the latter yields that, given the initial value Q0, the pair
(Q(·), T (·)) with T (t) :=

∫ t

0 u(s)ds is a fluid solution.

So, we can represent the set of work-conserving fluid level processes by

QC = {Q(·) ∈ SF (Q0) : Q0 ∈ R
K
+ }.

In [34] it is shown that QC defines a closed GFN model. So we only have to
prove that the conditions (e) and (f) are satisfied.

Proposition 5.2. The set of fluid level processes QC satisfies the concatenation
property.

Proof. Since solutions of differential inclusions are by definition absolutely con-
tinuous functions, and concatenation preserves absolute continuity the assertion
follows.

To show that condition (f) is satisfied we need to show that the solution map
is lower semicontinuous.

Theorem 5.3. The set of fluid level processes QC satisfies the lower semicon-
tinuity property (f).

Proof. To show condition (f) we have to verify the existence of a T > 0 such
that Q0  SF (Q0)|[0,T ] is lower semicontinuous. In view of Remark 3.2 and
Proposition 5.2 it is sufficient to construct for each Q0 a T (Q0) > 0 such that
(f’) holds.

To this end, let Q0 ∈ R
K
+ be fixed, Q(·) ∈ SF (Q0). Then, by the proof of

Theorem 5.1 there exists a function u(·) ∈ U(Q(·)) such that

Q(t) = Q0 + α t− (I − PT )M

∫ t

0

u(s)ds. (31)

We distinguish the following situations.
First, suppose that Q0 ∈ R

K
+ and all stations have some nonempty queues,

i.e. CQ0 > 0. Hence, there is a T (Q0) > 0 such that CQ(t) > 0 for all
t ∈ [0, T (Q0)]. We note that (CQ)T · (e − Cu) = 0 from (27) also reads as

J
∑

j=1





∑

l∈C(j)

Ql ·



1−
∑

l∈C(j)

ul







 = 0.
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Since both factors are nonnegative and, in fact, CQ(t) > 0 for t ∈ [0, T (Q0)], it
holds that

1 =
∑

l∈C(j)

ul(·)|[0,T (Q0)] =: eTj Cu(·)|[0,T (Q0)] (32)

for all j = 1, ..., J . Let (Qn
0 )n∈N be a sequence of initial values which converges to

Q0 and define δ := mink=1,...,K Q0k . Furthermore, let 0 < δ′ < δ and N(δ′) ∈ N

be such that for all n ≥ N(δ′) we have that ‖Qn
0 − Q0‖ < δ′. In particular, it

holds that Qn
0 ∈ int(RK

+ ) for all n ≥ N(δ′). Hence, there is T > 0 such that
Q(·)|[0,T ] ∈ int(RK

+ ) and Qn(·)|[0,T ] ∈ int(RK
+ ) for all n ≥ N(δ′). Now consider

the paths

Qn(t) := Qn
0 + α t− (I − PT )M

∫ t

0

un(s)ds,

where for n ≥ N(δ′) we define un(s) := u(s). For n sufficiently large we have
that Qn(t) ∈ int(RK

+ ) for t ∈ [0, T (Q0)], because

lim
n→∞

sup
t∈[0,T (Q0)]

‖Qn(t)−Q(t)‖ = 0. (33)

Consequently, Q SF (Q)|[0,T (Q0)] is lower semicontinuous at Q0.
Second, suppose that the initial fluid level at some stations is zero. We first

treat the case of a single station with empty queues. Without loss of generality
let this station be j = 1 and let a denote the set of classes which are served
at station 1. Then, the last constraint in (27) is not active for station 1 and
therefore the constraints for fluid classes k ∈ a are given by

uk ≥ 0, 1−
∑

l∈a

ul ≥ 0. (34)

However, since Q(·) is a solution to the differential inclusion (30) potentially
only a proper subset of (34) is feasible. If this condition enforces equality in
the second constraint in (34), then we can argue as in (32) on a sufficiently
small time interval and the proof of (33) applies again. The interesting case
is when there is idle capacity at station j = 1. Here uk(·) ≥ 0 are such that
∑

l∈a ul(·) < 1 and that the fluid levels of classes k ∈ a remain nonnegative.
Using b := {1, ...,K}\a the differential form of the flow balance equation (22)
can be expressed in block form by

[

Q̇a(t)

Q̇b(t)

]

=

[

αa

αb

]

+

[

PT
a PT

ab

PT
ba PT

b

] [

Ma 0
0 Mb

] [

ua(t)
ub(t)

]

−

[

Ma 0
0 Mb

] [

ua(t)
ub(t)

]

.

