Skip to main content
Log in

On queues with impatience: stability, and the optimality of Earliest Deadline First

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider a queue with impatient customers, under general assumptions. We introduce a convenient representation of the system by a stochastic recursive sequence keeping track of the remaining service and patience times of the customers. This description allows us (i) to provide a comprehensive stability condition in the general case, (ii) to give a rigorous proof of the optimality of the Earliest Deadline First (EDF) service discipline in several cases, and (iii) to show that the abandonment probability of the system follows inversely the stochastic ordering of the generic patience time distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Notice that the result presented in [1] only concerns GI/GI/1 queues. However, it should be clear that this also holds true whenever the inter-arrival times are not independent of one another, but only independent of the service times. Indeed, even in that case any permutation of the service times clearly do not affect the global statistics of the system, provided that the arrival times and patience times are left unchanged, and that the service discipline is independent of the service times.

References

  1. Baccelli, F., Brémaud, P.: Elements of Queueing Theory, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  2. Baccelli, F., Hébuterne, G.: On queues with impatient customers. In: Performance’81, pp. 159–179 (1981)

  3. Baccelli, F., Boyer, P., Hébuterne, G.: Single-server queues with impatient customers. Adv. Appl. Probab. 16(4), 887–905 (1984)

    Article  Google Scholar 

  4. Barrer, D.Y.: Queuing with impatient customers and ordered service. Oper. Res. 5, 650–656 (1957)

    Article  Google Scholar 

  5. Borovkov, A.A., Foss, S.: Stochastic recursive sequences and their generalizations. Sib. Adv. Math. 2(1), 16–81 (1992)

    Google Scholar 

  6. Borovkov, A.A., Foss, S.: Two ergodicity criteria for stochastically recursive sequences. Acta Appl. Math. 34, 125–134 (1994)

    Article  Google Scholar 

  7. Decreusefond, L., Moyal, P.: The fluid limit of a heavily loaded EDF queue with impatient customers. Markov Process. Relat. Fields 14(1), 131–158 (2008)

    Google Scholar 

  8. Decreusefond, L., Moyal, P.: Stochastic Modeling and Analysis of Telecom Networks. Wiley-ISTE (2012)

  9. Decreusefond, L., Moyal, P.: A functional central limit theorem for the M/GI/\(\infty \) queue. Ann. Appl. Probab. 18(6), 2156–2178 (2008)

    Article  Google Scholar 

  10. Dertouzos, M.: Control robotics: the procedural control of physical processus. Proc. IFIP Congress (1974)

  11. Doytchinov, B., Lehoczky, J.P., Shreve, S.: Real-time queues in heavy-traffic with earliest deadline first queue discipline. Ann. Appl. Probab. 11(2), 332–378 (2001)

    Article  Google Scholar 

  12. Flipo, D.: Comparaison des disciplines de service des files d’attente G/G/1 (in french). Annales de l’institut Henri Poincaré, Section B 17(2), 190–197 (1981)

    Google Scholar 

  13. Gromoll, C., Puha, A., Williams, R.: The fluid limit of a heavily loaded processor sharing queue. Ann. Appl. Probab. 12, 797–859 (2002)

    Article  Google Scholar 

  14. Gromoll, C., Robert, Ph., Zwart, B.: Fluid limits for processor sharing queues with impatience. Math. Oper. Res. 33, 375–402 (2008). (2006), no. 34(1)

  15. Jackson, J.R.: Scheduling a production line to minimize maximum tardiness. Res. Rep. 43, Management Sci. Rep. Univ. of Calif., Los Angeles (1955)

  16. Kruk, L., Lehoczky, J., Ramanan, K., Shreve, S.: Heavy traffic analysis for EDF queues with reneging. Ann. Appl. Probab. 21(2), 484–545 (2011)

    Article  Google Scholar 

  17. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard real-time environment. J. Assoc. Comput. Mach. 20(1), 46–61 (1973)

    Article  Google Scholar 

  18. Loynes, R.M.: The stability of queues with non-independent interarrivals and service times. Proce. Cambridge Philos. Soc. 58, 497–520 (1962)

