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A STOCHASTIC NETWORK WITH MOBILE USERS IN HEAVY TRAFFIC

SEM BORST1 AND FLORIAN SIMATOS1

ABSTRACT. We consider a stochastic network with mobile users in a heavy-traffic regime.

We derive the scaling limit of the multi-dimensional queue length process and prove a

form of spatial state space collapse. The proof exploits a recent result by Lambert and

Simatos [8] which provides a general principle to establish scaling limits of regenerative

processes based on the convergence of their excursions. We also prove weak conver-

gence of the sequences of stationary joint queue length distributions and stationary

sojourn times.
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1. INTRODUCTION

We consider a stochastic network with mobile users, originally introduced in Borst et

al. [2] as a model for a wireless data communication network. Fluid limits of this model

were studied in Simatos and Tibi [15] and in this paper we examine the heavy-traffic

characteristics.

In this model, users arrive at each of the nodes according to independent Poisson

processes and then move independently of one another while still in service. The tra-

jectories of the users are Markovian and governed by an irreducible generator matrix

with stationary distribution π (see Section 2 for notation and definitions). At each of the

nodes, users share the total capacity of the node according to the Processor-Sharing dis-

cipline. This assumption affects the sojourn time distribution but not the distribution

of the number of users at the various nodes since we will restrict ourselves to the case

of exponential service requirements. The fundamental difference between this model

and Jackson networks is that in this model, users move independently of the service

received: transitions from one node to another are governed by the users themselves

rather than by completion of service.
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Coexistence of two time scales and the homogenization property. The above-mentioned

feature has an important consequence: although the rate of arrivals to and departures

from the network is bounded, the rate of movements of users within the network grows

linearly with the number of users. The model thus shares fundamental characteris-

tics with two classical queueing models, namely the M/M/1 and the M/M/∞ queues,

which are brought about in heavy-traffic conditions. As a result, it inherits the typical

time scales of both these models: a fast time scale which governs the internal move-

ments of users between nodes (the M/M/∞ dynamics) and a slow time scale that gov-

erns arrivals and departures (the M/M/1 dynamics). In particular, the total number of

users in the network evolves slowly compared to the speed at which users spread in the

network, provided the network is highly loaded.

One of the key technical challenges is to control the M/M/∞-like dynamics of the

internal movements of users on the slow time scale of the M/M/1 queue. The main

idea is that it takes a constant time for any user to be arbitrarily close to the stationary

distribution π while on the other hand, in a finite time window the number of users

can only have evolved by a bounded amount because of the M/M/1 dynamics. Thus

starting from a large initial state, on times of order one the total number of users will

have essentially stayed the same, while each user will be close to the stationary distri-

bution π. The law of large numbers therefore suggests that starting from a large initial

state, after a constant time, users should be spread across the various nodes according

to π, i.e., approximately a fraction πk of the users should be at node k. We call this prop-

erty the homogenization property. To derive the heavy-traffic limit, we need to show that

the system stays homogenized not only at a given fixed time, but as long as there are a

large number of users in the network. Technically, this entails control over some hitting

times, which we achieve via martingale and coupling arguments.

Convergence of the full process via the convergence of excursions. The homogeniza-

tion property provides a picture of what happens when there are a large number of users

in the network: the users are spread across the various nodes according to the station-

ary distribution π, and in particular it is unlikely for any of the nodes to be empty. Thus,

the full aggregate service rate is likely to be used, and the total number of users evolves

as in a single M/M/1 queue with the combined service rate of all nodes. This prop-

erty provides a useful handle on the processes of interest far away from zero. Imagine

for instance that the network starts empty: it will eventually become highly loaded, at

which point the homogenization property kicks in and holds until the network becomes

empty (or close to) again. In other words, the homogenization property should give us

control over excursions that reach a certain height and it is therefore natural to expect

the entire process to converge as well. This line of argument has been used in Lambert

et al. [9] to analyze the scaling limit of the Processor-Sharing queue length process and

has later been generalized in Lambert and Simatos [8]. The proofs of the scaling limit

results in the present paper leverage the general principle established in Lambert and

Simatos [8].

The above arguments lead to the result that the joint queue length process asymptot-

ically concentrates on a line whose angle corresponds to the stationary distribution π,

thus exhibiting a form of state space collapse. The total number of users, after scal-

ing, behaves asymptotically as in a single M/M/1 queue, and thus evolves as a reflected

Brownian motion, with the stationary distribution converging to an exponential distri-

bution. These characteristics are strongly reminiscent of the heavy-traffic behavior of
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the joint queue length process in various queueing networks, see for instance Bram-

son [3], Reiman [13], Stolyar [16], Verloop et al. [17] and Williams [19]. However, to the

best of our knowledge, this is the first result which shows that mobility of users, rather

than scheduling, routing or load balancing, can act as a mechanism producing state

space collapse.

Organization of the paper. Section 2 sets up notation used throughout the paper and

summarizes the main results of the paper; it also presents two key couplings, one with

an M/M/1 queue which provides a lower bound and one with a closed system that is

easier to handle with regard to homogenization. This closed system is analyzed in Sec-

tion 3, where two bounds are derived: one concerning the time needed for the closed

system to get homogenized, and the other concerning the time that the system stays ho-

mogenized, starting from a homogenized state. These estimates are used in Section 4 to

derive corresponding bounds for the open system. These bounds allow us to prove that

the system is null-recurrent in the critical case, a case that had not been treated earlier.

The last three sections then deal with the heavy-traffic regime: Section 5 proves, us-

ing the above excursion arguments, that the sequence of processes converges weakly

towards a multi-dimensional reflected Brownian motion; Section 6 investigates the as-

ymptotic behavior of the stationary distributions and Section 7 examines the asymp-

totic behavior of the sojourn times.

Relation with previous work. Some of the results of the present paper can partially

be found in Simatos and Tibi [15] and we wish to explain the new contributions. The

results of Section 3 somewhat strengthen the derivations in [15]: we establish tighter

bounds and remove a technical condition on the generator matrix governing the mo-

bility of users. One of the main results of Section 4, namely Proposition 4.2, can also

be found in [15] under an additional technical condition on the generator matrix. In

the present paper we provide an alternative proof of this result which we believe to be

potentially useful in a more general setting. All the other results are completely new.

In order to have a self-contained paper, and also because we could significantly sim-

plify some tedious technical details of [15], we present complete (and simpler) proofs

for results which were already partially known.

2. NOTATION, MAIN RESULTS AND TWO USEFUL COUPLINGS

Let N= {0,1, . . .} be the set of nonnegative integers. In this paper we deal with multi-

dimensional processes, typically taking values in N
K or RK for some K ≥ 2, but we also

need to consider real-valued processes. It is therefore convenient to abuse notation and

use the common notation ‖·‖ to denote the L1 norm on every i -dimensional space R
i .

Thus for each i ≥ 1 and y ∈ R
i we write ‖y‖ = |y1| + · · · + |yi |. In the sequel, P (u) for

u > 0 denotes a Poisson random variable with parameter u. It satisfies the following

large-deviation type inequality:

(1) P(P (u)≥ v) ≤ exp(−uh(v/u)) , v ≥ u,

where from now on h(x) = x log x + 1− x. In the sequel we will use the fact that h(x)

grows at least linearly as x →+∞.

2.1. User mobility. In the rest of the paper we fix some integer K ≥ 2 and we consider a

network of K nodes. Let ξ be a Markov process with state space {1, . . . ,K } and generator

matrix Q = (qkℓ,1 ≤ k,ℓ ≤ K ), and let γ > 0 be the trace of −Q . We assume that Q is

irreducible, denote by π its stationary distribution, and define π= min1≤k≤K πk > 0 and
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π= max1≤k≤K πk < 1. We will need to measure distance to π and introduce the function

̺ : NK → [0,∞) defined by

̺(y)=
∥∥∥∥

y

‖y‖
−π

∥∥∥∥ , y ∈N
K

with the convention ̺(y) = 0 if ‖y‖= 0. For k = 1, . . . ,K , let Pk be the law of ξ started at k.

For t ≥ 0, let ∆(t) = max1≤k ,ℓ≤K |Pk (ξ(t) = ℓ)−πℓ|, so that ∆(t) → 0 as t →+∞. For ε> 0,

we define τ(ε) = sup{t ≥ 0 :∆(t) ≥ ε}.

2.2. Sequence of networks. For each n ≥ 1, consider (λn,k ,1 ≤ k ≤ K ) ∈ [0,∞)K and

(µn,k ,1 ≤ k ≤ K ) ∈ [0,∞)K , and define λn = λn,1 + ·· · +λn,K and µn = µn,1 + ·· · +µn,K .

Let xn = (xn,k ,1 ≤ k ≤ K ) be the following càdlàg, NK -valued stochastic process: for

t ≥ 0 and k ∈ {1, . . . ,K }, xn,k (t) is the number of users at node k at time t in the network

subject to the following dynamics:

• users arrive at node k according to a Poisson process with intensity λn,k , and

arrival streams are independent;

• users have i.i.d. service requirements, exponentially distributed with parameter

one, independent from the arrival processes;

• node k serves users according to the Processor-Sharing service discipline and

has capacity µn,k ;

• while still in service, users move independently from everything else according

to a Markov process with generator matrix Q .

According to the Processor-Sharing service discipline, the server splits its service ca-

pacity equally among all the users present at any point in time: in particular, each cus-

tomer present at node k at time t is instantaneously served at rateµn,k /xn,k (t) (provided

that xn,k (t)> 0, i.e., the node is not empty). In particular, if a customer has been present

in the network between time s and t and was at node ξ(u) at time u ∈ [s, t ], then between

[s, t ] it received a service equal to

(2)

∫t

s

µn,ξ(u)

xn,ξ(u)(u)
du.

Note that the model we consider is in sharp contrast with classical queueing net-

works, such as Jackson networks, where customers only move upon completion of ser-

vice. In the model we consider, customers arrive with a single service requirement and

they are served along their route: customers receive some service where they are and

their trajectory is governed by some random dynamics independent of the service. In

the model we consider, the trajectory process ξ appearing in (2) is a Markov process

with generator matrix Q , independent from all the other stochastic primitives, i.e., the

arrival processes and service requirements.

Because of (2), the stochastic process xn may in general be difficult to analyze. Nonethe-

less, when service requirements are exponentially distributed such as here, the memo-

ryless property of the exponential distribution implies that xn is a Markov process with

generator Ωn given by

Ωn( f )(y)=
K∑

k=1

λn,k

(
f (y +ek )− f (y)

)
+

K∑

k=1

µn,k

(
f (y −ek )− f (y)

)
1{yk>0}

+
∑

1≤k ,ℓ≤K

qkℓyk

(
f (y −ek +eℓ)− f (y)

)

for any function f :NK →R and any y = (yk ,1 ≤ k ≤ K ) ∈N
K , and where ek is the kth unit

vector ofNK . Thus xn can be seen as a system of particles, where particles are added and
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removed (when possible) according to independent Poisson processes attached to each

node, and while alive move independently according to the same Markovian dynamics.

Note also that because of the memoryless property, the Processor-Sharing assumption

has no impact on the law of xn ; nonetheless this assumption will impact sojourn time

distributions studied in Section 7.

For y ∈ N
K , let P

y
n be the law of xn started at y (from a network perspective, users

start with i.i.d. exponential service requirements), and denote by rn the K -dimensional

process rn = xn /‖xn‖ with the convention rn (t) = π when ‖xn (t)‖ = 0, and where from

now on if b ∈ R and y ∈ R
K then by ∈ R

K denotes the vector (byk ,1 ≤ k ≤ K ); similarly,

by denotes the K -dimensional function (byk ,1 ≤ k ≤ K ) if b is a real-valued function,

with byk = (b(t)yk , t ≥ 0).

We denote by an,k the arrival process at the kth node and by dn,k the potential depar-

ture process from the kth node, so that an,k is a Poisson process with intensity λn,k and

dn,k is a Poisson process with intensity µn,k such that the 2K processes (an,k ,dn,k ,1 ≤
k ≤ K ) are independent. Moreover, by definition of xn it holds that

(3) ‖xn (t)‖= ‖xn (0)‖+
K∑

k=1

an,k (t)−
K∑

k=1

∫

[0,t ]
1{xn,k (u−)>0}dn,k (du), t ≥ 0.

Let an = an,1 +·· ·+an,K and dn = dn,1 +·· ·+dn,K , so that an and dn are independent

Poisson processes with intensities λn and µn , respectively. Define ρn = λn /µn : it has

been proved in [5, 15] that xn is positive-recurrent when ρn < 1 and transient when ρn >
1; in Proposition 4.3 we will complete the picture and prove that xn is null-recurrent

when ρn = 1. When ρn < 1 denote by νn the stationary distribution of xn . We define

κ= supn(λn +µn) and assume throughout the paper that κ is finite.

2.3. Heavy traffic regime and main results. In the rest of the paper we fix two parame-

ters λ> 0 and α≥ 0. The main results of this paper deal with the following heavy traffic

regime.

Heavy-traffic assumption. We say that the heavy traffic assumption holds if ρn ≤ 1 for

each n ≥ 1 and

lim
n→+∞

λn =λ and lim
n→+∞

n(1−ρn ) =α.

We believe that the techniques of the paper could be adapted to the case α ∈ R (and

hence remove the assumption ρn ≤ 1). Under the heavy-traffic assumption, we have

µn → λ. Note that we do not require each λn,k or µn,k to converge, but only the corre-

sponding sum. The heavy traffic assumption will be assumed to hold in Sections 5, 6

and 7, that contain the main results of the paper. In Sections 3 and 4, we derive results

on the system for fixed n that do not require the heavy traffic assumption.

We now summarize the three main results of the paper: Theorems 5.1 and 6.1 estab-

lish the scaling limits of the sequence of processes (xn ,n ≥ 1) and of stationary measures

(νn ,n ≥ 1), and Corollary 7.3 investigates the asymptotic sojourn time of a typical initial

customer. Remember that by = (byk ,1 ≤ k ≤ K ) if b is a real number or a real-valued

function and y ∈N
K .