The nonnegativity of the fluid levels for classes l ∈ a yields the following condi-
tion

0 ≤ αa + PT
ab Mb ub(·)− (Ia − PT

a )Ma ua(·),
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which also reads as

ua(·) ≤ M−1
a (Ia − PT

a )−1 (αa + PT
ab Mb ub(·)).

As eTj CQ0 > 0 for j 6= 1 then, arguing as in (32) there is a T (Q0) > 0 such that
the allocation rates corresponding to fluid classes present at the stations j 6= 1
satisfy

∑

l∈C(j) ul(·)|[0,T (Q0)] = 1. Let ε > 0 be fixed, so that if ‖Q0 − Q‖ < ε

then Qk > 0 when Q0,k > 0. Now, for another initial value Q1
0 with ‖Q0−Q1

0‖ <

ε we consider u1(·) := (ua(·) + v(·) ub(·))T , where v(·) takes values in R
|a| such

that
∑

l∈a

ul(t) + vl(t) = 1 if eT1 CQ1(t) > 0, (35)

and v(t) = 0 otherwise. Then, we consider the solution Q1(·) associated with
u1(·) and Q1

0, i.e.

Q1(t) = Q1 + α t− (I − PT )M

∫ t

0

[

ua(s) + v(s)
ub(s)

]

ds

= Q1 −Q0 +Q(t)− (I − PT )M

∫ t

0

[

v(s)
0

]

ds.

So, the difference between the solutions Q(·) and Q1(·) is given by

Q1(t)−Q(t) = Q1
0 −Q0 +

∫ t

0

[

PT
a Mav(s)

PT
baMav(s)

]

−

[

Mav(s)
0

]

ds

In particular, as Q0,a = 0 we have that

Q1
a(t)−Qa(t) = Q1

0,a − (I − PT
a )Ma

∫ t

0

v(s) ds.

Hence, if Q1
0,a > 0 the nonnegativity of (I − PT

a )Ma and v(·) imply that there
is a r ≥ 0 such that

Q1
0,a − (I − PT

a )Ma

∫ r

0

v(s) ds = 0. (36)

We will assume that v(·) is chosen so that the time in which (36) is achieved is
minimal.

Thus, given a sequence of initial values (Qn
0 )n∈N converging to Q0 and in

particular Qn
0,a converging to zero, we define

rn := min{r ≥ 0 : vn(·) satisfies (35) and (36)}

and

un(t) :=

{

(ua(t) + vn(t) ub(t) )
T for 0 ≤ t ≤ rn,

(ua(t) ub(t) )
T for t > rn.
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Further, we note that (36) implies that if Qn
0,a converges toQ0,a = 0 it holds that

rn converges to zero as well. Hence, we have that un(·) converges to u(·) and
consequently Qn(·) converges uniformly to Q(·) on [0, T (Q0)], i.e. Q(·)|[0,T (Q0)]

depends lower semicontinuously on Q0.
The cases where more than one stations have empty queues follows the same

line of reasoning. Finally, the assertion follows from Remark 3.2.

Summarizing we obtain.

Theorem 5.4. General work-conserving fluid networks define strict GFN mod-
els. In particular, it is stable if and only if it admits a continuous Lyapunov
function.

5.2 Fluid networks under priority disciplines

The priority service discipline assigns different priorities to the fluid classes
that are served at one station, [34]. This is done via a permutation mapping
π : {1, ...,K} → {1, ...,K}. To be precise, let s(l) = s(k) for l, k ∈ {1, ...,K}
then fluids of class l have higher priority than fluids of class k, if π(l) < π(k).
That is, fluids of class k are not served as long as the fluid level of class l is
greater than zero. For each k ∈ {1, ...,K} the set of fluid classes that are served
at the same location s(k) and have higher priority is denoted by Πk := {l ∈
{1, ...,K} : l ∈ C(s(k)), π(l) ≤ π(k)}. To derive a description of fluid networks
under the priority discipline π we introduce the unused capacity process Y (t).
Namely, Yk(t) is denotes the cumulative remaining capacity of location s(k) for
serving fluids of classes that have strictly lower priority than fluids of class k.
The dynamics can be described as follows

