
Queueing Syst (2013) 75:19–28
DOI 10.1007/s11134-013-9347-9

Another look into decomposition results

Jevgenijs Ivanovs · Offer Kella

Received: 3 July 2012 / Revised: 11 December 2012 / Published online: 5 March 2013
© Springer Science+Business Media New York 2013

Abstract In this note, we identify a simple setup from which one may easily infer var-
ious decomposition results for queues with interruptions as well as càdlàg processes
with certain secondary jump inputs. Special cases are processes with stationary or
stationary and independent increments. In the Lévy process case, the decomposi-
tion holds not only in the limit but also at independent exponential times, due to the
Wiener–Hopf decomposition. A similar statement holds regarding the GI/GI/1 setting
with multiple vacations.
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1 Introduction

The motivation for this study is as follows. Consider a process that, whenever it is
nonnegative, is uninterrupted, and upon its attempt to become negative an external
positive jump (or jumps) is added to prevent it from doing so. Such a process with
a secondary jump input can model fluid queues or storage processes, where a server
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becomes unavailable for certain periods of time due to the insertion of external work. It
can also serve as a weak limit of certain queues with server vacations; See, for example
[10,13]. Alternatively, external jumps may represent orders made and immediately
received in a warehouse system. Yet another example comes from risk theory, where
an external jump input may be viewed as injection of capital by investors in order to
prevent a company going bankrupt.

Similarly, one can consider a discrete-time analog, i.e., a random walk with a
secondary jump input, which may represent a G/G/1 queue with server vacations
or interruptions. Notably, certain stochastic decomposition results hold for various
models of this type, see for example [6], for an M/G/1 queue with server vacations,
and [3–5,7,9,12,14] for a general case of a G/G/1 queue. In the continuous time
case, however, such decomposition results are only known when the driving process
is Lévy and moreover has no negative jumps; see [11]. In the latter model the station-
ary workload can be decomposed into the sum of two independent random variables:
one corresponding to the stationary workload in the usual Lévy-driven queue without
secondary jumps (the reflected process) and the other to the stationary residual life-
time distribution associated with the renewal process defined by the secondary jumps
alone.

The purpose of this note is threefold. The first is to identify a simple truth (the
decomposition lemma: Lemma 1) which implies the above decompositions in both the
discrete and continuous time cases. The second is to apply this decomposition Lemma
to various continuous and discrete time queues or storage models with vacations or
secondary jump inputs in order to establish a recognized decomposition result for
these processes. The third goal is to identify a decomposition for the Lévy case (with
possibly two-sided jumps) at independent exponentially distributed times, as well as
the random walk case at independent geometrically distributed times. This is due to
the Wiener–Hopf decomposition and extends earlier results for Lévy processes with
no negative jumps.

It turns out that the limiting decomposition results are not a consequence of the spe-
cial assumptions on the underlying driving process. These assumptions are important,
but usually only for the purpose of giving an explicit representation for the distri-
bution of a certain part of the decomposition. The main idea that allows us to use
the decomposition Lemma is the observation that one may represent the difference
between the process with vacations (or secondary jump input) and the reflected process
as the residual lifetime process associated with the vacations evaluated at the negative
of the running infimum of the driving process (to be made precise later). It turned out
that a seed to this idea was actually planted long before. Namely, one may interpret
the observations made by [3] as a special case of this setup for the GI/GI/1 queue with
vacations when one looks at arrival instants, because then the negative of the running
minimum is in fact a sum of completed idle times (which is what appears there). While
trying to understand the proof of the decomposition result as given there, we detected
an error, even though the end result is correct as was also observe earlier (see [7]). In
the concluding section of this note we give a simple counter example to the assumption
made in [3].

Throughout this note we use the following notation: a ∨ b = max(a, b), a ∧ b =
min(a, b), a+ = a ∨ 0 and a− = a ∧ 0.
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2 A decomposition lemma

The following is what we call the decomposition lemma. Despite its simplicity, it turns
out to be the essential reason for decomposition results discussed in this paper.

Lemma 1 Let (Xt )t≥0 and (Yt , Zt )t≥0 be stochastic processes where

• (Xt )t≥0 is right (or left) continuous a.s.,
• Xs is independent of (Yt , Zt ) for each s, t ≥ 0,
• Zt ≥ 0 a.s.

