Skip to main content
Log in

Wireless three-hop networks with stealing II: exact solutions through boundary value problems

  • Published:
Queueing Systems Aims and scope Submit manuscript

An Erratum to this article was published on 28 August 2014

Abstract

We study the stationary distribution of a random walk in the quarter plane arising in the study of three-hop wireless networks with stealing. Our motivation is to find exact tail asymptotics (beyond logarithmic estimates) for the marginal distributions, which requires an exact solution for the bivariate generating function describing the stationary distribution. This exact solution is determined via the theory of boundary value problems. Although this is a classical approach, the present random walk exhibits some salient features. In fact, to determine the exact tail asymptotics, the random walk presents several unprecedented challenges related to conformal mappings and analytic continuation. We address these challenges by formulating a boundary value problem different from the one usually seen in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aziz, A., Starobinski, D., Thiran, P.: Understanding and tackling the root causes of instability in wireless mesh networks. To appear in IEEE/ACM Trans. Netw. (2010)

  2. Blanc, J.P.C.: The relaxation time of two queues systems in series. Commun. Statist. Stoch. Models 1, 1–16 (1985)

    Article  Google Scholar 

  3. Cohen, J.W.: Boundary value problems in queueing theory. Queueing Syst. 3, 97–128 (1988)

    Article  Google Scholar 

  4. Cohen, J.W., Boxma, O.J.: Boundary Value Problems in Queueing System Analysis. North-Holland, Amsterdam (1983)

    Google Scholar 

  5. Dautray, R., Lions, J.L.: Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Masson, Paris (1995)

    Google Scholar 

  6. Dieudonne, J.: Calcul Infinitésimal. Hermann, Paris (1980)

    Google Scholar 

  7. De Bruijn, N.G.: Asymptotic Methods in Analysis. Dover Publications, New York (1981)

    Google Scholar 

  8. Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann–Hilbert problem. Z. Wahrscheinlichkeitstheorie Verwandte Gebiete 47, 325–351 (1979)

    Article  Google Scholar 

  9. Fayolle, G., Malyshev, V.A., Menshikov, M.V.: Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  10. Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter Plane. Springer, New York (1999)

    Book  Google Scholar 

  11. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  12. Forster, O.: Lectures on Riemann Surfaces. Springer, New York (1981)

    Book  Google Scholar 

  13. Guillemin, F., Pinchon, D.: Analysis of generalized processor-sharing systems with two classes of customers and exponential services. J. Appl. Probab. 41, 832–858 (2004)

    Article  Google Scholar 

  14. Guillemin, F., Simonian, A.: Asymptotic analysis of random walks in the quarter plane. Submitted for publication (2011)

  15. Guillemin, F., van Leeuwaarden, J.S.H.: Rare event asymptotic for a random walk in the quarter plane. Queueing Syst. 67, 1–32 (2011)

    Article  Google Scholar 

  16. Guillemin, F., Knessl, C., van Leeuwaarden, J.S.H.: Wireless multi-hop networks with stealing: large buffer asymptotics via the Ray method. SIAM J. Appl. Math. 71, 1220–1240 (2011)

    Article  Google Scholar 

  17. Kobayashi, M., Miyazawa, M.: Tail asymptotics of the stationary distribution of a two dimensional reflecting random walk with unbounded upward jumps. Submitted for publication (2011)

  18. Kobayashi, M., Miyazawa, M.: Revisit to the tail asymptotics of the double QBD process: refinement and complete solutions for the coordinate and diagonal directions. To appear in Matrix-Analytic Methods in Stochastic Models. Springer (2012)

  19. Kurkova, I., Raschel, K.: Random walks in \(Z_+^2\) with non-zero drift absorbed at the axes. Bull. Soc. Math. France 139, 341–387 (2011)

    Google Scholar 

  20. Li, H., Zhao, Y.Q.: Tail asymptotics for a generalized two-demand queue model—a kernel method. Queueing Syst. 69, 77–100 (2011)

    Article  Google Scholar 

  21. Li, H., Zhao, Y.Q.: A kernel method for exact asymptotics—random walks in the quarter plane. Submitted for publication (2011)