Q(t) = Q0 + α t− (I − PT )MT (t) ≥ 0, (37)

T (0) = 0 and T (·) is nondecreasing, (38)

Yk(t) = t−
∑

l∈Πk

Tl(t) and Y (·) is nondecreasing, k ∈ {1, ...,K} (39)

0 =

∫ ∞

0

Qk(t) dYk(t), k ∈ {1, ...,K}. (40)

Any pair (Q(·), T (·)) that satisfies (37)-(40) is called a fluid solution of the
fluid network under the priority discipline π. The set of all feasible fluid level
processes is denoted as

QP = {Q(·) : ∃T (·) such that (Q(·), T (·)) is a fluid solution }.

Again we bring this into the context of differential inclusions by setting Ṫ (t) =
u(t). The constraints for k ∈ {1, ...,K} are here

uk ≥ 0, 1−
∑

l∈Πk

ul ≥ 0, Qk · (1−
∑

l∈Πk

ul) = 0 (41)
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and the set of admissible controls is

UP (Q) :=
{

u ∈ R
K
+ : (41) is satisfied for all k ∈ {1, ...,K}

}

.

Following the same line of reasoning we conclude the following.

Theorem 5.5. The set QP is nonempty and satisfies the lower semicontinuity
property.

In order to prove that QP is a strict GFN model it remains to show that
the concatenation property holds, as the validity of the conditions (a)-(d) is
shown in [34, Lemma 3.5]. Using results from differential inclusions we obtain
the following result.

Proposition 5.6. The set QP satisfies the concatenation property.

Thus we may conclude.

Theorem 5.7. The fluid network under priority discipline QP is a strict GFN
model. It is stable if and only if it admits a continuous Lyapunov function.

6 Fluid limit models of queueing networks

A further class of interest are fluid limit models of queueing networks. For
this class the open question remained whether they define closed GFN models
[34]. As we will see, taking the closure with respect to uniform convergence on
compact sets does not change the stability properties. In this way we obtain
from fluid limit models closed GFN models. We state a condition for which
we conjecture that it guarantees condition (e) but so far a proof has remained
elusive.

A queueing network consists of J stations that serve K classes of customers.
For each class k ∈ {1, ...,K} the interarrival times are denoted by {ξk(n) : n ≥
1} and the service times are given by {ηk(n) : n ≥ 1}, where n ∈ N denotes the
place in the sequence of customers of the considered class. It is possible that for
some customer classes k no exogenous arrivals take place, then the interarrival
time ξk(n) = ∞ for all n. The set of customers with exogenous arrivals is
denoted by

E := {k ∈ {1, ...,K} : ξk(n) < ∞, n ≥ 1}.

Further the waiting buffer at each station is assumed to have infinite capacity.
The random variables above are defined on some probability space (Ω,F ,P).
The following assumptions on the interarrival times ξk and service times ηk are
made.

ξ1, ..., ξK , η1, ..., ηK are i.i.d. and mutually independent. (A1)

The first moments are assumed to be finite, i.e.
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α−1
k = E[ ξk(1) ] < ∞ ∀ k ∈ {1, ...,K},

µ−1
k = E[ ηk(1) ] < ∞ ∀ k ∈ E .

(A2)

The interarrival times are assumed to be unbounded and spread out, i.e. for
each k ∈ E there exists some integer jk ∈ N and some function pk : R+ → R+

with
∫∞

0 pk(x)dx > 0, such that P [ ξk(1) ≥ x ] > 0 for all x > 0 and

P

[

a ≤

jk
∑

i=1

ξk(i) ≤ b

]

≥

∫ b

a

pk(x)dx ∀ 0 ≤ a < b. (A3)

Let φk(n) be the routing vector for the nth customer of class k who finishes
service at the station s(k). So φk(n) is a K-dimensional Bernoulli random
variable with parameter PT

k . The corresponding routing matrix P is assumed
to have spectral radius strictly less that one. Further, it is assumed that for
each k ∈ {1, ...,K} the routing process