Assume that

Xt
d→ X, Yt

d→ Y, Zt
p→ ∞, as t → ∞. (1)

Then (X Zt , Yt )
d→ (X, Y ) where X and Y are independent.

It may be helpful to see the application of this lemma given in Sect. 3 before reading
through the rest of this section. The proof of the decomposition lemma relies on the
following fact.

Lemma 2 On a given probability space (�,F , P) let F0 ⊂ F be a sigma-field and
U = {Us | s ≥ 0} be an a.s. bounded right continuous stochastic process such that Us

is independent of F0 for every s ≥ 0. If V is a nonnegative F0-measurable random
variable then

E [UV |F0] = u(V ),

where u(s) = EUs.

Proof Letting τn(s) = (�ns	 + 1)/n we have τn(s) ↓ s as n → ∞. Hence by
right continuity Uτn(s) → Us and since by bounded convergence u(s) is also right
continuous, then also u(τn(s)) → u(s) as n → ∞. Now, for every A ∈ F0 we have

EUτn(V )1A = E
∞∑

k=1

Uk/n1{V ∈[ k−1
n , k

n )}1A

=
∞∑

k=1

u(k/n)E1{V ∈[ k−1
n , k

n )}1A = Eu(τn(V ))1A,

where the second step follows by Fubini’s theorem and the independence of Uk/n from
F0. By bounded convergence it follows that

EUV 1A = Eu(V )1A

and, since u(V ) ∈ F0 (by right continuity u is Borel), we are done. �
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Proof of Lemma 1 Let f, g be bounded and continuous and denote h(t) = E f (Xt ).
Then

h(t) = E f (Xt ) → c ≡ E f (X), as t → ∞

and thus h(Zt )
p→ c. Therefore (Slutsky’s Theorem or the “converging together

lemma”, see [8, p. 318]),

(h(Zt ), Yt )
d→ (c, Y ).

By Lemma 2 we have E[ f (X Zt )|σ(Yt , Zt )] = h(Zt ) and so

E f (X Zt )g(Yt ) = Eh(Zt )g(Yt ) → cEg(Y ) = E f (X)Eg(Y ),

where convergence follows by taking a bounded and continuous φ(ξ, η) ≡ (ξ ∧
a ∨ (−a))g(η) for sufficiently large a, so that Eh(Zt )g(Yt ) = Eφ(h(Zt ), Yt ) and
cEg(Y ) = Eφ(c, Y ), which is possible, because h is bounded. Taking f (ξ) = eiαξ

and g(η) = eiβη (or sines and cosines if one insists on real valued functions) implies
that in fact (X Zt , Yt ) converges in distribution to (X, Y ), where the latter are indepen-
dent. Finally, if Xt is left continuous then a corresponding analogue of Lemma 2 can
be used. �

Remark 1 We make the following observations:

1. If Xt is indexed by R instead of [0,∞) then the assumption that Zt ≥ 0 a.s. is not
needed. Alternatively, one may take for example X Z+

t
instead of X Zt .

2. Although in the statement of the lemma Xt and Yt are one dimensional, in the proof
this is not required and thus the decomposition lemma is valid for the multivariate
case or even the case where Xt and Yt take their values in (possibly different)
metric spaces.

3. Clearly, the decomposition lemma holds when (Yt , Zt ) is a discrete time process.

4. When Zt is a nondecreasing process then Zt
p→ ∞ if and only if Zt → ∞ almost

surely.
5. Only marginal independence of Xs and (Yt , Zt ) is required. Moreover, the assump-

tion of right (or left) continuity of Xt can be relaxed or even removed, but at a price
of a stronger independence assumption. In what follows this kind of generalization
is not needed and we prefer the weaker independence assumption.

