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Abstract

We are concerned with an M/M -type join the shortest queue (M/M -JSQ for
short) with k parallel queues for an arbitrary positive integer k, where the servers
may be heterogeneous. We are interested in the tail asymptotic of the stationary
distribution of this queueing model, provided the system is stable. We prove that
this asymptotic for the minimum queue length is exactly geometric, and its decay
rate is the k-th power of the traffic intensity of the corresponding k server queues
with a single waiting line. For this, we use two formulations, a quasi-birth-and-
death (QBD for short) process and a reflecting random walk on the boundary of the
k + 1-dimensional orthant. The QBD process is typically used in the literature for
studying the JSQ with 2 parallel queues, but the random walk also plays a key roll
in our arguments, which enables us to use the existing results on tail asymptotics
for the QBD process.

Keywords: Join the shortest queue, heterogeneous servers, stationary distribution,
exactly geometric asymptotics, quasi-birth-and-death process, reflecting random walk.

1 Introduction

We consider a parallel queueing model in which customers join the shortest queue. If
there are more than one queues whose lengths are shortest, then we assume tie break
with equal probabilities. We denote the number of queues by k (≥ 2). It is assumed
that customers arrive according to a Poisson process, and each queue has a single server,
and its service times are i.i.d with an exponential distribution. Here, those servers may
have different mean service times, that is, they may be heterogeneous. We refer to this
queueing model as an M/M-type join the shortest queue (M/M-JSQ for short).

We are interested in the stationary distribution of the queue length for the M/M-JSQ.
However, its analytic derivation is known to be hard, and theoretical interests have been
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directed to the tail asymptotic of the stationary distribution. For k = 2, this problem
has been well studied. Kingman studied the M/M-JSQ with 2 parallel queues having
homogeneous servers. He proved that the stationary distribution of the minimum queue
length has an exactly geometric asymptotics and its decay rate is equal to the square
of traffic intensity of the corresponding M/M/2 queue with a single waiting line, where
exactly geometric asymptotics means that the tail probability is asymptotically propor-
tional to a geometric function. Many researchers obtained similar geometric asymptotics
for more general models with two parallel queues. The case of heterogeneous servers is
studied in [16]. Foley and McDonald [2] considered the generalized shortest queue which
has a Poisson stream dedicated to each queue in addition to a Poisson stream which
chooses the shortest queue. They obtained the stability condition and exactly geometric
asymptotic under some extra conditions. This model was further studied in [6, 8]. In
particular, Miyazawa [8] described the generalized shortest queue by a two sided double
quasi-birth-and-death (QBD) process, and derived the tail decay rates without any extra
condition. Sakuma [15] considered two parallel queues with a common phase type ser-
vice time distribution and a Markov modulated arrivals, and derived exactly geometric
asymptotic under a certain condition.

All those studies for JSQ assume two parallel queues. We consider the case where there
are more than two parallel queues, that is, k queues with k ≥ 3. Puhalskii and Vladimirov
[13] studied the tail asymptotics for much more general k parallel queues in which there
are multiple classes of customers who can only choose the shortest queue among queues
assigned to them. They derived the large deviations principle for this generalized model.
However, they do not provide any explicit asymptotics even for k = 2. Sakuma [14] also
studied k parallel queues with JSQ discipline, but this model is allowed to have jockeying
when the maximum difference among queues is greater than a given threshold level. Due
to this jockeying assumption, the problem is reduced to one dimensional queue, and the
standard technique can be applied to get tail asymptotics.

For the M/M-JSQ with k parallel queues, it is easy to guess that the tail decay rate of
the stationary distribution for the minimum queue length is the k-th power of the traffic
intensity of the corresponding k server queue with a single waiting line because all the
queues should be balanced. However, there has been no proof for k ≥ 3 as far as we
know. This may be because there is no satisfactory method for tail asymptotics on the
stationary distribution for more than two correlated queues.