φk = {φk(n) : n ≥ 1}

is i.i.d., φ1, ..., φK are independent and independent of the arrival processes
and service processes. The evolution of the queueing network is described by
a Markov process X = {X(t), t ≥ 0} on a measurable state space (X ,BX )
that is defined on a measurable space (Ω,F). Further, X is adapted to the
filtration (Ft)t∈R+ and the probability measures {Px, x ∈ X} on (Ω,F) satisfy
Px[X(0) = x] = 1 for all x ∈ X . In general the states are given by points

X ⊂ Z
∞
+ × R

2K+|E|
+ ,

where |E| denotes the cardinality of E and Z
∞
+ denotes the set of finitely ter-

minating sequences in ZK = {1, 2, ...,K}. For instance, for priority queueing

networks the state space is a subset of ZK
+ × R

K+|E|
+ . For further details see

[6, 12]. Analogous to the fluid models there is a set of equations that embraces
most of the network dynamics. Consequently, Qx(t) ∈ D(R+,R

K
+ ) denotes the

queue length process and T x(t) ∈ D(R+,R
K
+ ) denotes the allocation process.

The superscript x expresses the initial state x = (q, u, v), where vectors q, u and
v denote the queue length, the residual interarrival time, and the residual ser-
vice time. Consider a pair of sequence (rn, xn)n∈N, where xn ∈ X is a sequence
of initial states and rn ∈ R+ such that

lim
n→∞

rn = ∞ , lim sup
n→∞

‖qn‖

rn
< ∞ , lim

n→∞

‖un‖

rn
= lim

n→∞

‖vn‖

rn
= 0. (42)

In [6, 12] it is shown that under the assumptions (A1)-(A3) for almost all sample
paths ω ∈ Ω and any pair of sequence (rn, xn)n∈N satisfying (42) there is a
subsequence such that almost surely

1

rnj

(Qxnj (rnj
t), T xnj (rnj

t)) −→ (Q(t), T (t)) u.o.c. as j → ∞, (43)
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where Q(·), T (·) ∈ C(R+,R
K
+ ). For a fixed queueing discipline any limit Q(·) is

called a fluid limit path of the discipline with initial level Q(0), if (Q(t), T (t))
are limits in the sense above. The set of all such fluid limits Q is denoted by
QL. We define the fluid limit model as the closure with respect to uniform
convergence on compact intervals of QL and denote it by QL.

Lemma 6.1. The fluid limit model QL is stable if and only if QL is stable.

Proof. Obviously, if QL is stable then QL is stable. Conversely, assume that
QL is stable. Let Q∗(·) ∈ QL \QL and Qn(·) ∈ QL be a sequence such that
Qn(·) → Q∗(·) u.o.c. as n → ∞. Since QL is stable there is a uniform τ > 0
such that Qn(τ + ·) ≡ 0 for all n ∈ N. It follows for all t ≥ τ that

Q∗(t) = lim
n→∞

Qn(t) = 0

and the proof is completed.

Proposition 6.2. The fluid limit model QL defines a closed GFN model.

Proof. The Lipschitz continuity and the scaling property are shown in [34]. To
show the shift property we follow an idea that is due to [28, Section 9.2.3]. Let
FL(q) denote the set of fluid limits with initial level q, i.e.

FL (q) := {Q : R+ → R
K
+ : Q(t, q) = lim

n→∞,

1

rn
Qxn(rn t) , Q(0) = q }

We fix a pair of sequences (rn, xn)n∈N that satisfies (42) and limn→∞
xn

rn
=

(q, 0, 0). Then, by the Skorokhod’s Theorem [28, Theorem C.6] we have along
a subsequence

lim
k→∞

1

rnk

Qxnk (rnk
t) = Q

nk
(t, q) ∈ FL(q).

a.s. in the Skorokhod topology. The superscript to the fluid limit expresses the
dependence on the particular sequence. Moreover, by the Markov property we
have the following equality in distribution

Qxnk (rnk
(t+ s))

d
= QQ

xnk (rnk
s)(rnk

t). (44)

Also, by Proposition 3.5.2 in [21] and t 7→ Q
nk
(t, q) is continuous it holds that

lim
k→∞

1

rnk

Qxnk (rnk
s) = Q

nk
(s, q) a.s..