3 Decomposition in stochastic storage processes with secondary jump inputs

Let X = {Xt |t ≥ 0} be a càdlàg process and let V1, V2, . . . be i.i.d. positive random
variables that are independent of X . We let

W v
t = Xt +

N v(t)∑

i=1

Vi , (2)
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Fig. 1 A schematic sample path of X

where N v(t) is the minimal process for which the right hand side is nonnegative
for all t ≥ 0. That is the process W v evolves as the process X , but whenever it
attempts to become negative, then just enough Vi ’s (one or more) are instantly added
in order to make it nonnegative. Alternatively, one can require that W v be strictly
positive instead of nonnegative. To set up some standard renewal process notation,
let Sn = ∑n

i=1 Vi , N (t) = inf{n| Sn > t} and the residual life time process is
Rt = SN (t) − t .

The minimal nonnegative nondecreasing process Yt such that Xt + Yt ≥ 0 for all
t ≥ 0 is It ∨0, where It = − inf0≤s≤t Xs . Although this is well known, see for example
[1, Prop. IX.2.2] for a closely related statement, we recall that this follows from the
fact that 0 ≤ Xs + Ys ≤ Xs + Yt for every 0 ≤ s ≤ t and thus Yt ≥ −Xs for every
0 ≤ s ≤ t . Thus, together with the assumption that Yt ≥ 0, necessarily Yt ≥ (It ∨ 0).
We denote this reflected (or regulated) process by Wt , i.e.,

Wt = Xt + It ∨ 0. (3)

It turns out that there is a simple relation between the sample paths of the processes
W v and W , which can be easily seen from Fig. 1.

We stack the jumps Vn one upon another below the level 0, creating a renewal
process (running downwards). Then the value of the process W v can be read off as the
distance between the path of X and the closest dashed line from below when It ≥ 0.
In other words,

W v
t = Wt + 1{It ≥0} Rv

t = Wt + 1{It ≥0} RIt , (4)

where Rv
t is the residual lifetime associated with our renewal process at ‘time’ It . One

should note that representation (4) may not hold when It coincides with a renewal
epoch (irrespective if Rt is taken right or left continuous). To see this, assume in
addition that Xt = −It and hence Wt = 0. But then W v

t can be either Vi or 0, where
the first case occurs when Is > It for all s > t and the second otherwise. Importantly,
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this problem is not essential for the decomposition result as will be shown in the
following.

Of course, one can use purely algebraic manipulations to derive representation (4).
On the event It ≥ 0, by minimality we have SN v(t)−1 ≤ It ≤ SN v(t). Assuming
that these inequalities are strict (It does not coincide with a renewal epoch) we get
N (It ) = N v(t) and hence SN v(t) − It = RIt , therefore W v

t = Xt + 1{It ≥0}(RIt + It )

and we are done.

Theorem 1 Assume that {Xt |t ≥ 0} and {Vn|n ≥ 0} are independent, lim inf
t→∞ Xt =

−∞ in probability, Wt
d→ W∞ as t → ∞ and {Vn|n ≥ 1} are i.i.d., distributed like

some positive V having a nonarithmetic distribution with EV < ∞. Then

W v
t

d→ W∞ + Ve (5)

where W∞ and Ve are independent and P(Ve ∈ dx) = P(V >x)
EV dx (stationary residual

life density).

Proof Observe that the process R is right continuous and is independent of the process
(W, I ). In particular Rs is independent of (Wt , It ) for every s, t ≥ 0. The decomposi-
tion lemma (Lemma 1) implies that (1{It ≥0} RIt , Wt ) converges to the pair (Ve, W∞),

where Ve and W∞ are independent, and hence Wt + 1{It ≥0} RIt

d→ W∞ + Ve. The
representation (4) would complete the proof if not the above mentioned problem that
it may not hold when It coincides with a renewal epoch. This is immediately over-
come by the fact that P(∃n : It = Sn) → 0 as t → ∞. The latter follows from
P(∃n : t = Sn) → 0, see for example [1, Thm. V.4.3], and the independence between
It and the process (Sn)n≥0. That is, simply write

P(∃n : It = Sn) ≤ P(It < T ) +
∫ ∞

T
P(∃n : s = Sn)P(It ∈ ds)

and argue that the right side is arbitrary small for large enough t . �

In Theorem 1, it is assumed that V has a nonarithmetic distribution. This assumption

cannot be removed in general as is evident from a simple example, where Xt = −t ,
so that Wt = 0 and W v

t = Rt . Nevertheless, there are various ways to get around this
restriction. For example, one can assume that the renewal process is stationary, i.e.,
take V1 to be distributed as Ve.