The aim of this paper is to prove this conjecture. This will be done by obtaining exactly
geometric asymptotic. For this, we employ two formulations. We first consider the exact
geometric asymptotics using a discrete time QBD process, which has two components,
level and background. The level is one dimensional, and represents a characteristics of
interest for tail asymptotics. The background state has all the information for the process
to be Markov. We define the level by the minimum queue length for the M/M-JSQ with
k parallel queues while background state is a set of differences between the queues lengths
and their minimum. Then, we have the QBD process, and the stationary distribution is
represented by the so called matrix geometric solution. This solution can be used to derive
the exactly geometric asymptotic. However, we need to verify certain conditions for this
derivation which are not always easy to verify. In particular, one of them is involved with
the tail asymptotic of the marginal distribution at level zero, which is generally unknown.
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To overcome this difficulty, we use another formulation. We take the same state
space as that of the QBD process. Thus, each state is a k + 1 dimensional vector at
least one of whose entries vanish. We consider this process as a reflecting random walk
on the boundary of the k + 1 dimensional nonnegative integer orthant. This boundary
is composed of 2(2k − 1) faces depending on which entries vanish. We refer to this
process as a reflecting random walk for the shortest queue. This random walk provides
us a different tool for solving the tail asymptotic problem. For this, we use moment
generating functions for describing the stationary equation instead of the matrix geometric
solution. Of course, it is very hard to analytically derive the moment generating function
of the multidimensional stationary distribution. Instead of doing so, we only consider its
convergence domain, similarly to our recent papers [4, 10]. We can not find the whole
domain, but can get sufficient information to apply the tail asymptotic result of the QBD
process.

The rest of this paper is organized as follows. In Section 2, we formally introduce a
Markov chain for the shortest queue and formulate it in two ways, the QBD process and
reflecting random walk. We then present a main result, the exact geometric asymptotic
for the M/M-JSQ with k parallel queues (Theorem 2.1). As a corollary of this result,
we also derive a rough asymptotic for the marginal distribution of the minimum queue
length (Corollary 2.1). In Section 3, we prove the main result using one proposition and
five lemmas. The first two lemmas are on the QBD process, and proved in the appendix.
The last lemma plays a key roll for our proof. It is proved in Section 4, using further
lemmas. We give some concluding remarks in Section 5.

2 Modeling and exactly geometric asymptotics

We consider a queueing model with k parallel single server queues, where each waiting
line has infinite capacity, and we index those k queues as 1, 2, . . . , k. Customers arrive
according to a Poisson process with rate λ and join the shortest queue, where ties are
broken with equal probabilities when there are more than one shortest queues. At the
i-th queue, the customers are served according to first-come first-served discipline, and
their service times are independent and exponentially distributed with mean µ−1

i . Thus,
the severs may not be homogeneous. This queueing model is referred to as an M/M-type
join the shortest queue (M/M-JSQ) with k parallel queues (see also Figure 1).

( )1Exp µ

shortest( )Poisson λ

�

( )2Exp µ

( )Exp µ�

Figure 1: M/M-JSQ with k parallel queues
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We denote the index set of queues by J , that is,

J = {1, 2, . . . , k}.

For each t and i ∈ J , let Li(t) be the number of customers in queue i including a customer
being served, and let

L(t) = (L1(t), L2(t), . . . , Lk(t)).

It is easy to see that {L(t); t ∈ R+} is a continuous time Markov chain with state space Zk
+,

where R+ and Z+ are the sets of all nonnegative real numbers and integers, respectively.
We denote the traffic intensity of this queueing model by

ρ =
λ

∑k
i=1 µi

,

and assume that

ρ < 1, (2.1)

which is known to be the stability condition (see, e.g., [2]). Since the total transition
rate from each state is bounded by λ+

∑k
i=1 µi, we can construct a discrete time Markov

chain which has the same stationary distribution as that of {L(t)} by uniformization. We
normalize λ+

∑k
i=1 µi without loss of generality as

λ+
k
∑

i=1

µi = 1. (2.2)

We denote this discrete time Markov chain by {Lℓ; ℓ = 0, 1, . . .}, where

Lℓ = (Lℓ1, Lℓ2, . . . , Lℓk). (2.3)

In this paper, we refer to this process as an original queue length process.

