Skip to main content
Log in

Large deviations for the empirical mean of an \(M/M/1\) queue

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Let \((Q(k):k\ge 0)\) be an \(M/M/1\) queue with traffic intensity \(\rho \in (0,1).\) Consider the quantity

$$\begin{aligned} S_{n}(p)=\frac{1}{n}\sum _{j=1}^{n}Q\left( j\right) ^{p} \end{aligned}$$

for any \(p>0.\) The ergodic theorem yields that \(S_{n}(p) \rightarrow \mu (p) :=E[Q(\infty )^{p}]\), where \(Q(\infty )\) is geometrically distributed with mean \(\rho /(1-\rho ).\) It is known that one can explicitly characterize \(I(\varepsilon )>0\) such that

$$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n}\log P\big (S_{n}(p)<\mu \left( p\right) -\varepsilon \big ) =-I\left( \varepsilon \right) ,\quad \varepsilon >0. \end{aligned}$$

In this paper, we show that the approximation of the right tail asymptotics requires a different logarithm scaling, giving

$$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n^{1/(1+p)}}\log P\big (S_{n} (p)>\mu \big (p\big )+\varepsilon \big )=-C\big (p\big ) \varepsilon ^{1/(1+p)}, \end{aligned}$$

where \(C(p)>0\) is obtained as the solution of a variational problem. We discuss why this phenomenon—Weibullian right tail asymptotics rather than exponential asymptotics—can be expected to occur in more general queueing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arendarczyk, A., Dȩbicki, K., Mandjes, M.: On the tail asymptotics of the area swept under the Brownian storage graph. Math. Oper. Res. (accepted)

  2. Asmussen, S.: Applied Probability and Queues. Springer, New York (2003)

    Google Scholar 

  3. Blanchet, J.: Optimal sampling of overflow paths in Jackson networks. Math. Oper. Res. http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal-papers (accepted)

  4. Borovkov, A.A.: Estimates for the distribution of sums and maxima of sums of random variables without the cramer condition. Sib. Math. J. 41, 811–848 (2000)

    Article  Google Scholar 

  5. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)

    Book  Google Scholar 

  6. Denisov, D., Dieker, A., Shneer, V.: Large deviations for random walks under subexponentiality: the big-jump domain. Ann. Probab. 36, 1946–1991 (2008)

    Article  Google Scholar 

  7. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. I. II. Commun. Pure Appl. Math. 28, 1–47 (1975); ibid. 28, 279–301 (1975)

    Google Scholar 

  8. Duffy, K.R., Meyn, S.P.: Most likely paths to error when estimating the mean of a reflected random walk. Perform. Eval. 67(12), 1290–1303 (2010)

    Article  Google Scholar 

  9. Embrechts, P., Klppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, New York (1997)

    Book  Google Scholar 

  10. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, Series in Comprehensive Studies in Mathematics. Springer, New York (1984)

  11. Kontoyiannis, I., Meyn, S.P.: Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab. 13, 304–362 (2003)

    Article  Google Scholar 

  12. Meyn, S.P.: Large deviation asymptotics and control variates for simulating large functions. Ann. Appl. Probab. 16(1), 310–339 (2006)

    Article  Google Scholar 

  13. Meyn, S.P.: Control Techniques for Complex Networks. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  14. Miller, H.: A convexity property in the theory of random variables defined on a finite Markov chain. Ann. Math. Stat. 32, 1260–1270 (1961)

    Google Scholar 

  15. Ney, P., Nummelin, E.: Markov additive processes. II. Large deviations. Ann. Probab. 15(2), 593–609 (1987)

    Article  Google Scholar 

  16. Rozovskii, L.V.: Probabilities of large deviations of sums of independent random variables. Theory Probab. Appl. 34, 625–644 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Blanchet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchet, J., Glynn, P. & Meyn, S. Large deviations for the empirical mean of an \(M/M/1\) queue. Queueing Syst 73, 425–446 (2013). https://doi.org/10.1007/s11134-013-9349-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-013-9349-7

Keywords

Mathematics Subject Classification

Navigation