  22. Miyazawa, M.: Tail decay rates in double QBD processes and related reflected random walks. Math. Oper. Res. 34, 547–575 (2009)

    Article  Google Scholar 

  23. Miyazawa, M.: Light tail asymptotics in multidimensional reflecting processes for queueing networks. TOP. (2011). doi:10.1007/s11750-011-0179-7

  24. Muschelischwili, N.I.: Singuläre Integralgleichungen. Akademie Verlag, Berlin (1965)

    Google Scholar 

  25. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models, An Algorithmic Approach. The Johns Hopkins Press, Baltimore (1981)

    Google Scholar 

Download references

Acknowledgments

The work of CK was partly supported by NSA Grants H 98230-08-1-0102 and H 98230-11-1-0184. JvL is supported by an ERC Starting Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan S. H. van Leeuwaarden.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11134-014-9418-6.

Appendix A: Resultants

Appendix A: Resultants

Generally speaking, when we have two polynomials in two variables, say,

$$\begin{aligned} f_1(x,y)&= a_0(y) + a_1(y) x +\cdots + a_n(y)x^n, \\ f_2(x,y)&= b_0(y) + b_1(y) x +\cdots + b_m(y)x^m, \end{aligned}$$

the resultant of the polynomials \(f_1\) and \(f_2\) with respect to \(x\) is the determinant \(\mathrm Res _x(f_1,f_2)\) of the matrix

$$\begin{aligned} \left( \begin{array}{cccccc} a_n&\cdots&a_0&0&\cdots&\cdots \\ 0&a_n&\cdots&a_0&0&\cdots \\ \cdots&\cdots&\cdots&\cdots&\cdots&\cdots \\ \cdots&\cdots&0&a_n&\cdots&a_0 \\ b_m&\cdots&b_0&0&\cdots&\cdots \\ 0&b_m&\cdots&b_0&0&\cdots \\ \cdots&\cdots&\cdots&\cdots&\cdots&\cdots \\ \cdots&\cdots&0&b_m&\cdots&b_0 \\ \end{array} \right) \begin{array}{c} \left\} \begin{array}{c}\\ m \text{ rows} \\ \\ \end{array} \right. \\ \\ \left\} \begin{array}{c}\\ n \text{ rows}\\ \\ \end{array} \right.\end{array} \end{aligned}$$

which is a polynomial in \(y\). The polynomials \(f_1\) and \(f_2\) have a non-trivial root \((x_0,y_0)\) in common if and only if the resultant with respect to \(x\) is 0 at \(y_0\). This leads to the resolution of a polynomial equation. Note that by adding to the \((m+n)\)th column, the \(i\)th column multiplied by \(x^{m+n-i}\) for \(0\le i<n+m\), \(\mathrm Res _x(f_1,f_2)\) is equal to the determinant of the matrix

$$\begin{aligned} \left( \begin{array}{cccccc} a_n&\cdots&a_0&0&\cdots&x^{m-1}f_1\\ 0&a_n&\cdots&a_0&0&x^{m-2}f_1\\ \cdots&\cdots&\cdots&\cdots&\cdots&\cdots \\ \cdots&\cdots&0&a_n&\cdots&f_1\\ b_m&\cdots&b_0&0&\cdots&x^{n-1}f_2 \\ 0&b_m&\cdots&b_0&0&x^{n-2}f_2\\ \cdots&\cdots&\cdots&\cdots&\cdots&\cdots \\ \cdots&\cdots&0&b_m&\cdots&f_2 \\ \end{array} \right), \end{aligned}$$

which can written as \(p(x,y)f_1(x,y) +q(x,y)f_2(x,y)\), where \(p\) and \(q\) are polynomials in variables \(x\) and \(y\).