In the rest of this paper, we consider this discrete time process. The state transitions
of Lℓ are a bit complicated because they depend on how Lℓi’s are ordered. Thus, we
describe it in a slightly different way. Let

Mℓ = min
i∈J

Lℓi, Y ℓ = (Yℓ1, Yℓ2, . . . , Yℓk), ℓ = 0, 1, . . . ,

where Yℓi = Lℓi −Mℓ for i ∈ J . Let {Zℓ; ℓ = 0, 1, . . .} be a pair of Mℓ and Y ℓ, that is,

Zℓ = (Mℓ,Y ℓ),

which is just another expression for {Lℓ}. Obviously, {Zℓ; ℓ = 0, 1, 2, . . .} is a discrete
time Markov chain which takes values in Z

k+1
+ .

The process {Zℓ} is convenient because of two reasons. First, it can be considered
as a quasi-birth-and-death process, QBD for short, if we view Mℓ as level and Y ℓ as
background state. Secondly, it can be considered as a reflecting random walk. This
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simplifies our arguments while keeping accurate mathematical expressions in the boundary
faces of k + 1-dimensional nonnegative integer orthant.

Let us describe the process {Zℓ} as a k + 1-dimensional reflecting random walk. We
first partition its state space. Let K ≡ {U ⊂ J ;U 6= ∅}. For U ∈ K, we define the
following boundary faces.

S+U = {u = (u0, u1, u2, . . . uk) ∈ Z
k+1
+ ; u0 ≥ 1, ui ≥ 1, i ∈ J \ U, uj = 0, j ∈ U},

S0U = {u = (u0, u1, u2, . . . uk) ∈ Z
k+1
+ ; u0 = 0, ui ≥ 1, i ∈ J \ U, uj = 0, j ∈ U}.

Denote the boundary of Zk+1
+ by ∂Zk+1

+ , that is,

∂Zk+1
+ = {u = (u0, u1, . . . , uk) ∈ Z

k+1
+ ; ∃i ∈ {0} ∪ J, ui = 0}.

Then, ∂Zk+1 ⊇ ∪U∈K(S+U ∪ S0U), on which {Zℓ} stays. Thus, the state space of Zℓ is
given by

S = ∪U∈K(S+U ∪ S0U ).

Note that Zℓ ∈ S+U if U is the set of indices of the shortest queues and Mℓ ≥ 1. Similarly,
Zℓ ∈ S0U implies that U is the set of indices of the shortest queues and Mℓ = 0.

Let us consider the distribution of increment Zℓ+1−Zℓ. It only depends on the bound-
ary face to which Zℓ belongs. To give its distribution, we use the following notations. For
i ∈ J , let ei be the k-dimensional row vector whose i-th entry is unit and the other entries
vanish (e.g., e1 = (1, 0, . . . , 0)), and let 1 be the k-dimensional row vector whose all entries
are units, i.e., 1 = (1, 1, . . . , 1). We denote the number of elements of set U by |U |. For
each U ∈ K, we define the random vector X(+U) taking value in (j, v) ∈ {0,−1, 1}k+1 as
follows, for |U | = 1,

P(X(+U) = (j, v)) =















λ, (j, v) = (1,−1+ ei), i ∈ U,
µi, (j, v) = (0,−ei), i ∈ J \ U

or (j, v) = (−1, 1− ei), i ∈ U,
0, otherwise,

(2.4)

and for |U | ≥ 2,

P(X(+U) = (j, v)) =















1
|U |

λ, (j, v) = (0, ei), i ∈ U,

µi, (j, v) = (0,−ei), i ∈ J \ U
or (j, v) = (−1, 1− ei), i ∈ U,

0, otherwise.