    Article  Google Scholar 

  19. Moyal, P.: Stability of a processor sharing queue with varying throughput. Journ. Appl. Probab. 45(4), 953–962 (2008)

    Article  Google Scholar 

  20. Moyal, P.: Convex comparison of service disciplines in Real-time queues. Oper. Res. Lett. 36(4), 496–499 (2008)

    Article  Google Scholar 

  21. Moyal, P.: The queue with impatience: construction of the stationary workload under FIFO. J. Appl. Probab. 47(4), 498–512 (2010)

    Article  Google Scholar 

  22. Panwar, S.S., Towsley, D.: Optimality of the stochastic earliest dead- line policy for the G/M/c queue serving customers with deadlines. Second ORSA Telecommunications Conference, Boca Raton (March 1992)

  23. Panwar, S.S., Towsley, D., Wolf, J.K.: Optimal scheduling policies for a class of queues with customer deadlines to the beginning of service. J. ACM. 35(4), 832–844 (1988)

    Article  Google Scholar 

  24. Pinedo, M.: Stochastic scheduling with release dates and due dates. Oper. Res. 31, 559–572 (1983)

    Article  Google Scholar 

  25. Sorenson, P.G., Hamacher, V.C.: A real-time system design methodology. INFOR 13(1), 1–18 (1975)

    Google Scholar 

  26. Stoyenko, A.D., Georgiadis, L.: On optimal lateness and tardiness scheduling in real-time systems. Computing 47, 215–234 (1992)

    Article  Google Scholar 

  27. Thorisson, H.: Coupling, Stationarity and Regeneration. Springer, Berlin (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Moyal.

Appendix: Technical results

Appendix: Technical results

We first have the following result.

Lemma 2

Let \(u \in \mathcal{S }^2\). Assume that \(\underline{u}\) is such that

$$\begin{aligned} u^1\left(N(u)\right)=\underline{u}^1\left(N(u)\right). \end{aligned}$$

Denote \(\alpha \), the permutation of \([[0,N(u)-1 ]]\) such that

$$\begin{aligned} u\left(N(u)-i\right)=\underline{u}\left(N(u)-\alpha (i)\right),\,i \in [[0,N(u)-1 ]]. \end{aligned}$$

Let \(\hat{\underline{u}}\) be the transformation of \(\underline{u}\) w.r.t. \(u\), as defined above. Let \(x>0\). Denote \(p:=p(u,\,x)=\text{ Card} \mathcal{A }(u,\,x)-1\) (respectively \(q:=q(\hat{\underline{u}},\,x)=\text{ Card} \mathcal{A }(\hat{\underline{u}},\,x)-1\)) and

$$\begin{aligned} \mathcal{A }(u,\,x)&= \left\{ 0=i_0 < i_1 <...<i_p=\varphi (u,\,x)\right\} ;\\ \mathcal{A }(\hat{\underline{u}},\,x)&= \left\{ 0=k_0<k_1<...<k_q =\varphi \left(\hat{\underline{u}},\,x\right) \right\} . \end{aligned}$$

Then, there exists an injection

$$\begin{aligned} F=\left\{ \begin{array}{ll} \mathcal{A }(u,\,x)&\longrightarrow \mathcal{A }\left(\hat{\underline{u}},\,x\right)\\ i_j&\longmapsto \left\{ \begin{array}{ll} \alpha (i_j)&\text{ if} \alpha (i_j) \in \mathcal{A }(\hat{\underline{u}},\,x),\\ k_m&\text{ if} \alpha (i_j) \not \in \mathcal{A }(\hat{\underline{u}},\,x),\\&\text{ where} u^2\left(N(u)-i_j\right) \ge \underline{u}^2\left(N(u)-k_m\right). \end{array}\right. \end{array}\right. \end{aligned}$$