Forthcoming Theorem 5.1. Let Xn(t) = xn (n2t)/n. If the heavy traffic assumption holds,

then the sequence of processes (Xn ,n ≥ 1) under P0
n converges weakly as n goes to infin-

ity to the K -dimensional process Bπ, where B is a Brownian motion with drift −λα and
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variance 2λ started at 0.

Forthcoming Theorem 6.1. Assume that the heavy traffic assumption holds with α > 0,

and let Xn (0) = xn (0)/n. Then the sequence (Xn(0),n ≥ 1) under P
νn
n converges weakly as

n goes to infinity to the K -dimensional vector Eπ where E is an exponential random vari-

able with parameter α, and all higher moments converge as well, i.e., E
νn
n (‖Xn (0)‖r ) →

r !/αr for all integer r ≥ 0.

Forthcoming Corollary 7.3. Assume that the heavy traffic assumption holds with α> 0

and let (yn ) in N
K with ̺(yn) → 0 and ‖yn‖/n → b ∈ (0,∞). Under P

yn
n , let χn be the

sojourn time of one of the ‖yn‖ initial customers chosen uniformly at random. Then the

sequence of random variables (n−1χn) under P
yn
n converges weakly to bE/λ, with E a

mean one exponential random variable.

2.4. Functional operators. Fix some i ≥ 1 and ε > 0. Let Di be the space of Ri -valued

càdlàg functions. For f = ( fk ,1 ≤ k ≤ i )∈Di , we define the following operators:

T ↓( f ,ε) = inf{t ≥ 0 : ‖ f (t)‖≤ ε}, T ↑( f ,ε) = inf{t ≥ 0 : ‖ f (t)‖≥ ε}

as well as

T0( f ) = inf{t > 0 : ‖ f (t)‖= 0} and T̃0( f ) = min
1≤k≤i

T0( fk ).

For t ≥ 0, let σ,θt : Di → Di be the stopping and shift operators, defined by σ( f )(s)=
f (s ∧T0( f )) and θt ( f )(s) = f (t + s), respectively, for f ∈ Di and s ≥ 0. Define also the

map e
↑
ε : Di →Di as follows:

e
↑
ε( f ) =

(
σ◦θT ↑( f ,ε)

)
( f ).

In words, e
↑
ε( f ) is the process f shifted at the first time T ↑( f ,ε) when ‖ f ‖ reaches level ε

and stopped at the first time it reaches 0 afterwards. Finally, let gε( f ) be the left endpoint

of the first excursion of ‖ f ‖ to reach level ε:

gε( f ) = sup
{

t ≤ T ↑( f ,ε) : ‖ f (t)‖= 0
}

.

Note that similarly as ‖·‖, we use the same notation to refer to operators defined on

functions taking values in R
i for any i ≥ 1; for instance, we have T ↑( f ,ε) = T ↑(‖ f ‖,ε).

2.5. Coupling with an M/M/1 queue. The process xn is naturally coupled with the

queue length process of an M/M/1 queue with arrival rate λn and service rate µn . First,

for any f ∈ D1, define the function f , called the function f reflected above its past infi-

mum, by

f (t)= f (t)−min

(
inf

0≤s≤t
f (s),0

)
.

For n ≥ 1, let in the sequel ℓ̃n = ‖xn (0)‖+ an −dn and ℓn = ℓ̃n be the process ℓ̃n re-

flected above its past infimum. Since an and dn are independent Poisson processes with

respective intensity λn and µn , ℓ̃n is a continuous-time random walk and ℓn is equal in

distribution to the queue length process of an M/M/1 queue with arrival rate λn and

departure rate µn .

Intuitively, this coupling does the following: the potential total departure process

from both xn and ℓn is given by dn . When dn,k rings, there is no departure if xn,k = 0

while there may be other users elsewhere. The process ℓn ignores how users are spread

in the network: if there are users in the network and one of the dn,k rings, then one of

the users leaves. Thus ‖xn‖ and ℓn coincide as long as there is no empty node, and at all
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times there are more departures from ℓn than from xn . Formally, we have the following

result; recall that if ρn < 1, then xn is positive-recurrent with stationary distribution νn .

Lemma 2.1. For any y ∈N
K , the two following properties holds P

y
n-almost surely:

• ‖xn (t)‖= ℓn(t) for all t ≤ T̃0(xn);

• ‖xn (t)‖≥ ℓn(t) for all t ≥ 0.

In particular, if ρn < 1, then ‖xn (0)‖ under P
νn
n is stochastically lower bounded by a geo-

metric random variable with parameter ρn .

Proof. We prove the two first properties by induction. By construction, it holds that

‖xn (0)‖ = ℓn(0) and when an rings, both processes ‖xn‖ and ℓn increase by 1, which

preserves the difference ‖xn‖−ℓn . Internal movements in xn also preserve this differ-

ence, hence one only needs to inspect what happens when one of the dn,k rings.

So to prove the first property, consider t ≤ T̃0(xn) and 1 ≤ k ≤ K such that dn,k ({t }) = 1

and assume that ‖xn (t−)‖ = ℓn(t−): we must show that ‖xn (t)‖ = ℓn(t). Since t ≤
T̃0(xn), by definition of T̃0(xn ) we have xn,k (t−) > 0 and so ‖xn (t)‖ = ‖xn (t)‖− 1. On

the other hand, we have ℓn(t−) = ‖xn (t−)‖> 0 by induction hypotheses and so by con-

struction, ℓn(t)= ℓn(t)−1, which proves the desired property.

Let us now prove the second property, so consider t ≥ 0 and 1 ≤ k ≤ K such that

dn,k ({t }) = 1 and assume that ‖xn (t−)‖ ≥ ℓn(t−): we must show that ‖xn (t)‖ ≥ ℓn(t). If

ℓn(t−) = 0 then ℓn(t) = 0 and ‖xn (t)‖ ≥ ℓn(t). Else, ℓn(t) = ℓn(t−)−1 and since ‖xn (t)‖
decreases by at most 1 (it does when xn,k (t−) > 0, otherwise it stays constant) we also

have ‖xn (t)‖≥ ℓn(t) in this case.

As for the second assertion of the lemma, for any q ≥ 0 we have by stationarity and

using the second property

P
νn
n

(
‖xn (0)‖≥ q

)
=P

νn
n

(
‖xn (t)‖≥ q

)
≥P

νn
n

(
ℓn(t)≥ q

)
−→

t→+∞
(ρn )q

since ℓn(t) converges in distribution as t goes to infinity to a geometric random variable

with parameter ρn . This proves the result. �

We will often use the previous lemma in combination with the following lower bound

on T̃0(xn ):

(4) T ↑(rn −π,δ) ≤ T̃0(xn), δ≤π.

Indeed, since by definition we have ‖rn(t)−π‖ ≥ |rn,k (t)−πk | we see that xn,k (t) = 0

implies that ‖rn (t)−π‖ ≥ πk ≥ π. In particular, this implies that ‖xn (t)‖ = ℓn(t) for all

t ≤ T ↑(rn −π,δ) and δ≤π.

2.6. Coupling with a closed system. Let x′
n be the process built on the same proba-

bility space as xn , sharing the same stochastic primitives as xn but ignoring arrivals

and departures. More precisely, if (ξn,i ,1 ≤ i ≤ ‖y‖) are the ‖y‖ independent (but not

identically distributed, due to the initial conditions) trajectories of the ‖y‖ initial users

under P
y
n , then we define

x′
n,k (t) =

‖y‖∑

i=1

1{ξn,i (t )=k}, t ≥ 0,1 ≤ k ≤ K .

Note that x′
n is a Markov process with generator Ω′ defined similarly as Ωn but with all

λn,k ’s and µn,k ’s equal to 0. In particular, the law of x′
n does not depend on n. Under P

y
n ,

by construction it holds that yk of the (ξn,i ,1 ≤ i ≤ ‖y‖) are i.i.d. with common distribu-

tion ξ under Pk .
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We define r ′
n = x′

n /‖x′
n‖ with the usual convention r ′

n(t) = π when ‖x′
n (t)‖ = 0. Note

that because x′
n is a closed system, we have ‖x′

n(t)‖= ‖x′
n (0)‖. The following inequalities

are intuitively clear, see for instance [15] for a formal proof: for any t ≥ 0 and k = 1, . . . ,K ,

(5) −dn(t) ≤ xn,k (t)− x′
n,k (t)≤ an(t) and −dn(t) ≤ ‖xn (t)‖−‖x′

n (t)‖≤ an(t).

This has the following useful consequence.

Lemma 2.2. For any y ∈N
K with ‖y‖> 0, we have

P
y
n

(
∀t ≥ 0 : ‖rn(t)− r ′

n(t)‖≤
2K (an(t)+dn(t))

‖y‖

)
= 1.

In particular, for any y ∈N
K , any δ> 0 and any t ≥ 0, we have

(6) P
y
n

(
‖rn(t)− r ′

n(t)‖≥ δ
)
≤P

(
P (κt)≥ δ‖y‖/(2K )

)
.

Proof. Fix k = 1, . . . ,K and y ∈N
K with ‖y‖ > 0: then under P

y
n , it holds that

∣∣∣r ′
n,k (t)− rn,k (t)

∣∣∣=
∣∣∣∣∣

x′
n,k

(t)

‖y‖
−

xn,k (t)

‖xn(t)‖

∣∣∣∣∣=
∣∣∣∣∣

x′
n,k

(t)‖xn (t)‖− xn,k (t)‖y‖
‖y‖‖xn (t)‖

∣∣∣∣∣

=
∣∣∣∣∣

(x′
n,k

(t)− xn,k (t))‖xn(t)‖+ xn,k (t)(‖xn(t)‖−‖y‖)

‖y‖‖xn (t)‖

∣∣∣∣∣

≤
|x′

n,k
(t)− xn,k (t)|
‖y‖

+
∣∣‖xn (t)‖−‖y‖

∣∣
‖y‖

.

Together with (5) this gives the first result, which implies (6) since an(t)+dn(t) for

any t ≥ 0 is a Poisson random variable with parameter (λn +µn)t and λn +µn ≤ κ by

definition of κ. �

3. ANALYSIS OF THE CLOSED SYSTEM

In this section we are interested in the closed system x′
n . Since its law does not de-

pend on n, in order to simplify the notation we remove temporarily all subscripts n and

write P
y , x′, x′

k
, r ′ and r ′

k
instead of P

y
n , x′

n , x′
n,k

, r ′
n and r ′

n,k
, respectively. We will de-

note x′
k

(t) =
∑‖x′(0)‖

i=1
1{ξi (t )=k}, with (ξi ) independent Markov processes with generator

matrix Q .

3.1. Homogenization at a fixed deterministic time. We first show that starting from

any initial state, the system becomes close to homogenization in a constant time. Note

that the following bound is consistent with the central limit theorem, which suggests

that ‖r ′(t)−π‖ should be of order (‖x′(0)‖)−1/2 for large t and ‖x′(0)‖. The following

result improves on Simatos and Tibi [15, Proposition 5.2]; here we use Chernoff’s instead

of Chebyshev’s inequality. In the following lemma, both in the statement and the proof,

we make us of the functions and constants τ(·), ∆(·), π and π that were introduced in

Section 2.1.

Lemma 3.1. There exists ε0 > 0, depending only on π and K , such that for any 0 < ε< ε0

and any y ∈N
K ,

P
y
(
‖r ′(τ(ε/(2K )))−π‖≥ ε

)
≤ 2K exp

(
−
ε2‖y‖
4K 2

)
.
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Proof. In the rest of the proof, fix ε> 0, y ∈N
K , and write t = τ(ε/(2K )) and ε′ = ε/(2K ).

Since r ′(t) = π under P0, the bound holds when ‖y‖ = 0 and we consider ‖y‖ ≥ 1. Stan-

dard manipulations yield

P
y
(
‖r ′(t)−π‖≥ ε

)
≤ K max

1≤k≤K
P

y
(
|r ′

k (t)−πk | ≥ ε/K
)

.

Until the end of the proof fix some 1 ≤ k ≤ K : we have x′
k

(t) =
∑‖y‖

i=1
1{ξi (t )=k} under Py

and so

∣∣Ey (r ′
k(t))−πk

∣∣=
∣∣∣∣∣

1

‖y‖

‖y‖∑

i=1

P
y (ξi (t) = k)−πk

∣∣∣∣∣≤
1

‖y‖

‖y‖∑

i=1

∣∣Py (ξi (t)= k)−πk

∣∣ .

Thus by definition of ∆ and τ, we have |Ey (r ′
k

(t))−πk | ≤ ε′ since t = τ(ε′). Conse-

quently, the triangular inequality gives |r ′
k

(t)−πk | ≤ |r ′
k

(t)−E
y (r ′

k
(t))|+ε′ and so

P
y
(
|r ′

k (t)−πk | ≥ ε/K
)
≤P

y
(
|r ′

k (t)−E
y (r ′

k (t))| ≥ ε′
)
=P

y
(
|x′

k (t)−E
y (x′

k (t))| ≥ ε′‖y‖
)

.

Let us now define ε0. For p ∈ [0,1], define f (p) = p(1− p). Since f (1−π) > 0, there

exists ε′0 < 1−π, which only depends on π, such that f (1−π−δ) > δ for all δ< ε′0. We fix

such an ε′0 and consider ε0 = 2K ε′0, which only depends on π and K . In the sequel we

assume that ε< ε0, or equivalently, ε′ < ε′0.

Recall Chernoff’s inequality: if (Yi ,1 ≤ i ≤ I ) are independent random variables with

|Yi | ≤ 1 and E(Yi ) = 0 for each 1 ≤ i ≤ I , then for any 0 ≤ η≤ b

P

(∣∣∣∣∣
I∑

i=1

Yi

∣∣∣∣∣≥ ηb

)
≤ 2e−η

2/4 with b2 = E(Y 2
1 )+·· ·+E(Y 2

I ).