(2.5)

Similarly, let X (0U) be the random vector such that, for |U | = 1

P(X(0U) = (j, v)) =















λ, (j, v) = (1,−1+ ei), i ∈ U,
µi, (j, v) = (0,−ei), i ∈ J \ U

or (j, v) = (0, 0), i ∈ U,
0, otherwise,

(2.6)

and for |U | ≥ 2,

P(X(0U) = (j, v)) =















1
|U |

λ, (j, v) = (0, ei), i ∈ U,

µi, (j, v) = (0,−ei), i ∈ J \ U
or (j, v) = (0, 0), i ∈ U,

0, otherwise,

(2.7)
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where 0 is a null vector. Note that X(0U) represents the increment when the queues with
indices in U are empty. Then, {Zℓ} can be obtained as

Zℓ+1 = Zℓ +
∑

U∈K

(

X
(+U)
ℓ 1(Zℓ ∈ S+U) +X

(0U)
ℓ 1(Zℓ ∈ S0U )

)

, (2.8)

where X
(+U)
ℓ and X

(0U)
ℓ are independent copies of X(+U) and X(0U), respectively, and

1(·) is the indicator function. This {Zℓ} is referred to as a reflecting random walk for the
JSQ.

By the stability condition (2.1), {Zℓ} has a stationary distribution. Denote a random
vector subject to this distribution by Z ≡ (M,Y ). Then, (2.8) yields

Z
d
= Z +

∑

U∈K

(

X(+U)1(Z ∈ S+U) +X (0U)1(Z ∈ S0U )
)

, (2.9)

where
d
= stands for equality in distribution, and X(+U) and X(0U) are assumed to be

independent of Z. The stationary equation (2.9) plays a key roll in our arguments.

Let

H = {h = (h1, h2, . . . , hk) ∈ Z
k
+; ∃i ∈ J, hi = 0}.

Obviously, H is a state space for Y and S = Z+ × H. We are ready to present our
main result of this paper which will be proved in Section 3 using results in Section 4 and
Appendices.

Theorem 2.1 For the M/M-JSQ with k parallel queues satisfying the stability condition
(2.1), we have for each h ∈ H,

lim
n→∞

ρ−kn
P(M = n,Y = h) = ch, (2.10)

where ch is a positive constant.

For two parallel queues with homogeneous severs, this theorem was firstly obtained
by Kingman [3] by using analytic functions. It is also known for two parallel queues with
heterogeneous servers (e.g, see [16]). Similar results were obtained for two parallel queues
under more general setting (e.g., see [2, 6, 8, 14, 16] and references in those papers). Many
of them use the QBD processes and their limiting behaviors (e.g., see [11]).

Corollary 2.1 Under the same assumptions of Theorem 2.1,

lim
n→∞

1

n
log P(M = n) = log ρk. (2.11)

This corollary is not immediate from Theorem 2.1 because (2.10) only implies that
the limit infimum of 1

n
logP(M = n) is lower bounded by log ρk. We will prove it in

Appendix E.
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3 Proof of Theorem 2.1

For the proof of Theorem 2.1, we use two formulations, the QBD process and the reflecting
random walk for the JSQ. We first discuss basic results on the exact asymptotic for the
QBD process (see Proposition 3.1). We next consider the convergence domain for the
moment generating function of stationary distribution. For this, we prepare some lemmas.
The last lemma among them has a key roll in our arguments, which will be proved in
Section 4. Finally, we prove Theorem 2.1 in Section 3.3.

3.1 QBD process and sufficient conditions for geometric tail de-

cay

We first present the tail asymptotic result for the QBD process known in the literature
[6, 11]. For this, we use some matrices. For i = 0,±1 and ℓ = 0, 1, 2, . . ., define infinite
dimensional matrices B0, Ai as

[B0]h,h′ = P(Zℓ+1 = (0,h′)|Zℓ = (0,h)), h,h′ ∈ H,
[Ai]h,h′ = P(Zℓ+1 = (n+ i,h′)|Zℓ = (n,h)), h,h′ ∈ H, n ≥ 1.

Then, the QBD process {Zℓ} has the following transition probability matrix.

P =











B0 A+1

A−1 A0 A+1

A−1 A0 A+1

. . .
. . .

. . .











.

We assume the stability condition (2.1), and therefore the stationary distribution exists.
We denote it by row vector π.