Consequently, dividing (44) by rnk
and taking limits yields that

Q
nk
(t+ s)

d
= Q

nk
(t, Q

nk
(s))
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and hence we have

Q
nk
(·+ s, q) ∈ FL (Q

nk
(s, q) ) .

This shows the assertion.

In the following we consider queueing networks under disciplines that are
memoryless in the sense that the allocation process T of the fluid limit model
at a time t does only depend on the queue length at that time t. In particular,
it does not require information of the past. In terms of the fluid limit models
described in [12] this means that only the fluid level at a given time is needed to
describe the evolution of the fluid level process. Note that this explicitly excludes
a number of disciplines as e.g. FIFO networks. We will comment on FIFO fluid
networks in Section 8. We also note that the problem of concatenating fluid
limits was also addressed by A. Stolyar [32] and Ph. Robert [28, Section 9.2.3].
In [32] it is shown that if the queueing disciplines in every station satisfy a
certain ’uniqueness condition’ on the disciplines of the individual servers the
concatenation property holds. However, there the definition of state is different,
because the state as used in [32] includes the past trajectory of the queue.
Furthermore, in [28] concatenation is possible if the fluid limits going through
a certain queue level Q are unique.

Remark 6.3. Consider a queueing network with a memoryless discipline. We
conjecture that in this case the fluid limit model QL satisfies the concatenation
property. Unfortunately, this claim has shown some resilience towards attempts
of proof.

Due to fact that QL is closed by definition we would obtain the following
result.

Conjecture The fluid limit model of a ”memoryless” discipline defines a GFN
model satisfying (e). It is stable if and only if it admits an upper semicontinuous
Lyapunov function.

The conjecture holds true for the systems considered in [28], but unfortu-
nately, the interesting fluid limits do not have unique paths. As to the question
of under which conditions fluid limit models satisfy condition (f) we dare not
venture a conjecture.

7 The linear Skorokhod problem

Another possible way to approximate a multiclass queueing network is to con-
sider the so called diffusion limit. This limit can be regarded as a semi-martingale
reflected Brownian motion (SRBM). Similar to the fluid limit, a sufficient con-
dition for the stability of the SRBM is the stability of the linear Skorokhod
problem (LSP) [19]. The following description is taken from [8] and [34]. Let R
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be a J × J matrix, θ ∈ R
J and Z0 ∈ R

J
+. The pair (Z(·), Y (·)) ∈ C(R+,R

J
+) is

said to solve the LSP (θ,R) with initial state Z0, if they jointly satisfy

Z(t) = Z0 + θt+RY (t) ≥ 0, (45)

Y (0) = 0 and Y (·) is nondecreasing, (46)

0 =

∫ ∞

0

Zj(t) dYj(t), j = 1, ..., J. (47)

The first question that arises is, which conditions guarantee the existence of
a solution of the LSP(θ,R). In oder to state such a condition recall that a J×J

matrix R is said to be an S-matrix, if there exists an x ≥ 0 such that Rx > 0,
and is said to be completely-S if all of its principal submatrices are S-matrices.
The following theorem from [4, Theorem 1] contains the desired statement.

Theorem 7.1. The LSP(θ,R) has a solution (Z(·), Y (·)) if and only if the
matrix R is completely-S.

Analogous to the previous subsections we define

QLSP = {Z(·) : ∃Y (·) such that (Z(·), Y (·)) satisfy (45)− (47)}.

Note that Theorem 7.1 states only the existence of a solution. In general
the solution is not unique, for a counterexample see e.g. [4].

Definition 7.2. A LSP(θ,R) is said to be stable if, for any number ε > 0 and
any Z(·) ∈ QLSP with ‖Z0‖ = 1, there exists a τ ≥ 0 such that ‖Z(τ + ·)‖ < ε.

To ensure that the set QLSP is nonempty, Theorem 7.1 states that R has to
be completely-S. In [34, Theorem 5.2] it is shown that in this case Definition 7.2
is equivalent to Definition 2.2. To derive a necessary and sufficient condition for
stability of the linear Skorokhod problem we have to show that QLSP is a strict
GFN model. The next lemma from [4, Lemma 1] or [34, Lemma 5.1] implies
that QLSP satisfies the Lipschitz condition.