Proof

We start by showing that for all \(\ell \in [[1,p\wedge q ]]\), there exists a bijection

$$\begin{aligned} F_\ell =\left\{ \begin{array}{ll} \mathcal{A }^{i_\ell }(u,\,x)&\longrightarrow \mathcal{A }^{k_\ell }\left(\hat{\underline{u}},\,x\right)\\ i_j&\longmapsto \left\{ \begin{array}{ll} \alpha (i_j)&\text{ if} \alpha (i_j) \in \mathcal{A }^{k_\ell }(\hat{\underline{u}},\,x),\\ k_m&\text{ if} \alpha (i_j) \not \in \mathcal{A }^{k_\ell }(\hat{\underline{u}},\,x),\\&\text{ where} u^2\left(N(u)-i_j\right) \ge \underline{u}^2\left(N(u)-k_m\right). \end{array}\right. \end{array}\right. \end{aligned}$$

For this, we proceed by induction. First, for \(\ell =0\) the property clearly holds if \(\alpha (0)=0\). If not, as \(\underline{u}^2\) is ranked in decreasing order,

$$\begin{aligned} \underline{u}^2\left(N(u)-k_0\right)=\underline{u}^2\left(N(u)\right) \le u^2\left(N(u)\right)=u^2\left(N(u)-k_0\right), \end{aligned}$$

so we can set \(F_\ell (i_0)=k_0\).

Assume now that the result holds for \(\ell -1\), where \(\ell \in [[1,p\wedge q ]]\). There are two possible cases:

  1. (i)

    if \(k_\ell \le \alpha (i_\ell )\), then

    $$\begin{aligned} \underline{u}^2\left(N(u)-k_\ell \right) \le \underline{u}^2\left(N(u)-\alpha (i_\ell )\right)=u^2\left(N(u)-i_\ell \right), \end{aligned}$$

    and it suffices to set \(F_{\ell }(i_m)=F_{\ell -1}(i_m)\) for all \(m \le \ell -1\) and \(F_{\ell }(i_\ell )=k_\ell \).

  2. (ii)

    if \(k_\ell > \alpha (i_\ell )\), we have

    $$\begin{aligned} x \wedge \underline{u}^2\left(N(u)-\alpha (i_\ell )\right)&= x \wedge u^2\left(N(u)-i_\ell \right)\\&> \sum _{j=1}^{\ell -1} u^1\left(N(u)-i_j\right)\\&= \sum _{j=1}^{\ell -1} \hat{\underline{u}}^1\left(N(u)-k_j\right)\\&\ge \sum _{j=1}^{\ell -2} \hat{\underline{u}}^1\left(N(u)-k_j\right). \end{aligned}$$

    Therefore, \(\alpha (i_\ell ) \in \mathcal{A }^{k_{\ell -1}}\left(\underline{u},\,x\right),\) so \(\alpha (i_\ell )=F_{\ell -1}(i_j)\) for some \(j\in [[0,\ell -1 ]]\). We have

    $$\begin{aligned} x \wedge \underline{u}^2\left(N(u)-\alpha (i_j)\right)&= x \wedge u^2\left(N(u)-i_j\right) \nonumber \\&\ge x \wedge \underline{u}^2\left(N(u)-F_{\ell -1}(i_j)\right) \nonumber \\&= x \wedge \underline{u}^2\left(N(u)-\alpha (i_\ell )\right)\nonumber \\&= x \wedge u^2\left(N(u)-i_\ell \right)\nonumber \\&> \sum _{j=1}^{\ell -1} u^1\left(N(u)-i_j\right)\nonumber \\&= \sum _{j=1}^{\ell -1} \hat{\underline{u}}^1\left(N(u)-k_j\right). \end{aligned}$$
    (45)

    Furthermore, as \(i_\ell \not \in \mathcal{A }^{i_{\ell -1}}\left(u,\,x\right),\) it is clear by the very construction of \(F_{\ell -1}\) that \(\alpha (i_j) \not \in \mathcal{A }^{k_{\ell -1}}\left(\underline{u},\,x\right)\), so from (45), \(\alpha (i_j)>k_{\ell -1}\). But by definition of \(\underline{u}\) and \(k_\ell \),

    $$\begin{aligned} k_\ell =\min \biggl \{q \in [[k_{\ell -1}+1,N(u)-1 ]]; x \wedge \underline{u}^2\left(N(u)-q\right) > \sum _{j=1}^{\ell -1} \hat{\underline{u}}^1\left(N(u)-k_j\right)\biggl \}. \end{aligned}$$