For the QBD process, it is important to distinguish level from background state. For
this, we partition the stationary vector π as (π0,π1, . . .) according to level. That is,

[πn]h = P(M = n,Y = h),

for n ∈ Z+ and h ∈ H, where [πn]h denotes the h-th entry of πn. As is well known (e.g.,
[5] and [12]), the stationary distribution is known to have the following matrix geometric
form:

πn = π0R
n, n ≥ 1, (3.1)

where R is the minimal nonnegative solution of the following equation:

R = A+1 +RA0 +R2A−1. (3.2)

When the size of R is finite, we can see that the tail decay rate of (3.1) is obtained as
the maximal eigenvalue of R. Otherwise, this is not always true. Thus, we need certain
extra conditions here. Such conditions were firstly obtained in [16], and refined and
generalized in [11]. The following result for the geometric tail decay are the specialization
of the results in [11] to the QBD process (see Theorem 2.1 of [6]).
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Proposition 3.1 Assume that A ≡ A−1 + A0 + A+1 is irreducible and aperiodic, and
that the Markov additive process generated by {Aℓ; ℓ = 0,±1} is 1-arithmetic. If there
exist α > 1 and positive vectors x and y such that

xA∗(α) = x, A∗(α)y = y, (3.3)

xy < ∞, (3.4)

where A∗(z) = z−1A−1 + A0 + zA+1 for z 6= 0, then R has left and right eigenvectors x

and r ≡ (I −A0 −RA−1 − α−1A−1)y, respectively, with eigenvalue α−1. Furthermore, if

π0y < ∞, (3.5)

then we have the following geometric tail asymptotics for the stationary distribution:

lim
n→∞

αnπn =
π0r

xr
x. (3.6)

Remark 3.1 Both irreducibility and aperiodicity of A are easy to verify for our queueing
model. Furthermore, the 1-arithmetic property is directly verified, that is, for each h ∈ H,
the greatest common divisor of

{ℓ1 + ℓ2 + · · ·+ ℓi; [Aℓ1]h,h1 [Aℓ2 ]h1,h2 × · · · × [Aℓi ]hi−1,h,

where i ≥ 1, ℓm = 0,±1, m = 1, 2, . . . , i,hn ∈ H, n = 1, 2, . . . , i− 1}

is shown to be one.

It is not very hard to find positive vectors x and y satisfying conditions (3.3) and
(3.4). We first derive the α and the right invariant vector y in (3.3)

Lemma 3.1 Let yh = ρ−h1 for h ∈ H. Then, α = ρ−k and y = (yh;h ∈ H) satisfy
A∗(α)y = y.

This lemma is proved in Appendix A. We next consider left invariant vector x and
(3.4). Let ∆y be the diagonal matrix whose h-th diagonal element is yh for h ∈ H and
the other entires are 0. Since y is the right invariant vector of A∗(ρ

−k), ∆−1
y A∗(ρ

−k)∆y is
a stochastic matrix. We have the following lemma, which is proved in Appendix B.

Lemma 3.2 The stochastic matrix ∆−1
y A∗(ρ

−k)∆y is positive recurrent.

Using these lemmas, we will verify the conditions (3.3) and (3.4) in Section 3.3.

We finally consider the condition (3.5). However, we need much effort to check condi-
tion (3.5) since it includes the unknown vector π0. For this, we will consider a convergence
domain of the moment generating function for the JSQ in Section 3.2. In the next sub-
section, we only present results on the domain as lemmas, and prove them in Appendices
C and D and in Section 4.
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3.2 Stationary inequality for moment generating functions

For θ ≡ (θ0, θ1, θ2, . . . , θk) ∈ R
k+1, where R is the set of all real numbers, let ϕ(θ) denote

the moment generating function of the random vector Z = (M,Y ) in (2.9), that is,

ϕ(θ) = E(eθZ), (3.7)

where ab denotes the inner product of vectors a and b. We are interested in the conver-
gence domain of ϕ which is denoted by D, i.e.,

D = {θ ∈ R
k+1;ϕ(θ) < ∞}. (3.8)

In what follows, we will study the domain D by using the stationary equation for the
moment generating function. To this end, we introduce some notations. For U ∈ K,
let γ+U and γ0U be the moment generating functions of the random vectors X(+U) and
X(0U), respectively, that is,

γ+U(θ) = E(eθX
(+U)

), γ0U(θ) = E(eθX
(0U)

), θ ∈ R
k+1.