Denote pi = P
y (ξi (t) = k): we wish to apply Chernoff’s inequality to the random

variables (Yi ,1 ≤ i ≤ ‖y‖) with Yi =1{ξi (t )=k} −pi , for which b2 = f (p1)+·· ·+ f (p‖y‖). In

order to ease the notation, we suppress the dependencies of pi , Yi and b on k, t and y ,

which have been fixed once and for all earlier. Define now η= ε′‖y‖/b, so that

P
y
(
|x′

k (t)−E
y (x′

k (t))| ≥ ε′‖y‖
)
=P

(∣∣∣∣∣
‖y‖∑

i=1

Yi

∣∣∣∣∣≥ ηb

)
.

Assume for a moment that η≤ b: then we could apply Chernoff’s inequality and get

P

(∣∣∣∣∣
‖y‖∑

i=1

Yi

∣∣∣∣∣≥ ηb

)
≤ 2e−η

2/4 = 2exp

(
−

(ε′‖y‖)2

4b2

)
≤ 2exp

(
−
ε2‖y‖
4K 2

)

using b2 ≤ ‖y‖/4. This would prove the result, and so it remains only to prove that η≤ b,

or equivalently, b2 ≥ ε′‖y‖. By definition we have b2 = f (p1)+·· ·+ f (p‖y‖). Let 1 ≤ i ≤
‖y‖: since t ≥ τ(ε′), we have |pi −πk | ≤ ε′ and in particular

π−ε′ ≤πk −ε′ ≤ pi ≤πk +ε′ ≤π+ε′.

Since f (p) = f (1− p), f is increasing on [0,1/2] and decreasing on [1/2,1] and π ≤
1−π, the previous inequalities imply that

f (pi ) ≥ min
(

f (π−ε′), f (π+ε′)
)
= min

(
f (π−ε′), f (1−π−ε′)

)
= f (1−π−ε′) ≥ ε′

by choice of ε′0 and since ε′ < ε′0. Thus b2 ≥ ε′‖y‖ which concludes the proof. �
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3.2. Deviation time from the equilibrium. We now study the time needed for the pro-

cess r ′ to leave a neighborhood of π. Note that x′ can be seen as a multi-dimensional

Ehrenfest urn, where sharp results on hitting times in the two-dimensional case K = 2

have been established in Feuillet and Robert [4].

Estimates on hitting times will follow from the optional sampling theorem applied to

the martingale of Proposition 3.4. This martingale was first constructed in Simatos and

Tibi [15] for the open system under an additional diagonalizability assumption on Q .

Since the martingale construction is quite complicated for the open system, we adopt

here a different approach: we only construct the martingale for the closed system and

then use coupling arguments to transfer results on the closed system to the open one.

Compared to Simatos and Tibi [15], the new contribution of the following construc-

tion consists of Lemma 3.2, which makes it possible to drop the diagonalizability as-

sumption. Nonetheless, the construction of the martingale for the open system is in-

tricate while it becomes quite elementary for the closed one. For this reason, we have

chosen not to refer to [15], but rather to provide a self-contained proof (except for the

proof of Lemma 3.3 which can be repeated almost verbatim).

3.2.1. Additional notation. The following notation holds throughout the rest of this sec-

tion. Let S = {u ∈ [0,1]K−1 : ‖u‖ ≤ 1} ⊂R
K−1 and SK = {u ∈ [0,1]K : ‖u‖ = 1} ⊂ R

K be the

K -dimensional simplex. Let L : S → SK be the function that completes u ∈ S into a

probability distribution, i.e., (Lu)k = uk if 1 ≤ k ≤ K −1 and (Lu)K = 1−‖u‖ for u ∈ S .

Note that L is invertible with inverse L−1 : SK →S being the projection of the K −1 first

coordinates. Let finally Π= diag(π1, . . . ,πK ) be the diagonal matrix with entries (πk) on

the diagonal.

Let J be the Jordan normal form corresponding to Q with change of basis matrix ω.

Thus J and ω are possibly complex matrices, and we have the following properties, see

for instance Herstein and Winter [6]. Let (ϑi ,1 ≤ i ≤ I ) be the I distinct eigenvalues

of Q with ϑI = 0, for 1 ≤ i ≤ I let mi be the algebraic multiplicity of ϑi and let ωk(i)

for some k(i ) ∈ {1, . . . ,K } be any eigenvector of J corresponding to the eigenvalue ϑi ,

i.e., Jωk(i) = ϑiωk(i). Since mi is the algebraic multiplicity of ϑi we have in particular

m1ϑ1 + ·· · +mI−1ϑI−1 = −γ (recall that γ > 0 is the trace of −Q). Moreover, we have

Q =ω−1 Jω so that e tQ = ω−1e t Jω for any t ∈ R, and because of the block structure of J

this gives (e t J )k(i), j = 0 for j 6= k(i ) and (e t J )k(i),k(i) = e tϑi . In the sequel we consider the

following function F : RK → [0,∞):

F (u) =
I−1∏

i=1

∣∣(ωu)k(i)

∣∣mi , u ∈R
K .

Then F satisfies the following simple property, which is key to generalize the martin-

gale construction of Simatos and Tibi [15] to the case of non-diagonalizable Q .

Lemma 3.2. For any u ∈R
K and t ∈R, we have F (e tQ u) = e−γt F (u).

Proof. We have e tQ =ω−1e t Jω so that

F (e tQ u) =
I−i∏

i=1

∣∣(ωe tQ u)k(i)

∣∣mi =
I−1∏

i=1

∣∣(e t Jωu)k(i)

∣∣mi =
I−1∏

i=1

∣∣∣e tϑi (ωu)k(i)

∣∣∣
mi = e−γt F (u).

The identity (e t Jωu)k(i) = e tϑi (ωu)k(i) follows from the fact that (e t J )k(i), j is equal to 0

for j 6= k(i ) and to e tϑi for j = k(i ). This proves the result. �
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3.2.2. Upper bound on hitting times. Proposition 3.5 is the main technical result of this

section, which will be used in the following section. We omit the proof of the following

result, for which one can repeat almost verbatim the proof of Lemma A.5 in Simatos and

Tibi [15].

Lemma 3.3. The quantity sup0<c<1

(
cK

∫
S

(F (Π−1Lu))c−1du
)

is finite.

Proposition 3.4. For any c > 0 and any y ∈N
K , the process

Mc (t) = e−cγt

∫

S

K∏

k=1

(
(Lu)k

πk

)x′
k

(t ) (
F (Π−1Lu)

)c−1
du, t ≥ 0,

is a bounded martingale under Py .

Proof. Fix in the rest of the proof some c > 0 and y ∈ N
K . Then under Py , we have for

any t ≥ 0

Mc (t)≤ π−‖y‖
∫

S

(
F (Π−1Lu)

)c−1
du

and so supt≥0 Mc (t) is bounded by Lemma 3.3 for 0 < c < 1 while for c ≥ 1 one only

needs to use the fact that u ∈S 7→ F (Π−1Lu) is bounded. Let s, t ≥ 0: we have

E
y (Mc (t+s) |Ft )= e−cγ(t+s)

∫

S

K∏

k=1

E
y

[
exp

(
K∑

k=1

Gk (u)x′
k (t + s)

) ∣∣∣x′(t)

]
(
F (Π−1Lu)

)c−1
du

with Gk (u) = log((Lu)k /πk ), so that eGk (u) = (Π−1Lu)k . For any z ∈N
K , we have

E
z

[
exp

(
K∑

k=1

Gk (u)x′
k (s)

)]
= E

z

[
exp

(
K∑

k=1

‖z‖∑

i=1

Gk (u)1{ξi (s)=k}

)]

=
‖z‖∏

i=1

E
z

[
exp

(
K∑

k=1

Gk (u)1{ξi (s)=k}

)]

since the (ξi ,1 ≤ i ≤ ‖z‖) under Pz are independent. For j ∈ {1, . . . ,K }, z j of the (ξi ) are

i.i.d. with distribution ξ under P j and so

‖z‖∏

i=1

E
z

[
exp

(
K∑

k=1

Gk (u)1{ξi (s)=k}

)]
=

K∏

j=1

{
E j

[
exp

(
K∑

k=1

Gk (u)1{ξ(s)=k}

)]}z j

=
K∏

j=1

(
K∑

k=1

eGk (u)P j (ξ(s) = k)

)z j

=
K∏

j=1

(
K∑

k=1

(esQ ) j k (Π−1Lu)k

)z j

=
K∏

j=1

{(
esQ

Π
−1Lu

)
j

}z j
.

Thus

E
y (Mc (t + s) |Ft )= e−cγ(t+s)

∫

S

K∏

k=1

{(
esQ

Π
−1Lu

)
k

}x′
k

(t ) (
F (Π−1Lu)

)c−1
du.

We want to make the change of variables (Lv)k /πk = (esQ
Π
−1Lu)k , i.e., Π−1Lv =

esQ
Π
−1Lu or Lv =ΠesQ

Π
−1Lu. To use the inverse of L, we check that ΠesQ

Π
−1Lu ∈SK

for u ∈S : we have (ΠesQ
Π
−1Lu)k ≥ 0 because Lu has only positive coordinates and the
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matrix ΠesQ
Π
−1 has only positive coefficients, and

K∑

k=1

(ΠesQ
Π
−1Lu)k =

K∑

k=1

πk

K∑

j=1

(esQ )k j

(Lu) j

π j
=

K∑

j=1

(Lu) j

π j

K∑

k=1

πk Pk (ξ(s) = j )

=
K∑

j=1

(Lu) j

π j
π j =

K∑

k=1

(Lu)k = 1.

Hence we can consider v = Hs u with Hs = L−1
ΠesQ

Π
−1L. Clearly Hs is invertible

with inverse H−1
s = L−1

Πe−sQ
Π
−1L = H−s . For any t ∈ R, we have Ht (S ) ⊂ S : indeed,

Ht u for u ∈ S has only non-negative coordinates, because of the same arguments as

above, and moreover

K−1∑

k=1

(Ht u)k =
K−1∑

k=1

(L−1
Πe tQ

Π
−1Lu)k =

K−1∑

k=1

(Πe tQ
Π
−1Lu)k ≤

K∑

k=1

(Πe tQ
Π
−1Lu)k = 1.

Hence Hs (S ) ⊂S and H−s (S ) = H−1
s (S ) ⊂S and so the restriction Hs : S →S of Hs

to S is invertible with inverse H−s . This gives

E
y (Mc (t + s) |Ft ) = e−cγ(t+s)

∫

S

K∏

k=1

(
(Lv)k

πk

)x′
k

(t )

(F (Π−1LH−s v))c−1|Jacv (H−s)|d v

where if M is a matrix |M | stands for its determinant and if M : Ra → R
b then Jacv (M)

stands for its Jacobian matrix evaluated at v :

Jacv (M) =
(
∂Mk

∂uℓ
(v),1≤ k ≤ b,1 ≤ ℓ≤ a

)
.

Lemma 3.2 therefore gives, since Π
−1LH−s v = e−sQ

Π
−1Lv ,

E
y (Mc (t + s) |Ft ) = e−cγt e−γs

∫

S

K∏

k=1

(
(Lv)k

πk

)x′
k

(t ) (
F (Π−1Lv)

)c−1 |Jacv (H−s)|d v.

We now show that |Jacv (H−s )| = eγs , which will complete the proof. The chain rule

gives

Jacv (H−s) = JacLv (L−1
Πe−sQ

Π
−1)Jacv (L) = JacLv (Πe−sQ

Π
−1)Jacv (L)

using for the second equality that L−1 is the projection on the first K − 1 coordinates.

Also, Jacv (L) is the diagonal matrix diag(1,1, . . . ,1,−1), so its determinant is equal to −1

and on the other hand, if M is a linear operator then Jacv (M) = M for all v and so

|JacLv (Πe−sQ
Π
−1)| = |Πe−sQ

Π
−1| = |e−sQ | = eγs .

The proof is complete. �

The following proposition makes use of the function and constants ̺(·), γ and π de-

fined in Section 2.1 and of the operator T ↑ defined in Section 2.4.

Proposition 3.5. There exists a family of finite constants (Cδ,δ > 0) such that for every

t > 1/γ, every δ> 0 and every y ∈N
K with ̺(y)≤πδ2/8,

P
y
(
T ↑(r ′−π,δ) ≤ t

)
≤Cδ exp

(
K log t −δ2‖y‖/8

)
.

Proof. Fix in the rest of the proof δ > 0, t > 1/γ and y ∈ N
K , and denote c = 1/(γt) and

T = T ↑(r ′−π,δ): then Markov inequality gives

P
y (T ≤ t) ≤ eEy

(
exp

(
−cγT

))
.
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We now derive an upper bound on this Laplace transform. Consider the martin-

gale Mc of Proposition 3.4. Since under Py it is a bounded martingale by Proposition 3.4

the optional stopping theorem gives

E
y (Mc (T ))= E

y (Mc (0)) .

We will provide an upper bound on E
y (Mc (0)) and a lower bound on E

y (Mc (T )) of the

form AEy (e−cγT ), thus providing a desired upper bound on E
y (e−cγT ). For u, v ∈SK let

H(u, v) = u1 log(u1/v1)+·· ·+uK log(uK /vK ) be the relative entropy, so that Mc under Py

can be rewritten as

Mc (t)= e−cγt
∫

S

exp
{
‖y‖

(
H(r ′(t),π)−H(r ′(t),Lu)

)}(
F (Π−1Lu)

)c−1
du.

The relative entropy is positive and satisfies the following upper and lower bounds:

(7)
1

2
‖u− v‖2 ≤ H(u, v) ≤

1

mink vk
‖u− v‖, u, v ∈SK .

The lower bound, called Pinsker’s inequality, is well-known, see for instance Pinsker [11],

while the upper bound follows by convexity:

H(u, v) =
K∑

k=1

uk log

(
1+

uk − vk

vk

)
≤

K∑

k=1

uk (uk − vk )

vk
≤

K∑

k=1

uk |uk − vk |
vk

≤
‖u− v‖
mink vk

,

using uk ≤ 1. Thus using that the relative entropy is always positive, we obtain using the

upper bound in (7)

E
y (Mc (0)) ≤ e‖y‖H(y/‖y‖,π)

∫

S

(
F (Π−1Lu)

)c−1
du ≤ A1e‖y‖̺(y)/πc−K = A2eK log t+‖y‖̺(y)/π

with A1 = sup0<c<1(cK
∫
S

(F (Π−1Lu))c−1du) and A2 = A1γ
K , A1 and therefore A2 being

finite by Lemma 3.3 (recall that 0 < c < 1 by assumption). We now derive a lower bound

on Mc (T ). The lower bound in (7) gives H(r ′(T ),π) ≥ ‖x(T )−π‖2/2 and since ‖x(T )−
π‖ ≥ δ by definition of T we obtain the following lower bound on the integral part of

Mc (T ):

∫

S

e‖y‖(H(r ′(T ),π)−H(r ′ (T ),Lu)) (
F (Π−1Lu)

)c−1
du

≥ e‖y‖δ2/2

∫

S

e−‖y‖H(r ′(T ),Lu)
(
F (Π−1Lu)

)c−1
du.