Remark 2 Once this structure is understood it is clear that various generalizations are
possible without change in the final decomposition outcome.

1. Instead of {Vn|n ≥ 0} i.i.d., assume that {Vn|n ≥ k} are i.i.d. for some k ≥ 2 and
are independent of (V1, . . . , Vk−1), where the latter can have any joint distribution.

2. Instead of Wt = Xt + It ∨ 0 and 1{It ≥0} RIt , one may consider Xt + Yt and RYt for
some nonnegative nondecreasing {Yt |t ≥ 0} for which Xt + Yt ≥ 0 for all t ≥ 0.
Here, N v(t) is the minimal process for which W v

t is bounded below by Xt + Yt .
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3. Instead of Rs one may take any other process which is independent of X and thus of
(I, W ). One example of such a process is as follows. Letting N (s) = inf{n|Vn > s}
take Rs = (VN (s) − s). In this case,

P(Rs > u) = P(V > s + u)

P(V > s)

so that

P(Rs > u + v) = P(Rs > u)P(Rs+u > v).

Rs does not always converge in distribution as s → ∞, but when it does and the
limit is nondegenerate, then the limiting distribution must be exponential. This
happens when P(V > log v) = P(eV > v) is regularly varying.
Another example is when Y is some Lévy process idependent of X satisfying
E |Yt | < ∞ and EYt > 0 and for s ≥ 0, Ts = inf{t |Yt > s}. Then we set
Rs = (YTs − s). Convergence in distribution for this case is discussed in [2].

4. The continuous time setup given here may be replaced by a discrete time version
without change. That is {Xn |n≥0} instead of {Xt |t≥0} and In=− min(X0, . . . , Xn)

instead of It . This implies the well known decomposition results for the waiting
time (in the queue) in a G/G/1 queue with multiple server vacations. Note that
all that is required here is to know that the waiting time without the vacations
converges in distribution, which may hold for various setups in particular when
the service and inter-arrival pairs are not i.i.d.

4 The case where X has stationary increments

Assume that X = (Xt )t∈R is a càdlàg process having stationary increments. That is,
for any s, the distribution of the process

Xs = (Xs+t − Xs)t∈R

is independent of s. In addition assume that

lim inf
t→∞ Xt = −∞ and inf

t≤0
Xt > −∞ (6)

the first in probability and the second almost surely. For example if there are enough
conditions (e.g., ergodicity, E sup0≤s≤t |Xs | < ∞ for some 0 < t < ∞ and E X1 < 0)
that insure that Xt/t → c a.s. for some c < 0, both as t → ∞ as well as t → −∞
then the conditions of (6) are met. A special case is when X also has independent
increments, that is, X is a Lévy process and then it suffices to assume that E X+

1 < ∞
and that E X1 < 0. Alternatively, we could have also started with a one sided process
(Xt )t≥0 having stationary increments and then make the usual (unique) two sided
extension. The following ideas marginally generalize ideas which are not new (e.g.,

123



26 Queueing Syst (2013) 75:19–28

[1, Sect. IX.2]), but since they take up just a few lines we found it worthwhile to
include them for ease of reference and in order to make the paper more self contained.

Noting that Xt = X0
t + X0, for t ≥ 0 define

I 0
t = − inf0≤s≤t X0

s , W 0
t = X0

t + I 0
t ,

It = − inf0≤s≤t X−
s = (I 0

t − X0)
+, Wt = Xt + It = X0

t + I 0
t ∨ X0.

(7)

A standard Loynes’ argument for this case is

W 0
t = X0

t + I 0
t = sup

0≤s≤t
(Xt − Xs) = sup

0≤s≤t
(Xt − Xt−s) = − inf

0≤s≤t
X t−s,

hence W 0
t and Mt = − inf−t≤s≤0 X0

s are identically distributed. So, W 0
t is stochasti-

cally increasing and converges in distribution to that of

W∞ ∼ M = − inf
s≤0

X0
s .