    Therefore, we deduce from (45) that

    $$\begin{aligned} \alpha (i_j)\ge k_\ell . \end{aligned}$$
    (46)

    There are three subcases:

    1. (a)

      If \(k_\ell =\alpha (i_j)\), we can set

      $$\begin{aligned} \left\{ \begin{array}{ll} F_{\ell }(i_\ell )&=\alpha (i_\ell );\\ F_{\ell }(i_j)&=k_\ell ;\\ F_{\ell }(i_m)&=F_{\ell -1}\left(i_m\right),\, \text{ for} \text{ all} m \in [[0,\ell -1 ]]\setminus \{j\}. \end{array} \right. \end{aligned}$$
    2. (b)

      If \(k_\ell =\alpha (i_p)\) for some \(p \in \mathcal{A }^{i_{\ell -1}}\left(u,\,x\right),\,p\ne j\), in view of (46) we have

      $$\begin{aligned} \underline{u}^2\left(N(u)-F_{\ell -1}(i_p)\right)&\le u^2\left(N(u)-i_p\right)\\&= \underline{u}^2\left(N(u)-k_\ell \right)\\&\le \underline{u}^2\left(N(u)-\alpha (i_j)\right)\\&= u^2\left(N(u)-i_j\right). \end{aligned}$$

      Therefore, we can set

      $$\begin{aligned} \left\{ \begin{array}{ll} F_{\ell }(i_\ell )&=\alpha (i_\ell );\\ F_{\ell }(i_p)&=k_\ell ;\\ F_{\ell }(i_j)&=F_{\ell -1}\left(i_p\right);\\ F_{\ell }(i_m)&=F_{\ell -1}\left(i_m\right),\, \text{ for} \text{ all} m \in [[0,\ell -1 ]]\setminus \{j,p\}. \end{array} \right. \end{aligned}$$
    3. (c)

      Finally, in the other cases \(\alpha (i_j) \not \in \mathcal{A }^{k_{\ell }}(\underline{u},\,x)\) and \(\underline{u}^2\left(N(u)-k_\ell \right)\le u^2\left(N(u)-i_j\right)\), so we can set again

      $$\begin{aligned} \left\{ \begin{array}{ll} F_{\ell }(i_\ell )&=\alpha (i_\ell );\\ F_{\ell }(i_j)&=k_\ell ;\\ F_{\ell }(i_m)&=F_{\ell -1}\left(i_m\right),\, \text{ for} \text{ all} m \in [[0,\ell -1 ]]\setminus \{j\}. \end{array} \right. \end{aligned}$$

It follows from the existence of \(F_p\), that \(p\le q\). Indeed, if we assume that some index \(i_{q+1}\) belongs to \(\mathcal{A }\left(u,\,x\right)\), then

$$\begin{aligned} x \wedge \underline{u}^2\left(N(u)-\alpha \left(i_{q+1}\right)\right)&= x \wedge u^2\left(N(u)-i_{q+1}\right)\\&> \sum _{j=1}^{q} u^1\left(N(u)-i_j\right)\nonumber \\&= \sum _{j=1}^{q} \hat{\underline{u}}^1\left(N(u)-k_j\right). \end{aligned}$$