By definition, F is a continuous function, hence it is bounded on the compact set

S
′ =Π

−1L(S ) and so
∫

S

e−‖y‖H(r ′(T ),Lu)
(
F (Π−1Lu)

)c−1
du ≥ A3

∫

S

e−‖y‖H(r ′(T ),Lu)du

with A3 = (1+ supS ′ F )−1. For v ∈ SK let S (v) = {u ∈ SK : H(v,u) ≤ δ2/4} and φ(v) =∫
S (v) du be the volume of S (v): then

∫

S

e−‖y‖H(r ′(T ),Lu)du ≥ e−‖y‖δ2/4φ(r ′(T )) ≥ e−‖y‖δ2/4 A4

with A4 = infv∈SK
φ(v). We have A4 > 0 since φ is easily seen to be continuous, φ(v) > 0

for any v ∈SK and SK is compact. Therefore, we have proved

Mc (T ) ≥ e−cγT e‖y‖δ2/2 A3e−‖y‖δ2/4 A4 = A5e−cγT e‖y‖δ2/4
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with A5 = A3 A4 a deterministic constant. Combining all the previous bounds, we obtain

P
y
(
T ↑(r ′−π,δ) ≤ t

)
≤

e A2

A5
exp

(
K log t +‖y‖̺(y)/π−‖y‖δ2/4

)
.

Assuming ̺(y)≤πδ2/8 ends the proof, since A2 and A5 only depend on δ. �

4. ANALYSIS OF THE OPEN SYSTEM

We extend Lemma 3.1 and Proposition 3.5 to the open system, exploiting the cou-

pling with x′
n of Section 2.6. In the rest of the paper, ε0 denotes the constant given by

Lemma 3.1. Recall that κ= supn≥1(λn +µn ) is assumed to be finite, and that the various

constants, functions and operators that will be used, e.g., π, γ, τ(·), ̺(·), T ↑ and T ↓ have

been defined in Sections 2.1 and 2.4.

Lemma 4.1. For any n ≥ 1, any δ< 2ε0 and any y ∈N
K , we have

P
y
n (‖rn(τ)−π‖≥ δ) ≤P

(
P (κτ) ≥ δ‖y‖/(4K )

)
+2K exp

(
−
δ2‖y‖
16K 2

)

where τ= τ(δ/(4K ))

Proof. Since

P
y
n (‖rn (τ)−π‖≥ δ) ≤P

y
n

(
‖rn(τ)− r ′

n(τ)‖≥ δ/2
)
+P

y
n

(
‖r ′

n (τ)−π‖≥ δ/2
)

the result follows directly from Lemmas 2.2 and 3.1. �

Proposition 4.2. There exists a finite constant c1 > 0 and for each δ > 0, there exists a

finite constant c2(δ) such that c1 and c2(δ) only depend on K , κ and Q (and δ for c2(δ))

and such that for every n ≥ 1, every t > 0 and every 0 < δ< 1, φ ∈N and y ∈N
K such that:

η< 2ε0,
φη

8Kκ
> max

(
τ
(
η/(4K )

)
,

1

γ

)
, ‖y‖>φ and ̺(y)≤ η,

where η= πδ2/32, then

P
y
n

(
T ↑(rn −π,δ) ≤ t ∧T ↓(xn ,φ)

)
≤ c2(δ)exp

(
log t −c1(δ4φ− logφ)

)
.

Proof. In the rest of the proof, fix n, t , δ, φ, η and y as in the statement of the proposition

and denote for simplicity τ= τ(η/(4K )) and u =φη/(8Kκ). We have

P
y
n (Tr ≤ t ∧Tx ) ≤

⌊t/u⌋−1∑

i=0

P
y
n (Tr ≤ Tx , i u ≤ Tr ≤ (i +1)u)

where from now on Tr = T ↑(rn −π,δ) and Tx = T ↓(xn ,φ). Since ‖y‖ ≥ φ and ̺(y) ≤ η,

the term corresponding to i = 0 in the above sum is upper bounded by

P
y
n (Tr ≤ Tx ,Tr ≤ u) ≤ sup

y ′:‖y ′‖≥φ,̺(y ′)≤η
P

y ′

n (Tr ≤ u) .

Consider now i > 0, and note that i u ≥ τ by assumption. Since ‖xn (i u −τ)‖ ≥ φ in

the event {i u ≤ Tx }, the Markov property at time i u−τ gives

P
y
n

(
Tr ≤ Tx , i u ≤ Tr ≤ (i +1)u,‖rn (i u)−π‖≥ η

)
≤ sup

y ′:‖y ′‖≥φ
P

y ′
n

(
‖rn(τ)−π‖≥ η

)
.

Similarly, since ‖xn (i u)‖ ≥ φ in the event {i u ≤ Tx }, the Markov property at time i u

gives

P
y
n

(
Tr ≤ Tx , i u ≤ Tr ≤ (i +1)u,‖rn (i u)−π‖≤ η

)
≤ sup

y ′:‖y ′‖≥φ,̺(y ′)≤η
P

y ′
n (Tr ≤ u) .
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Since the previous upper bounds do not depend on i , summing over 0 ≤ i ≤ ⌊t/u⌋−1

gives

P
y
n (Tr ≤ t ∧Tx ) ≤ ⌊t/u⌋

(
sup

y ′:‖y ′‖≥φ
P

y ′

n

(
‖rn(τ)−π‖≥ η

)
+ sup

y ′:‖y ′‖≥φ,̺(y ′)≤η
P

y ′

n (Tr ≤ u)

)
.

Let y ′ ∈N
K with ‖y ′‖ ≥φ: since η< 2ε0 and τ= τ(η/(4K )), Lemma 4.1 gives

P
y ′

n

(
‖rn(τ)−π‖≥ η

)
≤P

(
P (κτ) ≥ ηφ/(4K )

)
+2K exp

(
−

η2φ

16K 2

)
.

Since φ≥ 8κKτ/η, we have

P
(
P (κτ) ≥ ηφ/(4K )

)
≤P

(
P (φη/(8K ))≥φη/(4K )

)
≤ exp

(
−
φηh(2)

8K

)

and we finally get

sup
y ′:‖y ′‖≥φ

P
y ′
n

(
‖rn (τ)−π‖≥ η

)
≤ exp

(
−
φηh(2)

8K

)
+2K exp

(
−

η2φ

16K 2

)
.

Consider now y ′ ∈N
K with ‖y ′‖≥φ and ̺(y ′) ≤ η: then

P
y ′

n (Tr ≤ u) ≤P
y ′

n

(
T ↑(rn − r ′

n ,δ/2) ≤ u
)
+P

y ′

n

(
T ↑(r ′

n −π,δ/2) ≤ u
)

.

On the one hand, Lemma 2.2 implies that

P
y ′

n

(
T ↑(rn − r ′

n ,δ/2) ≤ u
)
≤P

y ′

n

(
T ↑(an +dn ,δ‖y ′‖/(4K )) ≤ u

)
≤P

(
P (κu) ≥ η‖y ′‖/(4K )

)

using that δ> η and that an +dn is an increasing process to get the last inequality. Since

‖y ′‖≥φ this gives

P
y ′

n

(
T ↑(rn − r ′

n ,δ/2) ≤ u
)
≤P

(
P (κu) ≥ δφ/(4K )

)
≤ exp

(
−
φηh(2)

8K

)

plugging in the definition of u and using (1) for the last inequality. On the other hand,

since u > 1/γ and ̺(y ′) ≤ η= π(δ/2)2/8, Proposition 3.5 implies that

P
y ′

n

(
T ↑(r ′

n −π,δ/2) ≤ u
)
≤Cδ/2 exp

(
K log u−δ2‖y ′‖/32

)

≤Cδ/2(η/(8Kκ))K exp
(
K logφ−δ2φ/32

)

using ‖y ′‖ ≥φ and the definition of u to obtain the last inequality. Gathering the previ-

ous upper bounds, we have proved at this point that

u

t
P

y
n

(
T ↑(rn −π,δ) ≤ t ∧T ↓(xn ,φ)

)
≤ 2K exp

(
−

η2φ

16K 2

)
+2exp

(
−
φηh(2)

8K

)

+Cδ/2(η/(8Kκ))K exp
(
K logφ−δ2φ/32

)
.

The result then follows easily from this expression. �

Proposition 4.2 has the following consequence, which is interesting in its own right

and will be used in the proof of Lemma 5.3.

Proposition 4.3. Let n ≥ 1: if ρn = 1 then xn is null-recurrent.
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Proof. Since ℓn is null-recurrent it is enough to show that xn is recurrent by Lemma 2.1.

Intuitively, the drift of xn is always strictly positive due to the fact that there is always

a positive probability that a potential departure finds an empty node, creating a slack

between the arrival and departure rates. However, the drift should go to 0 as the size

of the initial state becomes large. Theorem 3.2 in Lamperti [10] asserts that if the drift

vanishes sufficiently fast, then xn is recurrent.

Since n is fixed, in order to ease notation, we omit the subscript n, so for instance a

and d refer to the processes an and dn , respectively, and x refers to xn . Let b = 1/4 and

ϕ(y) = ‖y‖1+2b = ‖y‖3/2 for y ∈N
K . For i ≥ 1 let ωi =ωi−1 +ϕ(x(ωi−1)) with ω0 = 0 and

χi = ‖x(ωi )‖. If we can show that

(8) ess sup E
0
(
χi+1 −χi |χi = ξ,χ j = ξ j , j ≤ i −1

)

≤
1

2ξ
ess inf E0

(
(χi+1 −χi )2 |χi = ξ,χ j = ξ j , j ≤ i −1

)
+Cξ−1−b

for some finite constant C and all ξ large enough, where the sup and the inf are taken

over i ≥ 1 and (ξ j ,0 ≤ j ≤ i − 1), then Theorem 3.2 in Lamperti [10] will imply that x

almost surely visits infinitely often some finite set; since it is irreducible this will prove

recurrence. Let Fi =σ(χ j ,0 ≤ j ≤ i ) and Gi =σ(x(ω j ),0 ≤ j ≤ i ): we have

E
0
(
χi+1 −χi |Fi

)
= E

0
[
E

0
(
χi+1 −χi |Gi

)
|Fi

]
= E

0
[
E

x(ωi )
(
‖x(ϕ(x(0)))‖−‖x(0)‖

)
|Fi

]

and hence

E
0
(
χi+1 −χi |Fi

)
≤ max

y :‖y‖=χi

E
y
(
‖x(ϕy )‖−‖x(0)‖

)
,

writing indifferently ϕy or ϕ(y). Similarly,

E
0
(
(χi+1 −χi )2 |Fi

)
≥ inf

y :‖y‖=χi

E
y
(
(‖x(ϕy )‖−‖x(0)‖)2

)
.

Remember that ℓ̃ = ‖x(0)‖+ a − d : since ‖x‖ ≥ ℓ by Lemma 2.1 and ℓ = ℓ̃ ≥ ℓ̃ by

definition, we get (‖x(ϕy )‖−‖x(0)‖)2 ≥ϕy in the event {ℓ̃(ϕy )−‖x(0)‖ ≥ϕ1/2
y } and so

E
y
(
(‖x(ϕy )‖−‖x(0)‖)2

)
≥ E

y
(
(‖x(ϕy )‖−‖x(0)‖)2; ℓ̃(ϕy )−‖x(0)‖ ≥ϕ1/2

y

)
≥ cϕy

with c = inft≥0 P
0(ℓ̃(t) ≥

p
t) which is strictly positive since ℓ̃(t)/

p
t under P0 converges

in distribution as t →+∞ to a normal random variable. Thus to show (8) it is enough to

show that there exists some finite constant C such that

(9) max
y :‖y‖=ξ

E
y
(
‖x(ϕξ)‖−‖x(0)‖

)
≤

Cϕξ

ξ1+b

for all ξ large enough. Let ξ≥ 0 and y ∈N
K such that ‖y‖= ξ: integrating (3) over Py and

using λ=µ gives

E
y
(
‖x(ϕξ)‖−‖x(0)‖

)
=

K∑

k=1

µk

∫ϕξ

0
P

y (xk (u) = 0)du.

Let k ∈ {1, . . . ,K }: then
∫ϕξ

0
P

y (xk (u) = 0)du ≤ϕξP
y
(
T ↓(x,ξ/2) ≤ϕξ

)
+

∫ϕξ

0
P

y
(
xk (u) = 0,T ↓(x,ξ/2) ≥ϕξ

)
du.

Since ℓ̃≤ ‖x‖ and ℓ̃ is a symmetric random walk, we have

P
y
(
T ↓(x,ξ/2) ≤ϕξ

)
≤P

y
(
T ↓(ℓ̃,ξ/2) ≤ϕξ

)
=P

0
(
T ↑(ℓ̃,ξ/2) ≤ϕξ

)
= 2P0

(
ℓ̃(ϕξ)≥ ξ/2

)
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using the reflection principle to get the last equality. Moreover, writing ℓ̃(t) for t ≥ 0 as

ℓ̃(t) = (a(t)−λt)+ (λt −d(t)), using the triangular inequality and the fact that a and d

are i.i.d. Poisson processes with intensity λ, we obtain

P
0
(
ℓ̃(ϕξ) ≥ ξ/2

)
≤P

(
|P (λϕξ)−λϕξ| ≥ ξ/4

)
.