By our assumptions M < ∞ a.s. and It → ∞ in probability. Moreover,

Wt − W 0
t = I 0

t ∨ X0 − I 0
t = (X0 − I 0

t )+

which vanishes in probability since I 0
t ≥ It → ∞, and thus Wt

d→ W∞ as well.
Therefore, if in addition to the above {Vn|n ≥ 0} is independent of {Xt |t ∈ R} and
satisfies the requirements of Theorem 1, then the decomposition result of Theorem 1
holds.

In particular, for the discrete time version of the setup of this section one obtains the
decomposition results for waiting times in the G/G/1 queues with stationary structure
and multiple i.i.d. vacations with somewhat more general assumptions than considered
in the literature. Of course, this also implies the decomposition results for the G I/G I/1
queue.

4.1 The Lévy case and decomposition at exponential times

As was mentioned earlier, when X is a Lévy process satisfying E |X+| < ∞ and
E X1 < 0, then the conditions of the previous section are satisfied and thus the decom-
position holds. This generalizes the known results for the Lévy case with no negative
jumps. Of course, in the latter case, the Laplace–Stieltjes transform of the stationary
distribution associated with the reflected Lévy process has an explicit form, which
can be used to establish decomposition. In general the transform may not be known
explicitly, but nevertheless the decomposition is still valid.

Assume that X0 = 0 and take an exponential random variable T independent of
everything else. It is well known that WT and IT are independent. This fact is sometimes
called “splitting at the minimum” and is linked to the Wiener–Hopf factorization. In
this setting it is more convenient to take the left continuous version of the residual life
process Rt with R0 = 0. Then W v

t = Wt + RIt apart from countably many t (these
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are the times when It coincides with a renewal epoch and immediately surpasses it).
Hence

W v
T = WT + RIT a.s., (8)

where the summands are independent.

Remark 3 Equation (8) suggests the decomposition for the limiting distribution of W v
t :

substitute T with another exponential variable aT and let a → ∞. There is, however,
a “small” detail to be filled in this argument. One has to show that W v

t converges in
distribution (it only shows that it converges along some special sequence of random
times). It seems that covering this gap would not be any easier than via a result like
Lemma 1.

An identical argument is valid for the case where continuous time is replaced by
discrete time. That is, if Xn = ∑n

i=1 Yi , Yi are i.i.d. and T has a geometric distribution,
then WT and IT are independent. Furthermore, in the discrete time setup there are no
problems with the representation, i.e. W v

n = Wn + RIn holds for each n. This implies
that for a GI/GI/1 queue with multiple i.i.d. vacations, the decomposition holds at any
independent geometric time.

5 A counter example to an independence belief

A key observation was suggested in [3], see Lemma 1(c) and the comment preceding
Lemma 2, according to which in a GI/GI/1 queue the waiting time Wn of the nth
customer is independent of the preceding idle times (and hence of their sum In) given
the index N B

n = k of the busy cycle in which the nth customer has arrived. This is
further used to claim conditional independence of Wn and Rn (in our notation). It is
easy to believe this and move on, although no actual proof was given. While attempting
to understand it a bit better, we devised the following example (among many possible
ones).

Assume that the queue is modeled by a random walk with increments being 1 or −2
with equal probability 1/2 (this is the distribution of the preceding service time minus
interarrival time). Consider the second arriving customer given that the 0th customer
arrives to an empty queue at time 0, and so X0 = 0. There are four cases to consider,
each occurs with probability 1/4, which are given in the following table.

X1 X2 W2 I2 N B
2

1 2 2 0 0
−2 −4 0 4 2

1 −1 0 1 1
−2 −1 1 2 1
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From this, it is evident that on {N B
2 = 1} the pair (W2, I2) takes values (0,1) and

(1,2) with probability 1/2 for each, which implies that W2 and I2 are not conditionally
independent given N B

2 = 1.
Similarly, one can consider the vacation model with Vn = 3 (deterministic). Now,

on the event {N B
2 = 1} the pair (W2, Rv

2) takes values (0,2) and (1,1) with equal
probabilities; here W2 denotes the waiting time in the original queue. So again W2 and
Rv

2 are not conditionally independent given N B
2 = 1. This contradicts the observation

following Eq. (3.4) in [3].
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