Therefore, \(\alpha \left(i_{q+1}\right) \in \mathcal{A }(\underline{u},\,x)\), say \(\alpha \left(i_{q+1}\right)=F_{\ell }(i_{j}),\) where \(i_j \in \mathcal{A }^{i_\ell }(u,\,x)\). So by the very construction of the mapping \(F_\ell ,\,\alpha (i_j) \not \in \mathcal{A }^{k_\ell }(\underline{u},\,x)\), whereas

$$\begin{aligned} x \wedge \underline{u}^2\left(N(u)-\alpha \left(i_j\right)\right)&= x \wedge u^2\left(N(u)-i_j\right)\\&\ge x \wedge \underline{u}^2\left(N(u)-F_\ell (i_j)\right)\\&= x \wedge \underline{u}^2\left(N(u)-\alpha \left(i_{q+1}\right)\right)\\&= x \wedge u^2\left(N(u)-i_{q+1}\right)\\&> \sum _{j=1}^{q} \hat{\underline{u}}^1\left(N(u)-k_j\right). \end{aligned}$$

Therefore, there exists an index

$$\begin{aligned} k_{q+1}=\min \biggl \{q \not \in \mathcal{A }^{k_\ell }(\underline{u},\,x);\,x \wedge \underline{u}^2\left(N(u)-\alpha \left(i_j\right)\right)>\sum _{j=1}^{q} \hat{\underline{u}}^1\left(N(u)-k_j\right)\biggl \}, \end{aligned}$$

a contradiction. This shows that \(q \ge p.\)

The proof of the Lemma is thus completed, by setting \(F \equiv F_{p}\), which is injective by construction. \(\square \)

Lemma 3

Let \(u\) and \(v \in \mathcal{S }^2\) such that \(u^2\) and \(v^2\) are ordered in decreasing order, and such that

$$\begin{aligned} u&\prec _2 v \text{ in} \mathcal{S }^2;\\ v^1\left(N(v)\right)&= u^1\left(N(u)\right).\nonumber \end{aligned}$$
(47)

Let \(x>0\). Denote \(q:=q(u,\,x)=\text{ Card} \mathcal{A }(u,\,x)-1\) (respectively \(r:=r(\hat{v},\,x)=\text{ Card} \mathcal{A }(\hat{v},\,x)-1\)) and

$$\begin{aligned} \mathcal{A }(u,\,x)&= \left\{ 0=k_0 < k_1 <...<k_q=\varphi (u,\,x)\right\} ;\\ \mathcal{A }(\hat{v},\,x)&= \left\{ 0=l_0<l_1<...<l_r =\varphi (\hat{v},\,x) \right\} , \end{aligned}$$

where \(\hat{v}\) is the modified version of \(v\) with respect to \(u\) as defined above. Then, \(q \le r\) and for any \(\ell \in [[0,q ]]\),

$$\begin{aligned} N(u)-k_\ell \le N(v)-l_\ell . \end{aligned}$$
(48)

Proof

We first show by induction that (48) holds for any \(\ell \in [[0,q\wedge r ]]\). It is clear in view of (47) that \(N(u) \le N(v)\), so (48) holds for \(\ell =0\). Suppose that it holds true for \(\ell -1\) (with \(\ell \in [[1,q\wedge r ]]\)). We have

$$\begin{aligned} x\wedge v^2\Bigl (N(v)-\bigl (N(v)-N(u)+k_j\bigl )\Bigl )&= x\wedge v^2\left(N(u)-k_j\right)\nonumber \\&\ge x\wedge u^2\left( N(u)-k_j\right)\nonumber \\&> \sum _{j=0}^{\ell -1} u^1\left(N(u)-k_j\right)\nonumber \\&= \sum _{j=0}^{\ell -1} \hat{v}^1\left(N(v)-l_j\right). \end{aligned}$$
(49)

But in view of the recurrence assumption,

$$\begin{aligned} N(v)-N(u)+k_\ell > N(v)-\left(N(u)-k_{\ell -1}\right) \ge l_{\ell -1}. \end{aligned}$$

Therefore, by the very definition of \(l_\ell \), we deduce from (49) that

$$\begin{aligned} N(v)-N(u)+k_\ell \le l_\ell , \end{aligned}$$

which completes the recurrence.