Extending (1) to upper bound P(P (λϕξ) ≤ϕξ−ξ/4), it can be proved that there exists

a finite constant H > 0 such that

P
(
|P (λϕξ)−λϕξ| ≥ ξ/4

)
≤ exp

(
−Hξ2/ϕξ

)
= exp

(
−H

√
ξ
)

.

Further, let δ > 0 and η = πδ2/32 be such that δ < π and η < 2ε0, and write τ =
τ(η/(4K )): then

∫ϕξ

0
P

y
(
xk (u) = 0,T ↓(x,ξ/2) ≥ϕξ

)
du ≤ τ +

∫ϕξ

τ
P

y
(
xk (u) = 0,T ↓(x,ξ/2) ≥ϕξ

)
du

and for u ≥ τ, the Markov property at time τ gives

P
y
(
xk (u) = 0,T ↓(x,ξ/2) ≥ϕξ

)
≤P

y
(
‖r (τ)−π‖≥ η

)

+ sup
y ′

P
y ′ (

xk (u−τ) = 0,T ↓(x,ξ/2) ≥ϕξ−τ
)

where the supremum is taken over the set {y ′ ∈N
K : ‖y ′‖ ≥ ξ/2,̺(y ′) ≤ η}. Since η< 2ε0

and τ= τ(η/(4K )), Lemma 4.1 gives

P
y
(
‖r (τ)−π‖≥ η

)
≤P (P (κτ) ≥ δξ/(4K ))+2K exp

(
−

δ2ξ

16K 2

)

≤ exp

(
−

κδξ

4Kκτ

)
+2K exp

(
−

δ2ξ

16K 2

)

using (1) for the last inequality, together with h(v) ≥ v for v large enough (so this in-

equality holds for ξ large enough). Since xk (u) = 0 implies ‖r (u)−π‖ ≥ π ≥ δ, we have

for any τ≤ u ≤ϕξ and any y ′ ∈N
K with ‖y ′‖ ≥ ξ/2 and ̺(y ′) ≤ η

P
y ′ (

xk (u−τ) = 0,T ↓(x,ξ/2) ≥ϕξ−τ
)
≤P

y ′ (
T ↑(r −π,δ) ≤ u−τ,T ↓(x,ξ/2) ≥ϕξ−τ

)

≤P
y ′ (

T ↑(r −π,δ) ≤ϕξ∧T ↓(x,ξ/2)
)

≤ c2(δ)exp
(
logϕξ−c1(δ4ξ/2− log(ξ/2))

)

since all the assumptions of Proposition 4.2 are satisfied (for ξ large enough). Gathering

all the previous bounds, we obtain for ξ large enough

E
y
(
‖x(ϕξ)‖−‖x(0)‖

)
≤ 4µϕξ exp

(
−H

√
ξ
)
+τµ+µexp

(
−

κδξ

4Kκτ

)

+2Kµexp

(
−

δ2ξ

16K 2

)
+c2(δ)µϕξ exp

(
logϕξ−c1(δ4ξ/2− log(ξ/2))

)

which proves (9) since every term decays exponentially fast, except for the constant

term τµ which has to be compared to ϕξ/ξ1+b which goes to infinity. �
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5. SCALING LIMIT

We assume in this section that the heavy traffic assumption stated in Section 2.3

holds. In particular, ρn ≤ 1 for every n ≥ 1 and λn → λ > 0 and n(1−ρn ) → α ≥ 0. We

are interested in the sequence (Xn ,n ≥ 1) of renormalized processes where Xn for each

n ≥ 1 is given by

Xn (t)=
xn (n2t)

n
, t ≥ 0.

We define Rn (t) = rn(n2t) which satisfies Rn (t) = Xn(t)/‖Xn (t)‖ when ‖Xn (t)‖ > 0,

and also Ln (t) = n−1ℓn(n2t). In the sequel, we denote by B a Brownian motion with

drift −λα, variance 2λ; Pb for b ∈ R denotes its law started at b. Note that it is known

that Ln ⇒ B under the heavy-traffic assumption, where from now on ⇒ denotes weak

convergence. The goal of this section is to prove the following result.

Theorem 5.1. The sequence of processes (Xn ,n ≥ 1) under P0
n converges weakly as n goes

to infinity to Bπ under P0.

The above theorem is reminiscent of heavy-traffic diffusion limits for the joint queue

length process in various queueing networks, involving reflected Brownian motion and

state space collapse, see for instance Bramson [3], Reiman [13], Stolyar [16] and Williams [19].

However, to the best of our knowledge, this is the first result which shows that mobility

of users, rather than scheduling, routing or load balancing, can act as a mechanism pro-

ducing state space collapse.

It is straightforward to adapt the proof of Theorem 5.1 to handle a more general initial

condition. Let b > 0 and assume that ‖Xn (0)‖→ b, then it can be proved that:

• for any sequence (εn) such that εn > 0, εn → 0 and n2εn →+∞, the sequence of

shifted processes (θεn Xn ) converges weakly towards Bπ under Pb ;

• if Rn (0) →π then (Xn) converges weakly to Bπ under Pb .

We see that if Rn (0) → π′ 6= π then (Xn ) converges in the sense of finite-dimensional

distributions to a process which is discontinuous at 0 and so cannot converge weakly

(at least in the space of càdlàg functions).

5.1. Overview of the proof. Remember from Section 2.4 that e
↑
ε(Xn) = (σ◦θT ↑(Xn ,ε))(Xn )

and that gε(Xn) is the left endpoint of the first excursion of Xn with height larger than

ε, equivalently the left endpoint of the excursion of Xn straddling T ↑(Xn ,ε). To prove

Theorem 5.1, we use Theorem 4 in Lambert and Simatos [8]: in particular, Theorem 5.1

will be proved if we can show that gε(Xn) ⇒ gε(Bπ), e
↑
ε(Xn) ⇒ e

↑
ε(Bπ) and (T0◦e

↑
ε)(Xn) ⇒

(T0 ◦ e
↑
ε)(Bπ) for any ε> 0, where Xn is considered under P0

n and B under P0. Note that

gε(Bπ) = gε(B) and similarly that (T0 ◦e
↑
ε)(Bπ) = (T0 ◦e

↑
ε)(B).

The convergence of the two sequences (e
↑
ε(Xn)) and ((T ◦e

↑
ε)(Xn)) is studied in Propo-

sition 5.4, its proof relies on the following ideas. First, let ̟n = xn (T ↑(xn ,εn)): the

Markov property shows that e
↑
ε(Xn) under P

0
n is equal in distribution to σ(Xn ) under

P
̟n
n . In Lemma 5.2 we show that ̟n ≈ επ, i.e., the system is with high probability ho-

mogenized at time T ↑(xn ,εn). Then, we want to show that this property lasts on times

of order of n2 that we are interested in. To do so we exploit the bound of Proposition 4.2,

which shows that we will be able to control the process on times of order of n2 as long

as there are at least of the order of logn users in the network. Thus, this reduces the

problem to control σ(Xn ) started with log n users: this is studied in Lemma 5.3 where it
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is shown that T0(Xn) is at most of order of
p

n. Since arrivals and departures are Pois-

son, on this time scale the total number of users at most varies by
p

n which is negligible

compared to the space scale n that we are interested in.

On the other hand, the convergence gε(Xn ) ⇒ gε(Bπ), proved in Proposition 5.5, fol-

lows from two arguments: one that provides a lower bound in terms of a sum of i.i.d.

terms related to (T0 ◦ e
↑
ε)(Xn), whose asymptotic behavior we will control thanks to the

convergences of (e
↑
ε(Xn)) and ((T0◦e

↑
ε)(Xn)); and one that provides a corresponding up-

per bound via the coupling with the M/M/1 queue.

5.2. Convergence of (e
↑
ε(Xn ),n ≥ 1) and ((T0 ◦e

↑
ε)(Xn),n ≥ 1). The convergence of these

two sequences is proved in Proposition 5.4. In the following proofs we make repeated

use of the constant ε0 given by Lemma 3.1 and of the various constants, functions and

operators defined in Sections 2.1 and 2.4.

Lemma 5.2. For any ε,δ> 0,

lim
n→+∞

P
0
n

(
‖Rn (T ↑(Xn ,ε))−π‖ ≥ δ

)
= 0.

Proof. Fix ε> 0, by monotonicity, the result only needs to be proved for δ small enough;

in the sequel we will consider δ> 0 such that η< 2ε0 with η= πδ2/32. Let τ= τ(η/(4K )),

un = n1/5, vn = n1/2, Tn = T ↑(xn ,nε), T ′
n = T ↑(xn ,nε−un ) and En be the event

En =
{
T ′

n +τ≤ Tn

}
∩

{
‖xn (T ′

n +τ)‖≥ nε−2un

}
∩

{
‖rn(T ′

n +τ)−π‖ ≤ η
}

.

Using that T ′
n ≤ Tn , the strong Markov property applied at T ′

n gives

P
0
n

(
E c

n

)
=P

̟′
n

n

(
{Tn ≤ τ}∪ {‖xn (τ)‖≤ nε−2un }∪

{
‖rn(τ)−π‖≥ η

})

where ̟′
n is equal in distribution to xn (T ′

n) under P
0
n . On the other hand, the strong

Markov property applied at the stopping time T ′
n +τ gives

P
0
n ({‖rn(Tn)−π‖≥ δ}∩En) ≤ max

y∈Tn

P
y
n (‖rn(Tn)−π‖≥ δ) .

with Tn = {y ∈ N
K : nε− 2un ≤ ‖y‖ ≤ nε and ̺(y) ≤ η}. Let yn ∈ Tn that realizes the

maximum, so that P0
n({‖rn(Tn)−π‖ ≥ δ}∩En) ≤ P

yn
n (‖rn(Tn)−π‖ ≥ δ). Thus we get the

bound

P
0
n (‖rn (Tn)−π‖ ≥ δ) ≤P

̟′
n

n (Tn ≤ τ or ‖xn (τ)‖≤ nε−2un )+P
̟′

n
n

(
‖rn(τ)−π‖≥ η

)

+P
yn
n (‖rn(Tn)−π‖≥ δ) .

Since ‖̟′
n‖ = ⌈nε−un⌉, if under P

̟′
n

n we have Tn ≤ τ or ‖xn (τ)‖ ≤ nε−2un then we

must have at least un arrivals or un departures in [0,τ]. Since the arrival and depar-

ture rates are bounded (by κ) while un →+∞ we see that the probability of this event

vanishes, i.e., P
̟′

n
n (Tn ≤ τ or ‖xn (τ)‖≤ nε−2un ) → 0.

On the other hand, since ‖̟′
n‖= ⌈nε−un ⌉, we have

P
̟′

n
n

(
‖rn(τ)−π‖≥ η

)
≤P

y ′
n

n

(
‖rn(τ)−π‖≥ η

)

for some y ′
n ∈ N

K with ‖y ′
n‖ = ⌈nε−un⌉. Since η < 2ε0 and τ = τ(η/(4K )), Lemma 4.1

shows that P
y ′

n
n (‖rn(τ)−π‖≥ η) → 0. Hence we have

limsup
n→+∞

P
0
n (‖rn (Tn)−π‖≥ δ) ≤ limsup

n→+∞
P

yn
n (‖rn(Tn)−π‖ ≥ δ)

and we now show that this last upper bound is equal to 0.
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We have

P
yn
n (‖rn(Tn)−π‖≥ δ) ≤P

yn
n (Tn ≥ vn)+P

yn
n

(
T ↑(rn −π,δ) ≤ vn

)

and by Lemma 2.1,

P
yn
n (Tn ≥ vn) ≤P

yn
n

(
T ↑(ℓn ,nε) ≥ vn

)
≤P

y ′′
n

n

(
T ↑(ℓn ,nε) ≥ vn

)

where y ′′
n ∈N

K is such that ‖y ′′
n‖= ⌊nε−un⌋, using stochastic monotonicity of T ↑(ℓn ,nε)

in the size of the initial condition. Since ℓn ≥ ℓ̃n , we get

P
yn
n (Tn ≥ vn) ≤P

y ′′
n

n

(
T ↑(ℓ̃n ,nε) ≥ vn

)
=P

0
n

(
T ↑(ℓ̃n ,un ) ≥ vn

)
.

On the other hand we have

P
yn
n

(
T ↑(rn −π,δ) ≤ vn

)
≤P

yn
n

(
T ↓(ℓ̃n ,un )≤ vn

)
+P

yn
n

(
T ↑(rn −π,δ) ≤ vn ∧T ↓(xn ,un )

)

where we have used the inequality T ↓(xn ,un ) ≤ T ↓(ℓ̃n ,un ) that stems from Lemma 2.1.

Since η < 2ε0, ̺(yn) ≤ η and ‖yn‖ ≥ un , all the assumptions of Proposition 4.2 are sat-

isfied, at least for n large enough. Thus the second term of the right-hand side of the

previous display vanishes, and gathering all the previous bounds we see that we are left

with

limsup
n→+∞

P
0
n (‖rn(Tn)−π‖≥ δ) ≤ limsup

n→+∞
P

0
n

(
T ↑(ℓ̃n ,un ) ≥ vn

)

+ limsup
n→+∞

P
yn
n

(
T ↓(ℓ̃n ,un ) ≤ vn

)
.

Since the sequence of rescaled processes (L̃n) with L̃n (t) = ℓ̃n(n2t)/n converges in

distribution to a Brownian motion, it is not hard to show that the two sequences of ran-

dom variables (u−2
n T ↑(ℓ̃n ,un )) underP0

n and (n−2T ↑(ℓ̃n ,un )) underP
yn
n converge weakly

to a non-degenerate random variable (actually, hitting times are continuous function-

als when the limiting process is the almost sure realization of a Brownian motion, see

for instance Proposition VI.2.11 in Jacod and Shiryaev [7]). Since (un )2 ≪ vn ≪ n2 this

finally proves that the right-hand side of the previous display is equal to 0, hence the

result. �

Lemma 5.3. Let φn = ⌊(logn)2⌋: then

lim
n→+∞

(
max

y :‖y‖=φn

P
y
n

(
T0(xn ) ≥

p
n

))
= 0.