1.1 A.1. Resultants of the polynomials \(h_1\) and \(h_2\)

1.1.1 A.1.1. Resultant in \(x\)

The resultant in \(x\) is the determinant of the matrix

$$\begin{aligned} \left( \begin{array}{cccc} -2(1-p) y&2(3y-1-p)&-2y^2&0\\ 0&-2(1-p) y&2(3y-1-p)&-2y^2 \\ (1+2p)y&-2(1+p)&y^2&0 \\ 0&(1+2p)y&-2(1+p)&y^2 \end{array} \right), \end{aligned}$$

Straightforward computations show that

$$\begin{aligned} \mathrm{Res}_{x}({h_1}, {h_2}; {y}) = 36y^3(y-1) \mathcal Q _x(h_1,h_2;y), \end{aligned}$$

where

$$\begin{aligned} \mathcal Q _x(h_1,h_2;y) = p^2 y^2+(1+p)^2 y -(1+p)^2. \end{aligned}$$

It is easily checked that the quadratic polynomial \(\mathcal Q _x(h_1,h_2;y)\) has two roots with opposite sign, as stated in Sect. 3. The positive root is \(y^*\) and the negative root is \(y_*\) given by Eqs. (13) and (14), respectively. In addition, the value of the polynomial \(\mathcal Q _x(h_1,h_2;y)\) at the point 1 is equal to \(p^2\), which implies that \(y^*<1\).

1.1.2 A.1.2. Resultant in \(y\)

The resultant in \(y\) is the determinant of the matrix

$$\begin{aligned} \left( \begin{array}{cccc} -2&2(3-(1-p)x)x&-2(1+p)x&0 \\ 0&-2&2(3-(1-p)x)x&-2(1+p)x \\ 1&(1+2p)x^2&-2(1+p)x&0 \\ 0&1&(1+2p)x^2&-2(1+p)x \end{array} \right), \end{aligned}$$

and is equal to

$$\begin{aligned} \mathrm{Res}_{y}({h_1}, {h_2}; {x}) = 36(1+p)x^2(x-1)(px^2+(1-p)x-(1+p)). \end{aligned}$$

The quadratic polynomial in the right-hand side of the above equation has two real roots with opposite signs; the positive root is \(x^*\) and the negative root if \(x_*\) given by Eqs. (17) and (18), respectively.

As the value of this quadratic polynomial at the point 1 is equal to \(-p\), \(x^*>1\).

1.2 A.2. Resultants of the polynomials \(h_1\) and \(h_3\)

1.2.1 A.2.1. Resultant in \(y\)

The resultant in \(y\) of the polynomials \(h_1(x,y)\) and \(h_3(x,y)\) is equal to the determinant of the matrix

$$\begin{aligned} \left( \begin{array}{cccc} -2&2(3-(1-p)x)x&-2(1+p)x&0 \\ 0&-2&2(3-(1-p)x)x&-2(1+p)x \\ -2&(1-p)x^2&(1+p)x&0 \\ 0&-2&(1-p)x^2&(1+p)x \end{array} \right). \end{aligned}$$

Straightforward computations show that

$$\begin{aligned} \mathrm{Res}_{y}({h_1}, {h_3}; {x}) = 36x^2(1+p)(x-1)(1+p-(1-p)x). \end{aligned}$$

The roots of this polynomial are 0, 1 and \((1+p)/(1-p)\).

1.2.2 A.2.2. Resultant in \(x\)

The resultant in \(x\) is the determinant of the matrix

$$\begin{aligned} \left( \begin{array}{cccc} -2(1-p) y&2(3y-1-p)&-2y^2&0\\ 0&-2(1-p) y&2(3y-1-p)&-2y^2 \\ (1-p)y&1+p&-2y^2&0 \\ 0&(1-p)y&1+p&-2y^2 \end{array} \right) \end{aligned}$$

and is equal to

$$\begin{aligned} \mathrm{Res}_{x}({h_1}, {h_3}; {y}) = 36y^4(1-p)(y-1)((1-p)y-1-p). \end{aligned}$$

The roots of this polynomial are 0, 1, and \((1+p)/(1-p)\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillemin, F., Knessl, C. & van Leeuwaarden, J.S.H. Wireless three-hop networks with stealing II: exact solutions through boundary value problems. Queueing Syst 74, 235–272 (2013). https://doi.org/10.1007/s11134-012-9332-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-012-9332-8

Keywords

Navigation