It remains to show that \(q \le r\). Assume that this does not hold, i.e., some index \(k_{r+1} \in \mathcal{A }(u,\,x)\). This implies that

$$\begin{aligned} x\wedge v^2\left(N(u)-k_{r+1}\right)&\ge x\wedge u^2\left(N(u)-k_{r+1}\right)\\&> \sum _{j=1}^r u^1\left(N(u)-k_j\right)\\&= \sum _{j=1}^r \hat{v}^1\left(N(v)-k_j\right). \end{aligned}$$

As the term on the right-hand side is larger that the latter sum up to any \(\ell \le r\), this implies for some \(\ell \le r,\, N(u)-k_{r+1}=N(v)-l_\ell . \) But in view of the previous result, this implies that

$$\begin{aligned} N(u)-k_\ell \le N(v)-l_\ell = N(u)-k_{r+1}, \end{aligned}$$

a contradiction. Thus \(q \le r\). \(\square \)

Lemma 4

Let \(p \le q\) and \(u \in \mathbf{R }^p,\,v\in \mathbf{R }^q\). Assume that there exists an injection \(\gamma :\,[[1,p ]]\rightarrow [[1,q ]]\) such that

$$\begin{aligned} u(i) \le v\left(\gamma \left(i\right)\right),\,i\in [[1,p ]]. \end{aligned}$$

Thus,

$$\begin{aligned} \underline{u}(i) \le \underline{v}(i),\,i\in [[1,p ]]. \end{aligned}$$

Proof

Denote \(\delta \) and \(\varepsilon \) the respective permutations of \([[1,p ]]\) and \([[1,q ]]\) such that

$$\begin{aligned} \underline{u}=u\left(\delta (.)\right) \text{ and} \underline{v}=v\left(\varepsilon (.)\right). \end{aligned}$$

We proceed by induction. First,

$$\begin{aligned} \underline{u}(1)=u(\delta (j)) \le v\left(\gamma \circ \delta (j)\right) \le \underline{v}(1). \end{aligned}$$

Assume that the property holds until \(j\). First, if

$$\begin{aligned} \gamma \circ \delta (j+1)\not \in \varepsilon \left([[1,j ]]\right):=\big \{\varepsilon (1),\,\varepsilon (2),\,...,\,\varepsilon (j)\big \}, \end{aligned}$$

then \(\gamma \circ \delta (j+1)=\varepsilon (\ell )\) for some \(\ell >j\), so in particular

$$\begin{aligned} \underline{u}(j+1)=u\left(\delta (j+1)\right)\le v\left(\gamma \circ \delta (j+1)\right)=v\left(\varepsilon (\ell )\right) \le \underline{v}(j+1). \end{aligned}$$

If now \(\gamma \circ \delta (j+1)\in \varepsilon \left([[1,j ]]\right)\), as \(\gamma \circ \delta \) is injective, there exist \(k \le j\) and \(m > j\) such that

$$\begin{aligned} \gamma \circ \delta (k) =\varepsilon (m). \end{aligned}$$

So we have that

$$\begin{aligned} \underline{u}(j+1) \le \underline{u}(k) = u\left(\delta (k)\right) \le v\left(\gamma \circ \delta (k)\right) = v\left(\varepsilon (m)\right) \le \underline{v}(j+1), \end{aligned}$$

which completes the proof. \(\square \)

This finally leads to the following result.

Theorem 5

Let \(u\) and \(v\) be two elements of \(\mathcal{S }^2\) such that \(v^2\) is ordered in decreasing order. Denote \(\hat{v}\) and \(\hat{\underline{u}}\), the modified versions of \(v\) and \(\underline{u}\) with respect to \(u\). Assume that

$$\begin{aligned} u&\prec _2 v\, \text{ in} \mathcal{S }^2;\\ u^1\left(N(u)\right)&= \underline{u}^1\left(N(u)\right)=v^1\left(N(v)\right). \end{aligned}$$

Let \(x>0\). Then,

$$\begin{aligned} H_2\left( u,\,x\right) \prec _2 H_2\left(\hat{v},\,x\right)\text{ in} \mathcal{S }^2 \end{aligned}$$

and if \(H_2\left(u,\,x\right)\ne \mathbf 0 \), we have

$$\begin{aligned} \left(H_2\left(u,\,x\right)\right)^1\Bigl (N\left(H_2\left(u,\,x\right) \right)\Bigl )=\left(H_2\left(\hat{v},\,x\right)\right)^1\Bigl (N\left(H_2\left(\hat{v},\,x\right) \right)\Bigl ), \end{aligned}$$
(50)

where the mapping \(H_2\) is defined by (16).