Proof. Let Mn ∈N be such that 2Mn−1 < φn ≤ 2Mn . By monotonicity of T0 in the size of

the initial state, we have

max
y :‖y‖=φn

P
y
n

(
T0 ≥

p
n

)
≤ max

y∈T (Mn )
P

y
n

(
T0 ≥

p
n

)

where from now on T (m) = {y ∈ N
K : ‖y‖ = 2m } and we omit the dependency of the

functional operators when they are applied at xn , so that T0 = T0(xn ). Define S( f ) =
T ↓( f ,‖ f (0)‖/2) and ϕn,m = exp(Mn +2(Mn−m)/4), and note that since ρn ≤ 1 by assump-

tion, S is almost surely finite since xn is recurrent by Proposition 4.3. The relation

T0 = S +T0 ◦θS gives for any n ≥ 1 and y ∈N
K

P
y
n

(
T0 ≥

p
n

)
=P

y
n

(
T0 ≥

p
n,S ≥ϕn,0

)
+P

y
n

(
T0 ≥

p
n,S ≤ϕn,0

)

≤P
y
n

(
S ≥ϕn,0

)
+P

y
n

(
T0 ◦θS ≥

p
n−ϕn,0

)
.
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Since moreoverP
y
n(xn (S)∈T (Mn−1)) = 1 for y ∈T (Mn ), the strong Markov property

at S gives

max
y∈T (Mn )

P
y
n

(
T0 ≥

p
n

)
≤ max

y∈T (Mn )
P

y
n

(
S ≥ϕn,0

)
+ max

y∈T (Mn−1)
P

y
n

(
T0 ≥

p
n−ϕn,0

)
.

Iterating Mn +1 times, we obtain

max
y∈T (Mn )

P
y
n

(
T0 ≥

p
n

)
≤

Mn∑

m=0

max
y∈T (Mn−m)

P
y
n

(
S ≥ϕn,m

)

+ max
y∈T (0)

P
y
n

(
T0 ≥

p
n−ϕn,0 −·· ·−ϕn,Mn

)
.

Now T (0) = {0} and T0 under P0
n is equal to 0. Since in addition 2Mn ≤ 2φn ≤ 2(logn)2,

we obtain 2Mn /4 ≤ 21/4(logn)1/2 and so

ϕn,0 +·· ·+ϕn,Mn ≤ (Mn +1)exp
(
Mn +2Mn /4

)
< exp

(
(1/2) log n

)
=
p

n

for n large enough. For those n, we get

max
y∈T (0)

P
y
n

(
T0 ≥

p
n−ϕn,0 −·· ·−ϕn,Mn

)
= 0

and finally, we obtain after a change of variables

(10) max
y∈T (Mn )

P
y
n

(
T0 ≥

p
n

)
≤

Mn∑

m=0

max
y∈T (m)

P
y
n

(
S ≥ exp(Mn +2m/4)

)
.

Let us justify that for fixed m ≥ 0 and y ∈N
K we have

(11) lim
n→+∞

P
y
n

(
S ≥ exp(Mn +2m/4)

)
= 0.

First, let (u(n)) be a subsequence such that

lim
n→+∞

P
y

u(n)

(
S ≥ exp(Mu(n) +2m/4)

)
= limsup

n→+∞
P

y
n

(
S ≥ exp(Mn +2m/4)

)
.

Since the [0,∞)2K -valued sequence ((λu(n),k ,µu(n),k ,1 ≤ k ≤ K ),n ≥ 1) lives in a com-

pact set as a consequence of the heavy-traffic assumption, we can find a subsequence

(v(n)) of (u(n)) and λ∞,µ∞ ∈ [0,∞)K such that λv(n),k → λ∞,k and µv(n),k → µ∞,k for

each k = 1, . . . ,K . Because of the heavy-traffic assumption, we have ‖λ∞‖ = ‖µ∞‖.

It is then not hard to see that the sequence (xv(n)) under P
y
n converges weakly to x∞,

where x∞ is the Markov process with x∞(0) = y and generator Ω∞ defined similarly as

Ωn but with λn,k and µn,k replaced by λ∞,k and µ∞,k , respectively. Since x∞ lives in

N
K and is piecewise constant, it is not hard to prove that S is a continuous functional

at x∞ and so the continuous-mapping theorem implies the weak convergence of the

sequence (S(xv(n))) towards S(x∞). In particular,

lim
n→+∞

P
y

u(n)

(
S ≥ exp(Mu(n) +2m/4)

)
=P (S(x∞) =+∞) .

Since ‖λ∞‖ = ‖µ∞‖, x∞ is recurrent by Proposition 4.3 and so S(x∞) is finite almost

surely which proves (11). Since for each fixed m ≥ 1 the set T (m) is finite, combin-

ing (10) and (11) we obtain for any M ≥ 0

limsup
n→+∞

(
max

y∈T (Mn )
P

y
n

(
T0 ≥

p
n

))
≤ limsup

n→+∞

(
Mn∑

m=M

max
y∈T (m)

P
y
n

(
S ≥ exp(2m/4)

)
)
≤

∑

m≥M

Um

where

Um = sup
n≥1

(
max

y∈T (m)
P

y
n

(
S ≥ exp(2m/4)

))
.
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Thus if we can prove that the series (Um) is summable, letting M →+∞ in the previ-

ous inequality will show the result.

For the rest of the proof, fix any δ > 0 such that δ≤ π and η< 2ε0 where η= πδ2/32.

Let in addition τ= τ(η/(4K )). Then for any y ∈N
K , we have

P
y
n

(
S ≥ exp(2m/4)

)
≤P

y
n

(
S ≥ exp(2m/4),‖rn(τ)−π‖≤ η, |‖xn (τ)‖−‖xn (0)‖| ≤ m

)

+P
y
n

(
‖rn(τ)−π‖ ≥ η

)
+P

y
n (|‖xn (τ)‖−‖xn (0)‖| ≥ m) .

Invoking the Markov property at time τ for the first term and (5) together with Lemma 2.2

for the two last ones, we get

max
y∈T (m)

P
y
n

(
S ≥ exp(2m/4)

)
≤ max

y∈T ′(m,η)
P

y
n

(
S ≥ exp(2m/4)−τ

)

+ max
y∈T (m)

P
y
n

(
‖rn(τ)−π‖≥ η

)
+P (P (κτ) ≥ m)

where T
′(m,δ) = {y ∈ N

K : |‖y‖− 2m | ≤ m and ̺(y) ≤ η}. The last term of the above

upper bound defines a summable series since a Poisson random variable has a finite

mean; the second term also by Lemma 4.1 since η < 2ε0. It remains to control the first

term.

So consider y ∈ T
′(m,δ) and let vm = exp(2m/4)− τ and ψm = 2m−1 −m/2. Since

‖y‖≥ 2m −m we have S = T ↓(xn ,‖y‖/2) ≤ T ↓(xn ,ψm ) under P
y
n and we obtain

P
y
n (S ≥ vm) ≤P

y
n

(
T ↓(xn ,ψm )≥ vm ,T ↑(rn −π,δ) ≥ vm

)

+P
y
n

(
T ↓(xn ,ψm ) ≥ vm ,T ↑(rn −π,δ) ≤ vm

)
.

Since δ≤π, we have ‖xn (t)‖= ℓn(t) for all t ≤ T ↑(rn −π,δ) by (4) and so

P
y
n

(
T ↓(xn ,ψm ) ≥ vm ,T ↑(rn −π,δ) ≥ vm

)
=P

y
n

(
T ↓(ℓn ,ψm ) ≥ vm ,T ↑(rn −π,δ) ≥ vm

)

which implies

max
y∈T ′(m,η)

P
y
n (S ≥ vm) ≤ max

y∈T ′(m,η)
P

y
n

(
T ↓(ℓn ,ψm ) ≥ vm

)

+ max
y∈T ′(m,η)

P
y
n

(
T ↑(rn −π,δ) ≤ vm ∧T ↓(xn ,ψm )

)
.

As for the second term, it is easily checked that all the assumptions of Proposition 4.2

are satisfied, at least for m large enough, since δ and η < 2ε0 are fixed and both vm

and 2m−1 grow without bounds with m. Proposition 4.2 provides a bound uniform in

y ∈ T
′(m,δ) and n ≥ 1 which defines a summable series in m. Hence to complete the

proof it remains to show that

(12)
∑

m≥M

sup
n≥1

{
P

ym
n

(
T ↓(ℓn ,ψm ) ≥ vm

)}
<+∞

with ym = (2m +m)e1, using monotonicity of T ↓(ℓn ,ψm ) in the size of the initial state

and the fact that ℓn only depends on the initial state through its size. Note that

P
ym
n

(
T ↓(ℓn ,ψm ) ≥ vm

)
=P

ym
n

(
T ↓(ℓ̃n ,ψm ) ≥ vm

)
=P

0
n

(
T ↓(ℓ̃n ,ψ′

m ) ≥ vm

)

with ψ′
m = ψm − 2m − m = 2m−1 − 2m − 3m/2. It is well-known that T ↓(ℓ̃n ,ψ′

m ) un-

der P0
n scales like (ψ′

m)2 ≈ 22m for large m and n, which is negligible compared to vm ≈
exp(2m/4). In the case ρn = 1, we can use the reflection principle and establish an expo-

nential upper bound as we have done in the proof of Proposition 4.3. When ρn < 1 we
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can couple ℓ̃n with a critical random walk ℓ′n such that ℓ′n ≥ ℓ̃n . In particular we have

T ↓(ℓ̃n ,ψm ) ≤ T ↓(ℓ′n ,ψm ) and so P
ym
n (T ↓(ℓ̃n ,ψm ) ≥ vm) ≤ P

ym
n (T ↓(ℓ′n ,ψm ) ≥ vm), where

this last term obeys to an exponential upper bound. This proves (12) and completes the

proof. �

Proposition 5.4. For any ε > 0, the sequences (e
↑
ε(Xn ),n ≥ 1) and ((T0 ◦ e

↑
ε)(Xn),n ≥ 1)

under P0
n converge weakly to e

↑
ε(Bπ) and (T0 ◦e

↑
ε)(B) under P0, respectively.

Proof. In the rest of the proof fix any ε > 0 and let ̟n be the law of xn (T ↑(xn ,ε)) un-

der P0
n . In view of the strong Markov property, the convergence properties claimed are

equivalent to the convergence of the two sequences (σ(Xn),n ≥ 1) and (T0(Xn), n ≥ 1)

under P
̟n
n towards σ(Bπ) and T0(B) under Pε, respectively.

We know that (σ(Lnπ)) and (T0(Ln)) under P
̟n
n converge weakly to σ(Bπ) and T0(B)

under Pε, respectively, and we want to transfer this result to Xn using Theorem 3.1 in

Billingsley [1], sometimes referred to as a “convergence-together” result. Thus we only

have to prove that for any β> 0,

lim
n→+∞

P
̟n
n

(
sup
t≥0

‖σ(Xn )(t)−σ(Lnπ)(t)‖≥β

)
= lim

n→+∞
P
̟n
n

(
|T0(Xn)−T0(Ln)| ≥β

)
= 0.

Defineφn = ⌊(logn)2⌋ as well as Tn,X = T ↓(Xn ,n−1φn) and Tn,L = T ↓(Ln ,n−1φn): then

T0(Xn) = Tn,X + (T0 ◦θTn,X )(Xn) and T0(Ln ) = Tn,L + (T0 ◦θTn,L )(Ln)

so that

P
̟n
n

(
|T0(Xn)−T0(Ln)| ≥β

)
≤P

̟n
n

(
|Tn,X −Tn,L | > 0

)

+P
̟n
n

(
(T0 ◦θTn,X )(Xn) ≥β/3

)
+P

̟n
n

(
(T0 ◦θTn,L )(Ln) ≥β/3

)
.

Note that Lemma 2.1 implies that P
̟n
n (|Tn,X −Tn,L | > 0) = P

̟n
n (Tn,X > Tn,L). Together

with the strong Markov property at Tn,X and Tn,L , this gives

P
̟n
n

(
|T0(Xn)−T0(Ln)| ≥β

)
≤P

̟n
n

(
Tn,X > Tn,L

)
+ max

y :‖y‖=φn

P
y
n

(
T0(xn ) ≥ n2β/3

)

+ max
y :‖y‖=φn

P
y
n

(
T0(ℓn) ≥ n2β/3

)
.

Since the sequence (φ−2
n T0(ℓn)) underP

φn e1
n converges in distribution to a non-degenerate

random variable, the last term goes to 0 since n2 ≫ φ2
n . The second term goes to 0 by

Lemma 5.3, and so it remains to control the first term. In the rest of the proof, let δ> 0

such that δ≤π and η= πδ2/32 < 2ε0: we have

P
̟n
n

(
Tn,X > Tn,L

)
≤P

̟n
n

(
‖Rn (0)−π‖ ≥ η

)
+max

y∈Tn

P
y
n

(
Tn,X > Tn,L

)

with Tn = {y ∈N
K : ‖y‖ = ⌊nε⌋ and ̺(y) ≤ η}. The first term goes to 0 by Lemma 5.2 and

so we have at that point

limsup
n→+∞

P
̟n
n

(
|T0(Xn)−T0(Ln)| ≥β

)
≤ limsup

n→+∞

(
max
y∈Tn

P
y
n

(
Tn,X > Tn,L

))
.

Thanks to Lemma 2.1, one sees that Tn,X > Tn,L implies that there was a time t < Tn,L

such that xn,k (t)= 0 for some k. At that time we have ‖rn(t)−π‖≥π≥ δ and so

P
y
n

(
Tn,X > Tn,L

)
≤P

y
n

(
T ↑(rn −π,δ) ≤ Tn,L

)
.
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Further we have

P
y
n

(
T ↑(rn −π,δ) ≤ Tn,L

)
≤P

y
n

(
n ≤ Tn,L

)
+P

y
n

(
T ↑(rn −π,δ) ≤ n∧Tn,L

)
.

The first term goes to 0 uniformly in y with ‖y‖ = ⌊εn⌋ since the sequence (Tn,L)

under P
y
n with y ∈Tn converges in distribution, while the second term can be rewritten

as

P
y
n

(
T ↑(rn −π,π) ≤ n∧Tn,L

)
=P

y
n

(
T ↑(rn −π,δ) ≤ n3 ∧T ↓(ℓn ,φn )

)

which goes to 0 uniformly in y ∈ Tn by Proposition 4.2 (using T ↓(ℓn ,φn) ≤ T ↓(xn ,φn )).