Lemma 7.3. If the matrix R is completely-S, then there exists a constant M
such that any solution (Z(·), Y (·)) of LSP(θ,R) is Lipschitz continuous with
constant M .

The fact that QLSP is closed follows from Proposition 1 in [4]. Furthermore
that the scale, shift property hold is stated in [20, Section 2]. So it remains to
investigate whether QLSP satisfies the concatenation and the lower semiconti-
nuity property. Again we bring the linear Skorokhod problem into the context
of differential inclusions. That is, let Ẏ (t) = u and

G(Z) = {θ +Ru : u ∈ ULSP (Z)} , (48)

where the set of admissible controls ULSP is determined through the condi-
tions

26



u ≥ 0, Zj uj = 0, ∀ j = 1, ..., J. (49)

While it is clear that the set described by (49) is unbounded on the bound-
ary of the positive orthant, Lemma 7.3 may be used to see that the effective
set of controls is bounded. Indeed from the Lipschitz continuity of solutions,
only values of u below a certain bound need to be considered in (48). The
corresponding differential inclusion is of the form

Ż(t) ∈ G(Z(t)), Z(0) = Z0. (50)

It can can seen that the right-hand side is upper semicontinuous and the set
G(Z) is convex and compact. Again arguments from the theory of differential
inclusions show the validity of the concatenation property.

Theorem 7.4. QLSP is a closed GFN model satisfying (e). It is stable if and
only if it admits an upper semicontinuous Lyapunov function.

We note that it is not obvious whether the right-hand side is also lower
semicontinuous.

Remark 7.5. The consequence of the above theorem is, that the main theorem is
applicable for the linear Skorokhod problem. However, for the provided Lyapunov
function we can only show upper semicontinuity.

8 Remarks on fluid networks under FIFO ser-

vice discipline

For fluid networks that work under the FIFO service discipline the fluids are
served in the order of their arrivals. To describe the evolution of class k fluids
we have to consider the workload W (t) = CM−1 Q(t) of the station j = s(k).
For any time t all jobs that arrive later than t have lower priority in the FIFO
discipline. So fluids that arrive at time t are served at time t + Wj(t). The
total arrivals of each fluid class until time t is A(t) = αt + PT M T (t). The
characteristic of a FIFO fluid network can for each class k ∈ {1, ...,K} be
represented by the following relation

Tk(t+Wj(t)) = mk(Qk(0) +Ak(t)), (51)

where mk = µ−1
k . Note that the fluid network is not completely determined by

the initial fluid level Q(0) as it has to specified in which order the initial fluid
level is served in the time period [0,Wj(0)]. So the initial data for each class
k ∈ K is given by

{Tk(s) : s ∈ [0,Wj(0)] }.
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The dynamics of a fluid network under FIFO service discipline is given by
(22)-(25) and (51). Analogously to the previous disciplines we denote

QF = {Q(·) : ∃T (·) such that (Q(·), T (·)) is a solution (22)− (25), (51) }.

In [34, Lemma 3.7] it is shown that QF is a closed GFN model. However the
fluid networks under FIFO discipline differ from the previous fluid models. One
reason for this is the following. Consider again the flow balance equation in
differential form, i.e.

Q̇(t) = α− (I − PT )MṪ (t).

In the FIFO case the allocation process has to satisfy a functional differential
equation of neutral type [23], since the allocation process has to satisfy the
differential form of condition (51)

Ṫk(t+Wj(t)) (1 + Ẇj(t)) = mkαk −mk

K
∑

l=1

plkµlṪl(t).

The second reason is given two paths Q1(·) and Q2(·) of QF that coincide at
some time, they will in general have different history, so that the concatenation
is not immediately possible. In this context the initial data {Tk(s) : s ∈
[0,Wj(0)] } plays a key role. An explicit counterexample to the concatenation
property for FIFO networks my be found in [30].

9 Conclusion

In this paper we have derived a converse Lyapunov theorem for generic fluid net-
works under a concatenation condition. Continuity of the Lyapunov function is
ensured if the solution set of the fluid network has a a lower semicontinuity prop-
erty. Continuity is of interest because this would ensure robustness properties
of the network subject to unknown parameters or external perturbations. The
interesting class of FIFO networks does not immediately fall under the results
presented here. The question of a Lyapunov theory for this and related cases is
the subject of ongoing research.
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