From equations (2.4)–(2.7), we have

γ+U(θ) =



















λeθ0−
∑

j∈J\U θj +
∑

j∈J\U

µje
−θj + µie

−θ0+
∑

j∈J\U θj , |U | = 1, i ∈ U,

∑

i∈U

1

|U |λe
θi +

∑

i∈J\U

µie
−θi +

∑

i∈U

µie
−θ0+

∑

j∈J\{i} θj , |U | ≥ 2,
(3.9)

γ0U(θ) =



















λeθ0−
∑

j∈J\U θj +
∑

j∈J\U

µje
−θj + µi, |U | = 1, i ∈ U,

∑

i∈U

1

|U |λe
θi +

∑

i∈J\U

µie
−θi +

∑

i∈U

µi, |U | ≥ 2.
(3.10)

We further define two moment generating functions ϕ+U and ϕ0U as follows:

ϕ+U(θ) = E(eθZ1(Z ∈ S+U)), (3.11)

ϕ0U(θ) = E(eθZ1(Z ∈ S0U)), (3.12)

for θ ∈ R
k+1.

Remark 3.2 For each U ∈ K and θ ∈ R
k+1, ϕ+U(θ) does not depend on the parameter

θi for i ∈ U since the expectation in (3.11) is taken over the event {Z ∈ S+U}, i.e., Yi = 0
for all i ∈ U . Similarly, ϕ0U(θ) does not depend on the parameters θ0 and θi for i ∈ U .

From (3.9) and (3.10), for all U ∈ K, it is easy to see that γ+U(θ) and γ0U(θ) are finite
for all θ ∈ R

k+1. Thus, from (2.9), we have a stationary equation of moment generating
function as long as ϕ(θ) is finite.

ϕ(θ) =
∑

U∈K

(γ+U(θ)ϕ+U(θ) + γ0U(θ)ϕ0U(θ)) . (3.13)
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Furthermore, partitioning ϕ(θ) concerning each boundary, we have the following decom-
position:

ϕ(θ) =
∑

U∈K

(ϕ+U(θ) + ϕ0U(θ)). (3.14)

From (3.13) and (3.14), we get

∑

U∈K

((1− γ+U(θ))ϕ+U(θ) + (1− γ0U(θ))ϕ0U(θ)) = 0. (3.15)

The stationary equation (3.15) holds at least θ ≤ 0.

We consider the convergence domain of the moment generating function ϕ(θ) for
θ > 0. We first prove that the distribution of Z has a light tail. For this, we will use the
idea of Foley and Mcdonald [2], in which they obtain a similar result for k = 2.

Lemma 3.3 Under the stability condition (2.1), there exists an ǫ > 0 such that E(eǫ
∑k

i=1 Li) <
∞, where Li = M + Yi for i ∈ J , and therefore ϕ(0, ǫ1) < ∞.

The proof of this lemma is deferred to Appendix C. From this lemma, we find a
confirmed region for the convergence domain of the moment generating function ϕ in the
positive orthant. Starting with this region, we will expand the confirmed region of the
convergence domain D. To this end, we consider the stationary equation (3.15). However,
we only know that the stationary equation (3.15) holds with θ ≤ 0. Thus, we can not
use the stationary equation (3.15) directly. Instead of doing so, we derive inequalities on
the stationary distribution. For this, we recall that K is the set of all subsets of J except
for empty set.

Lemma 3.4 For each θ ∈ R
k+1, we have the following results.

(a) If ϕ0U(θ) < ∞ and 1− γ+U(θ) > 0 for all U ∈ K, then we have

∑

U∈K

(1− γ+U(θ))ϕ+U(θ) ≤
∑

U∈K

(γ0U(θ)− 1)ϕ0U(θ) < ∞. (3.16)

(b) Let A be a subset K. If

γ+U(θ) < 1, γ0U(θ) < 1, U ∈ K \ A, (3.17)

ϕ+U ′(θ) < ∞, ϕ0U ′(θ) < ∞, U ′ ∈ A, (3.18)

then we have

∑

U∈K\A

((1− γ+U(θ))ϕ+U(θ) + (1− γ0U(θ))ϕ0U(θ))

≤
∑

U ′∈A

((γ+U ′(θ)− 1)ϕ+U ′(θ) + (γ0U ′(θ)− 1)ϕ0U ′(θ)) < ∞. (3.19)

(c) If all the conditions in either (a) or (b) hold, then ϕ(θ) < ∞.
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Remark 3.3 If ϕ+U(θ) and ϕ0U (θ) are finite for all U ∈ K, then the stationary equation
(3.13) is satisfied, and we have (3.16) and (3.19) with equalities. The important claim of
this lemma is that (3.16) and (3.19) hold even if the finiteness of the left hand sides are
unknown.