This proves the result on T0(Xn ), the result on σ(Xn ) follows along the same lines but

at the expense of more technical details. Lemma 2.1 and (4) imply that Tn,X = Tn,L and

Ln(Tn,L) = ‖Xn (Tn,X )‖ = n−1φn in the event {T ↑(Rn −π,δ) ≥ Tn,L}, so that the strong

Markov property gives

P
̟n
n

(
sup
t≥0

‖σ(Xn )(t)−σ(Lnπ)(t)‖≥β

)
≤P

̟n
n

(
T ↑(Rn −π,δ) ≥ Tn,L

)

+P
̟n
n

(
sup

0≤t≤Tn,L

‖Xn (t)−Ln(t)π‖≥β/3

)
+max

y∈Φn

P
y
n

(
sup

0≤t≤T0(Xn)
‖Xn (t)‖≥β/3

)

+max
y∈Φn

P
y
n

(
sup

0≤t≤T0(Ln )
Ln(t) ≥β/3

)

where Φn = {y ∈N
K : ‖y‖=φn }. We have already proved earlier in the proof that the first

term vanishes. The last term can be seen to vanish invoking the convergence of (Ln )

towards a Brownian motion. The third term vanishes because for any y ∈Φn ,

P
y
n

(
sup

0≤t≤T0(Xn)
‖Xn (t)‖≥β/3

)
=P

y
n

(
sup

0≤t≤T0(xn )
‖xn (t)‖≥ nβ/3

)

≤P
y
n

(
T0(xn) ≥

p
n

)
+P

y
n

(
an(

p
n) ≥ nβ/3−φn

)

and both terms go to 0 uniformly in y ∈Φn , the first one using Lemma 5.3 and the sec-

ond one using Markov inequality. It remains to show that the second term also vanishes.

Let Sn = sup[0,Tn,L ] Ln : then for any 0 ≤ t ≤ Tn,L , one has

‖Xn (t)−Ln(t)π‖
(1)
≤ ‖Xn (t)‖‖Rn (t)−π‖+‖π‖|‖Xn (t)‖−Ln(t)|
(2)
≤ Ln (t)‖Rn(t)−π‖+2 |‖Xn (t)‖−Ln(t)|
(3)
≤ Sn‖Rn (t)−π‖+2 |‖Xn (t)‖−Ln(t)|

where (1) follows by adding and subtracting π‖Xn(t)‖ and using the triangular inequal-

ity, (2) follows from ‖Xn(t)‖≤ Ln (t)+|‖Xn(t)‖−Ln (t)| together with ‖Rn (t)−π‖≤ 1 and

‖π‖ = 1 and (3) is by definition of Sn , since t ≤ Tn,L . Using this upper bound together

with standard manipulations, we get the following upper bound, valid for any s > 0:

P
̟n
n

(
sup

0≤t≤Tn,L

‖Xn (t)−πLn(t)‖≥β/3

)
≤P

̟n
n

(
sup

0≤t≤Tn,L

‖Rn(t)−π‖≥β/(6s)

)

+P
̟n
n (Sn ≥ s)+P

̟n
n

(
sup

0≤t≤Tn,L

|‖Xn (t)‖−Ln(t)| > 0

)
.
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Similarly as before the first and last terms go to 0, so we are left with

limsup
n→+∞

P
̟n
n

(
sup

0≤t≤Tn,L

‖Xn (t)−πLn(t)‖≥β

)
≤ limsup

n→+∞
P
̟n
n (Sn > s).

Letting s →+∞ completes the proof, since the sequence (Sn) under P
̟n
n converges

weakly to sup[0,T0(B )] B under Pε. �

5.3. Convergence of (gε(Xn ),n ≥ 1). To complete the proof of Theorem 5.1 based on

Theorem 4 in Lambert and Simatos [8] it remains to be shown that gε(Xn) ⇒ gε(B).

Proposition 5.5. For any ε> 0, the sequence (gε(Xn )) under P0
n converges weakly to gε(B)

under P0.

Proof. Since ‖Xn‖ ≥ Ln by Lemma 2.1, it is clear that T ↑(Xn ,ε) ≤ T ↑(Ln ,ε), and hence

going back in time and using again ‖Xn‖ ≥ Ln we see that gε(Xn ) ≤ gε(Ln). On the other

hand, since Ln ⇒ B it is not difficult to show that gε(Ln) ⇒ gε(B), see for instance Lam-

bert and Simatos [9] where similar computations are carried out. This proves that the

sequence (gε(Xn )) is tight and that any accumulation point is stochastically dominated

by gε(B). We now derive a corresponding lower bound which will conclude the proof.

Let δ > 0 and denote by E
↑
n,k ,δ

the kth excursion of Xn that reaches level δ shifted at

the first time it reaches this value: formally, we have

E
↑
n,1,δ

= e
↑
δ

(Xn) and E
↑
n,k+1,δ

=
(
e
↑
δ
◦θdn,k,δ

)
(Xn)

with dn,k ,δ the right endpoint of the excursion of Xn corresponding to En,k ,δ. Let Nn,δ,ε

be the number of excursions of Xn that reach level δ and not level ε before the first

excursion of Xn to reach level ε: it satisfies

Nn,δ,ε+1= inf

{
k ≥ 1 : sup

t≥0
‖E

↑
n,k ,δ

(t)‖≥ ε

}
.

Then Nn,δ,ε is a geometric random variable with parameter pn,δ,ε given by pn,δ,ε =
P

0
n(sup‖e

↑
δ

(Xn)‖< ε), the (E
↑
n,k ,δ

,1 ≤ k ≤ Nn,δ,ε) are i.i.d., independent of Nn,δ,ε and with

common distribution e
↑
δ

(Xn ) conditioned on {sup‖e
↑
δ

(Xn)‖< ε}, and we have

gε(Xn) ≥
Nn,δ,ε∑

k=1

T0

(
E
↑
n,k ,δ

)

with the convention
∑0

1 = 0. This last inequality implies for any s > 0

E
0
n

(
e−sgε(Xn)

)
≤ E

[{
E

0
n

(
e−s(T0◦e

↑
δ

)(Xn ) | sup‖e
↑
δ

(Xn )‖< ε
)}Nn,δ,ε

]

and it can be computed that this last upper bound is equal to

1−pn,δ,ε

1−pn,δ,εE
0
n

(
e−s(T0◦e

↑
δ

)(Xn) | sup‖e
↑
δ

(Xn)‖< ε
) =

P
0
n(sup‖e

↑
δ

(Xn)‖ ≥ ε)

1−E
0
n

(
e−s(T0◦e

↑
δ

)(Xn);sup‖e
↑
δ

(Xn)‖< ε
) .

Proposition 5.4 and the continuous-mapping theorem give

lim
n→+∞

P
0
n

(
sup‖e

↑
δ

(Xn)‖≥ ε
)
=P

0
(
supe

↑
δ

(B) ≥ ε
)

.
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On the other hand, the two convergences of Proposition 5.4 can be shown to hold

jointly, see for instance Lambert and Simatos [8], and so the continuous-mapping the-

orem gives

lim
n→+∞

E
0
n

(
e−s(T0◦e

↑
δ

)(Xn );sup‖e
↑
δ

(Xn )‖< ε
)
= E

0
(
e−s(T0◦e

↑
δ

)(B );sup e
↑
δ

(B) < ε
)

.

Thus for any δ> 0 we have

limsup
n→+∞

E
0
n

(
e−sgε(Xn)

)
≤

P
0(sup‖e

↑
δ

(B)‖≥ ε)

1−E0
(
e−s(T0◦e

↑
δ

)(B );sup‖e
↑
δ

(B)‖< ε
) .

Using standard arguments from excursion theory, the above upper bound is seen to

converge towards E0(e−sgε(B )) as δ→ 0, and so we finally get

limsup
n→+∞

E
0
n

(
e−sgε(Xn)

)
≤ E

0
(
e−sgε(B )

)
.

This implies that any accumulation point of the tight sequence (gε(Xn )) is stochasti-

cally lower bounded by gε(B), and since a corresponding stochastic upper bound holds

this gives the result. �

6. CONVERGENCE OF THE STATIONARY DISTRIBUTIONS

Throughout this section the heavy-traffic assumption of Section 2.3 continues to be

in force, and we moreover assume that α > 0, so that ρn < 1 for n large enough. Recall

that in this case xn is positive-recurrent, see [5, 15], and that νn denotes its stationary

distribution. This section is devoted to proving the following result, where we write

similarly as in the previous section Xn (0) = n−1xn (0).

Theorem 6.1. The sequence (Xn (0),n ≥ 1) under P
νn
n converges weakly as n goes to in-

finity to Eπ where E is an exponential random variable with parameter α, and all higher

moments converge as well, i.e., E
νn
n (‖Xn (0)‖r ) → r !/αr for all integer r ≥ 0.

Since the exponential random variable E in the above theorem has the stationary

distribution of the reflected Brownian motion B introduced in Theorem 5.1, we may ob-

serve that the heavy-traffic characteristics are preserved under an interchange of limits.

While such an interchange of limits tends to apply in most specific cases, there do not

appear to be any general guarantees for that. The proof of Theorem 6.1 relies on the

following estimate, and we will in particular make use of the constants π and ε0 defined

in Section 2.1 and Lemma 3.1, respectively.

Lemma 6.2. There exist two constants c,c ′ ∈ (0,∞) such that for every n ≥ 1, every q ≥ 0

and every 1 ≤ k ≤ K ,

P
νn
n

(
‖xn (0)‖≥ q, xn,k (0) = 0

)
≤ ce−c ′q .

Proof. Fix n ≥ 1, q ≥ 0 and 1 ≤ k ≤ K . Recall the constant ε0 of Lemma 3.1 and let

0< ε< 1 be any number such that

1−
ε0

π
<

2ε

π(1−ε)
< 1.
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Let η= 2ε/(π(1−ε)), so that 0 < η< 1 and (1−η)π< ε0, and τ= τ((1−η)π/(2K )). Then

for any y ∈N
K , one has

P
y
n

(
‖xn (τ)‖≥ q, xn,k (τ) = 0

)
≤P

y
n

(
‖xn (τ)‖≥ q,rn,k (τ) ≤ επk

)

≤P
y
n

(
‖xn (τ)‖≥ q, xn,k (τ) ≤ επk‖xn (τ)‖, an (τ)∨dn(τ) ≤ εq

)

+P
y
n

(
an(τ)∨dn(τ) ≥ εq

)
.

The last term P
y
n(an(τ)∨dn(τ) ≥ εq) is upper bounded by P(P (κτ) ≥ εq) which we

control using (1). One can check that h(x) ≥ x for x ≥ e, hence for q such that eκτ≤ εq

we obtain

P
y
n

(
an(τ)∨dn(τ) ≥ εq

)
≤ e−εq , q ≥ eκτ/ε.

In particular there exists a finite constant c such that P
y
n(an(τ)∨dn(τ) ≥ εq) ≤ ce−εq

for all q ≥ 0. On the other hand, {‖xn (τ)‖ ≥ q, an(τ) ≤ εq} ⊂ {‖xn (0)‖ ≥ (1− ε)q} and

according to (5), we also have the inclusion

{
an(τ)∨dn (τ) ≤ εq

}
⊂

{
xn,k (τ) ≥ x′

n,k (τ)−εq,‖xn (τ)‖≤ ‖xn (0)‖+εq
}

,

hence

P
y
n

(
‖xn (τ)‖≥ q, xn,k (τ) ≤ επk‖xn (τ)‖, an (τ)∨dn(τ) ≤ εq

)

≤P
y
n

(
‖xn (0)‖≥ (1−ε)q, x′

n,k (τ)≤ επk (‖xn (0)‖+εq)+εq
)

≤P
y
n

(
‖xn (0)‖≥ (1−ε)q,r ′

n,k (τ) ≤ επk (1+ε/(1−ε))+ε/(1−ε)
)

.

Recalling that η= 2ε/(π(1−ε)), one sees that the last term of the previous equation is

upper bounded by 1{‖y‖≥(1−ε)q}P
y
n(r ′

n,k
(τ)≤ ηπk ) and we have further

1{‖y‖≥(1−ε)q}P
y
n

(
r ′

n,k (τ) ≤ ηπk

)
≤1{‖y‖≥(1−ε)q}P

y
n

(
‖r ′

n(τ)−π‖ ≥ (1−η)π
)

.

Since 0 < (1−η)π< ε0, Lemma 3.1 implies

1{‖y‖≥(1−ε)q}P
y
n

(
‖r ′

n(τ)−π‖ ≥ (1−η)π
)
≤ 2K exp

(
−

(1−η)2π2(1−ε)q

4K 2

)
.

This proves the result, with for instance c ′ = (2K )−2 min(4K 2ε, (1−η)2π2(1−ε)) and c =
c +2K . �

Proof of Theorem 6.1. We first prove the convergence of the moments by induction on

r ≥ 0. The result is immediate for r = 0 so consider r ≥ 1 and assume by induction

hypothesis that E
νn
n (‖Xn(0)‖s ) → s!/αs for every 0 ≤ s ≤ r −1. Let Gn be a geometrically

distributed random variable with parameter ρn : Lemma 2.1 implies that

E
νn
n

(
‖xn (0)‖r

)
≥ E

(
Gr

n

)
,

and using n(1−ρn )→α, it can be proved that E((Gn/n)r ) → r !/αr . This provides a lower

bound and so we only have to show that limsupn→+∞E
νn
n (‖Xn(0)‖r ) ≤ r !/αr . Let m ≥ 1:

summing the balance equations over the set {y ∈N
K : ‖y‖ ≤ m −1} yields

(13) λnP
νn
n (‖xn (0)‖= m −1) =µnP

νn
n (‖xn (0)‖ = m)

−
K∑

k=1

µn,kP
νn
n

(
‖xn (0)‖= m, xn,k (0) = 0

)
.
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For any M ≥ 1, writing mr =
∑r

s=0
r !

s !(r−s)!
(m −1)s gives

M∑

m=1

mr
P
νn
n (‖xn (0)‖= m −1) =

r∑

s=0

r !

s!(r − s)!
E
νn
n

(
‖xn (0)‖s ;‖xn (0)‖≤ M −1

)

and so multiplying (13) with mr /µn on both sides and summing over 1 ≤ m ≤ M , we

obtain

r∑

s=0

r !

s!(r − s)!
ρnE

νn
n

(
‖xn (0)‖s ;‖xn (0)‖≤ M −1

)
= E

νn
n

(
‖xn (0)‖r ;‖xn (0)‖ ≤ M

)

−
1

µn

K∑

k=1

µn,kE
νn
n

(
‖xn (0)‖r ;‖xn (0)‖≤ M , xn,k (0) = 0

)
.