Proof

The result holds true whenever \(H_2\left(u,\,x\right)=\mathbf 0 \), which is the case in particular if \(u^2=\mathbf 0 _2\) since \(\mathcal{A }(u,\,x)=\{0\}\) by construction.

If not, we consider the sequences \(u,\underline{u}\) and \(v\) and apply Lemmas 2, 3 and 4. Here again, we denote \(\alpha \) the permutation such that

$$\begin{aligned} u\left(N(u)-i\right)=\underline{u}\left(N(u)-\alpha (i)\right) \end{aligned}$$

and \(F\), the injection defined in Lemma 2. We denote as well

$$\begin{aligned} \mathcal{A }(u,\,x)&= \left\{ 0=i_0 < i_1 <...<i_p=\varphi (u,\,x)\right\} ;\\ \mathcal{A }(\hat{\underline{u}},\,x)&= \left\{ 0=~_0 < k_1 <...<k_q=\varphi (\underline{u},\,x)\right\} ;\\ \mathcal{A }(\hat{v},\,x)&= \left\{ 0=l_0<l_1<...<l_r =\varphi (\hat{v},\,x) \right\} , \end{aligned}$$

with \(p \le q \le r.\)

By the very definition of \(H_2\), any positive second component of \(H_2(u,\,x)\) reads \(u^2\left(N(u)-i\right)-x\), where \(i\in [[i_p+1,N(u)-1 ]]\) and

$$\begin{aligned} u^2\left(N(u)-i\right)>x > \sum _{j=1}^{p-1} u^1\left(N(u)-i_j\right). \end{aligned}$$

We then necessarily have that

$$\begin{aligned} \sum _{j=1}^{p} \hat{v}^1\left(N(v)-l_j\right)=\sum _{j=1}^{p} u^1\left(N(u)-i_j\right) \ge x, \end{aligned}$$
(51)

because the contrary would imply that

$$\begin{aligned} u^2\left(N(u)-i\right) \wedge x > \sum _{j=1}^{p} u^1\left(N(u)-i_j\right), \end{aligned}$$

so some index \(i_{p+1} \in [[i_p+1,i ]]\) would belong to \(\mathcal{A }(u,\,x)\), a contradiction. Therefore, (51) implies that \(r \le p\), so we have that

$$\begin{aligned} p=q=r \end{aligned}$$
(52)

and in particular, \(F\) defines a bijection from \(\mathcal{A }(u,\,x)\) to \(\mathcal{A }(\hat{\underline{u}},\,x)\). Furthermore, this implies that

$$\begin{aligned} \left(H_2\left(u,\,x\right)\right)^1\Bigl (N\left(H_2\left(u,\,x\right) \right)\Bigl )&= \sum _{j=1}^{p} u^1\left(N(u)-i_j\right)-x\\&= \sum _{j=1}^{p} \hat{v}^1\left(N(v)-l_j\right)-x\\&= \left(H_2\left(\hat{v},\,x\right)\right)^1\Bigl (N\left(H_2\left(\hat{v},\,x\right) \right)\Bigl ), \end{aligned}$$

hence (50) is verified. Now, there are two cases:

  1. (i)

    if \(\alpha (i) \not \in \mathcal{A }\left(\hat{\underline{u}},\,x\right)\), we have \(\alpha (i)> k_p\) and

    $$\begin{aligned} \underline{u}^2\left(N(u)-\alpha (i)\right)=u^2\left(N(u)-i\right)>x> \sum _{j=1}^{p-1} \hat{\underline{u}}^1\left(N(u)-k_j\right), \end{aligned}$$

    so some positive component of \(\left(H_2\left(\hat{\underline{u}},\,x\right)\right)^2\) reads

    $$\begin{aligned} \underline{u}^2\left(N(u)-\alpha (i)\right)-x=u^2\left(N(u)-i\right)-x. \end{aligned}$$
    (53)
  2. (ii)

    if \(\alpha (i) \in \mathcal{A }\left(\hat{\underline{u}},\,x\right),\) then \(\alpha \circ F^{-1} \circ \alpha (i) > k_p\) and we have that

    $$\begin{aligned} \underline{u}^2\left(N(u)-\alpha \circ F^{-1} \circ \alpha (i)\right)&= u^2\left(N(u)- F^{-1} \circ \alpha (i)\right)\\&\ge \underline{u}^2\left(N(u)- \alpha (i)\right)\\&= u^2\left(N(u)-i\right)\\&> x >\sum _{j=1}^{p-1} \hat{\underline{u}}^1\left(N(u)-k_j\right), \end{aligned}$$

    thus some positive component of \(\left(H_2\left(\hat{\underline{u}},\,x\right)\right)^2\) is given by

    $$\begin{aligned} \underline{u}^2\left(N(u)-\alpha \circ F^{-1} \circ \alpha (i)\right)-x \ge u^2\left(N(u)-i\right)-x. \end{aligned}$$
    (54)

Now, any positive second component of \(H_2\left(\hat{\underline{u}},\,x\right)\) reads \(\underline{u}^2\left(N(u)-j\right)-x\), where \(j \in [[k_p+1,N(u) ]]\). Assume that \(N(v)-N(u)+j \in \mathcal{A }(\hat{v},\,x)\) and denote the index \(\ell \in [[0,p ]]\) such that \(N(v)-N(u)+j=l_\ell \). From Lemma 3, \(N(u)-k_\ell \le N(v)-l_\ell ,\) thus \(N(u)-k_p \le N(u)-j\), a contradiction. Therefore, \(N(v)-N(u)+j \not \in \mathcal{A }(\hat{v},\,x)\). But as

$$\begin{aligned} v^2\left(N(v)-\left(N(v)-N(u)+j\right)\right)&= v^2\left(N(u)-j\right)\\&\ge \underline{u}^2\left(N(u)-j\right)\\&> x>\sum _{j=1}^{p-1} \hat{\underline{u}}^1\left(N(u)-k_j\right), \end{aligned}$$

the index \(N(v)-N(u)+j\) is strictly larger than \(l_p\). This means that some positive second component of \(v\) reads

$$\begin{aligned} v^2\left(N(v)-\left(N(v)-N(u)+j\right)\right)-x \ge \underline{u}^2\left(N(u)-j\right)-x. \end{aligned}$$
(55)

Therefore, applying (53), (54) and (55) to any index \(i \in [[i_p+1,N(u)-1 ]]\), and to \(j=\alpha (i)\) in the case (i) and to \(j=\alpha \circ F^{-1} \circ \alpha (i)\) in the case (ii), we obtain that the number \(a\) of positive components of \(\left(H_3(u,\,x)\right)^2\) is less than the number \(b\) of components of \(\left(H_3(\hat{v},\,x)\right)^2\), and that there exists an injection \(\gamma :[[1,a ]]\rightarrow [[1,b ]]\) such that for all \(i\),

$$\begin{aligned} \left(H_2(u,\,x)\right)^2\left(\gamma (i)\right)\le \left(H_2(\hat{v},\,x)\right)^2\left(i\right). \end{aligned}$$

We conclude with Lemma 4, to obtain that

$$\begin{aligned} H_2(u,\,x) \prec _2 H_2(\hat{v},\,x), \end{aligned}$$

which completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moyal, P. On queues with impatience: stability, and the optimality of Earliest Deadline First. Queueing Syst 75, 211–242 (2013). https://doi.org/10.1007/s11134-013-9342-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-013-9342-1

Keywords

Mathematics Subject Classification

Navigation