Using E
νn
n (‖xn (0)‖r ;‖xn (0)‖ ≤ M) ≥ E

νn
n (‖xn (0)‖r ;‖xn (0)‖≤ M −1), other simple in-

equalities and isolating the terms corresponding to s = r and s = r −1 in the previous

sum, we end up with

(1−ρn )E
νn
n

(
‖xn (0)‖r ;‖xn (0)‖ ≤ M −1

)
≤ rE

νn
n

(
‖xn (0)‖r−1

)
+ r !

r−2∑

s=0

E
νn
n

(
‖xn (0)‖s

)

+
K∑

k=1

E
νn
n

(
‖xn (0)‖r ; xn,k (0) = 0

)
.

Letting M →+∞ and dividing by nr (1−ρn ) gives

E
νn
n

(
‖Xn (0)‖r

)
≤

r

n(1−ρn )
E
νn
n

(
‖Xn (0)‖r−1

)
+

r !

n(1−ρn )

r−2∑

s=0

ns−(r−1)
E
νn
n

(
‖Xn (0)‖s

)

+
1

nr (1−ρn )

K∑

k=1

E
νn
n

(
‖xn (0)‖r ; xn,k (0) = 0

)
.

Since n(1−ρn ) → α > 0, by induction hypothesis the first term of the above upper

bound converges to r !/αr while the second term vanishes, thanks to the terms ns−(r−1)

that go to 0 for s ≤ r −2. We now show that the last term also vanishes, thus concluding

the proof. To this end we prove that E
νn
n

(
‖xn (0)‖r ; xn,k (0) = 0

)
→ 0 for all 1 ≤ k ≤ K . Let

k ∈ {1, . . . ,K } and M ≥ 0: we distinguish the two events {‖xn (0)‖ ≤ M} and {‖xn (0)‖ ≥
M +1}. On the one hand we have

E
νn
n

(
‖xn (0)‖r ;‖xn (0)‖≤ M , xn,k (0) = 0

)
≤ Mr

P
νn
n (‖xn (0)‖≤ M) ≤ Mr

(
1− (ρn )M

)

invoking Lemma 2.1 to get the last bound. On the other hand, Lemma 6.2 gives

E
νn
n

(
‖xn (0)‖r ;‖xn (0)‖≥ M +1, xn,k (0) = 0

)
=

∑

m≥M+1

P
νn
n

(
‖xn (0)‖r ≥ m, xn,k (0) = 0

)

≤
∑

m≥M

ce−c ′m1/r

.

Since ρn → 1, letting n →+∞ for a given fixed M gives

limsup
n→+∞

E
νn
n

(
‖xn (0)‖r ; xn,k (0) = 0

)
≤

∑

m≥M

ce−c ′m1/r

.

Letting M →+∞ achieves to prove that integer moments converge.

We now prove the weak convergence result. Since E
νn
n (‖Xn (0)‖2) → 2/α2, the se-

quence (‖Xn(0)‖,n ≥ 1) is uniformly integrable and tight. Let X be any accumulation



A STOCHASTIC NETWORK WITH MOBILE USERS IN HEAVY TRAFFIC 29

point and assume without loss of generality that Xn (0) ⇒ X : we will prove that X = Eπ,

thus proving the desired result.

Since n(1−ρn ) →α, ‖X ‖ is stochastically lower bounded by an exponential random

variable with parameter α thanks to Lemma 2.1. On the other hand, since Xn(0) ⇒ X ,

E
νn
n (‖Xn (0)‖) → 1/α and (‖Xn (0)‖,n ≥ 1) is uniformly integrable, we get convergence of

the means and so E(‖X ‖) = 1/α. In summary, if E is an exponential random variable

with parameter α, then ‖X ‖ is stochastically lower bounded by E and E(‖X ‖) = E(E ):

hence ‖X ‖ and E must be equal in distribution.

In particular, P(‖X ‖ = 0) = 0 and so the continuous-mapping theorem implies that

‖Rn(0)−π‖⇒‖X /‖X ‖−π‖. Let 0 < ε< 2ε0 and τ= τ(ε/(4K )): since

P
νn
n (‖Rn (0)−π‖≥ ε) =P

νn
n (‖rn(τ)−π‖ ≥ ε) = 0

Lemma 4.1 implies that P
νn
n (‖Rn (0)−π‖≥ ε) → 0 and so P(‖X /‖X ‖−π‖ ≥ ε) = 0. Since

ε < 2ε0 is arbitrary, letting ε→ 0 shows that X = ‖X ‖π and since ‖X ‖ is an exponential

random variable with parameter α this proves the result. �

7. CONVERGENCE OF THE SOJOURN TIMES

Throughout this section the heavy-traffic assumption of Section 2.3 continues to be

in force, and we moreover assume that α > 0 so that ρn < 1 for n large enough. We

fix a sequence (yn) in N
K with ̺(yn) → 0 and ‖yn‖/n → b ∈ (0,∞), and we return to the

network description of xn , see Section 2.2. In the sequel we implicitly consider xn under

P
yn
n and write ⇒ for weak convergence under P

yn
n .

For n ≥ 1, we pick an initial user of the nth system uniformly at random, which we

refer to as the tagged user, and denote by En its initial service requirement (which is

exponentially distributed with unit mean), by ξn its trajectory and byχn its sojourn time,

so the following relations hold:

χn = inf {t ≥ 0 : sn(t) = En} with sn(t) =
∫t

0

µn,ξn (u)

1∨ xn,ξn (u)(u)
du.

Note that sn(t) for t ≤ χn is the service received by the tagged user up to time t . We

want to show that n−1χn ⇒ bE/λ where in this section E is an exponential random

variable with unit mean. Introducing the rescaled service process Sn(t) = sn(nt), we

have n−1χn = inf {t ≥ 0 : Sn(t) = En}. Let s′n be defined as follows:

s′n(t)=
1

‖yn‖

∫t

0

µn,ξn (u)

πξn (u)
du

and define S ′
n(t)= s′n(nt). Let finally S = (b−1λt , t ≥ 0).

Lemma 7.1. The sequence of processes (S ′
n) under P

yn
n converges weakly to S.

Proof. Since S ′
n and S are strictly increasing and continuous, we only have to show that

finite-dimensional distributions converge, see for instance Jacod and Shiryaev [7, The-

orem VI.3.37]. Since the law of ξn does not depend on n, we can couple all the processes

(S ′
n ,n ≥ 1) on a common probability space by taking ξn = ξ1. Then we have

S ′
n(t) =

1

‖yn‖

∫nt

0

µn,ξ1(u)

πξ1(u)
du =

1

‖yn‖

K∑

k=1

µn,k

πk

∫nt

0
1{ξ1(u)=k} du

and so
∣∣∣∣S

′
n(t)−

λt

b

∣∣∣∣≤
n

‖yn‖
1

n

∣∣∣∣∣
K∑

k=1

µn,k

πk

∫nt

0
1{ξ1(u)=k} du−nµn t

∣∣∣∣∣+
∣∣∣∣

nµn

‖yn‖
−
λ

b

∣∣∣∣ t .
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The second term goes to 0 by assumption while the first term is easily seen to vanish

using the ergodic theorem. This shows that S ′
n(t) → S(t) almost surely, for every t ≥ 0,

which readily implies convergence of the finite-dimensional distributions. This proves

the result. �

Lemma 7.2. The sequence of processes (Sn) under P
yn
n converges weakly to S.

Proof. Since S ′
n ⇒ S by Lemma 7.1, Theorem 3.1 in Billingsley [1] shows that it suffices

to prove that for any ε> 0 and any t0 ≥ 0,

lim
n→+∞

P
yn
n

(
sup

0≤t≤nt0

∣∣sn(t)− s′n(t)
∣∣≥ ε

)
= 0.

By definition we have

∣∣sn(t)− s′n(t)
∣∣=

∣∣∣∣
∫t

0

µn,ξn (u)

xn,ξn (u) ∨1
du−

1

‖yn‖

∫t

0

µn,ξn (u)

πξn (u)
du

∣∣∣∣

≤
1

‖yn‖

∫t

0

µn,ξn (u)

πξn (u)(xn,ξn (u) ∨1)

∣∣xn,ξn (u) ∨1−πξn (u)‖yn‖
∣∣du.

Fix in the sequel c = 2+ supn≥1(‖yn‖/n) and δ> 0 such that

δ≤π, δ< bπ/c, η< 2ε0 and sup
n≥1

(
µnδcn2t0

‖yn‖π(π‖yn‖−δcn)

)
≤ ε/2,

where η=πδ2/32. Let Fn be the event

Fn =
{

T ↑(rn −π,δ) ≥ nt0

}
∩

{
T ↑(‖xn‖−‖yn‖,nδ) ≥ nt0

}

where ‖xn‖− ‖yn‖ refers to the process (‖xn (t)‖− ‖yn‖, t ≥ 0). Since δ ≤ π we have

T ↑(rn −π,δ) ≤ T̃0(xn) by (4) and so xn,k (t) > 0 for all t ≤ nt0 and 1 ≤ k ≤ K in Fn , in

particular xn,k (t)∨1 = xn,k (t). Thus, we also have in Fn
∣∣xn,k (t)∨1−πk‖yn‖

∣∣=
∣∣xn,k (t)−πk‖yn‖

∣∣≤
∣∣xn,k (t)−πk‖xn (t)‖

∣∣+πk

∣∣‖xn (t)‖−‖yn‖
∣∣

≤
(
‖yn‖+δn

)
‖rn (t)−π‖+δn ≤ δcn

for all t ≤ nt0 and 1 ≤ k ≤ K . In particular, xn,k (t) ≥ π‖yn‖−δcn which is positive for n

large enough since δc < bπ. Plugging in these different bounds, we obtain the following

inequality, valid in Fn for any t ≤ nt0:

∣∣sn(t)− s′n(t)
∣∣≤ 1

‖yn‖

∫t

0

µn

π(π‖yn‖−δcn)
δcndu ≤

µnδcn2t0

‖yn‖π(π‖yn‖−δcn)
≤ ε/2.

Thus we obtain |sn(t)− s′n(t)| < ε in Fn and therefore

P
yn
n

(
sup

0≤t≤nt0

∣∣sn(t)− s′n(t)
∣∣≥ ε

)
=P

yn
n (F c

n)≤P
yn
n

(
T ↑(‖xn‖−‖yn‖,nδ) ≤ nt0

)

+P
yn
n

(
T ↑(rn −π,δ) ≤ nt0 ∧T ↑(‖xn‖−‖yn‖,nδ)

)
.

Since T ↑(‖xn‖−‖yn‖,nδ) ≤ T ↓(xn ,‖yn‖−nδ), the second term can be shown to go to 0

by Proposition 4.2 (using that ̺(yn) ≤ η for n large enough since ̺(yn) → 0). The first

can also be shown to go to 0, since

P
yn
n

(
T ↑(‖xn‖−‖yn‖,nδ) ≤ nt0

)
=P

yn
n

(
T ↑(‖Xn‖−‖Xn (0)‖,δ) ≤ t0/n

)

and the convergence Xn ⇒ Bπ of Theorem 5.1 implies that T ↑(‖Xn‖− ‖Xn (0)‖,δ) ⇒
T ↑(B −b,δ) which is strictly positive. The result is proved. �
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Corollary 7.3. The sequence of random variables (n−1χn) under P
yn
n converges weakly to

bE/λ.

Proof. Since Sn ⇒ S and S is strictly increasing and continuous with S(0) = 0, the continuous-

mapping theorem implies that S−1
n ⇒ S−1, see for instance Whitt [18]. Moreover, the

En’s are identically distributed and so En ⇒ E . Since S−1 is deterministic we get the

joint convergence (S−1
n ,En) ⇒ (S−1,E ) and the continuous-mapping theorem then im-

plies that S−1
n (En) ⇒ S−1(E ), since S−1 is a continuous function. Since S−1

n (En) = n−1χn

and S−1(E )= bE/λ this proves the result. �

Corollary 7.4. The sequence of random variables (n−1χn) under P
νn
n converges weakly to

E ′E/λ with E ′ an exponential random variable independent of E and with parameter α.

Proof. This is a consequence of Corollary 7.3 together with the fact that n−1xn (0) under

P
νn
n converges weakly to E ′π by Theorem 6.1. �

The above corollary is similar to heavy-traffic results for the sojourn time distribution

ordinary Processor-Sharing queue, see for instance Sengupta [14], Yashkov [20], and

Zwart & Boxma [21]. These results may be intuitively explained by the snapshot princi-

ple, see Reiman [12]: in heavy-traffic conditions the total number of users in the system

hardly varies over the time scale of a sojourn time. Thus each individual user sees a

service rate that is random, determined by the inverse of the total number of users in

stationarity which has an asymptotically exponential distribution in heavy traffic, but

nearly constant over the duration of its sojourn time.

It is worth emphasizing that although in the present model the users within each

of the individual nodes are served in a Processor-Sharing manner, at any given time

the service rates of users may strongly vary across nodes. Due to the homogenization

property, however, the empirical distribution of the location of each individual user over

the course of a long sojourn time in a heavy-traffic regime will be close to the stationary

distribution π. Hence each individual user will see a π-weighted average of the service

rates in the various nodes, which is only affected by the exponentially distributed total

number of users in the entire system, just like in an ordinary Processor-Sharing queue.
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