This lemma is an adaptation of Lemma 6.4 in [10], but we prove it in Appendix D for
this paper to be selfcontained. Using these inequalities, we obtain a part of domain D to
be sufficient for our purpose. We prove the following lemma in Section 4.

Lemma 3.5 For (η0, η1) ∈ R
2, if

η0 < log ρ−k, η1 <
1

k − 1
log ρ−k = log ρ−1 +

1

k − 1
log ρ−1, (3.20)

then we have ϕ(η0, η11) < ∞.

This fact will be used to verify the condition (3.5). We are now ready to prove
Theorem 2.1 using Proposition 3.1.

3.3 Verifying the sufficient conditions in Proposition 3.1

From Lemma 3.1, we already obtain α = ρ−k and y = (yh), where yh = ρ−h1 for h ∈ H.
So, we need to check the conditions (3.3), (3.4) and (3.5). From Lemma 3.2, the stationary
distribution of ∆−1

y A∗(ρ
−k)∆y exists, and denote it by ν, that is,

ν∆−1
y A∗(ρ

−k)∆y = ν.

Thus, the condition (3.3) holds with x = ν∆−1
y . In addition, we have

xy = ν∆−1
y y = 1.

Hence, the condition (3.4) is satisfied.

We finally verify the condition (3.5). We have the following equation.

π0y =
∑

h∈H

[π0]hρ
−h1 =

∑

h∈H

[π0]he
log ρ−1h1. (3.21)

Since ϕ is the moment generating function of stationary distribution, for (η0, η1) ∈ R
2,

ϕ(η0, η11) =
∞
∑

n=0

∑

h∈H

[πn]he
η0n+η1h1. (3.22)

From (3.21) and (3.22), we have

π0y ≤ ϕ(0, log ρ−11). (3.23)

By Lemma 3.5, we have ϕ(0, log ρ−11) < ∞, and the left hand side of (3.23) is finite. Thus,
the conditions in Proposition 3.1 are satisfied. This completes the proof of Theorem 2.1.
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4 The proof of Lemma 3.5

The main object of this section is to prove Lemma 3.5. Let

D(2) = {(η0, η1) ∈ R
2; (η0, η11) ∈ D}.

That is, D(2) is the projection D to the two dimensional hyper plane. Then, for (η0, η1) ∈
R

2, ϕ(η0, η11) < ∞ is equivalent to (η0, η1) ∈ D(2). Thus, we will show that (η0, η1) ∈ D(2)

under the condition (3.20). We iteratively find a sequence of vectors ζ1, ζ2, . . . , ζm for
some m ≥ 1 such that ζℓ ∈ D(2) for 1 ≤ ℓ ≤ m and (η0, η1) ≤ ζℓ. Our approach
is similar to [4, 10]. One may think that we can still use the two dimensional iteration.
However, things are not so simple because of the k+1-dimensional nature of the stationary
distribution. In particular, we must consider the k + 1 dimensional moment generating
function when we expand the confirmed region in the direction of η1-axis. To overcome
this issue, we prepare some technical lemmas.

4.1 The first step for expanding the confirmed region

We consider to iteratively expand the confirmed region for ϕ(θ) < ∞ by using Lemma 3.4.
For this, it is important to suitably choose A for Lemma 3.4. For each V ∈ K, let

G(V ) = {U ∈ K;V ∩ U 6= ∅},

and denote K \ G(V ) by Gc(V ). It follows from Lemma 3.4 with A = G(V ) that

γ+U(θ) < 1, γ0U(θ) < 1, U ∈ Gc(V ), (4.1)

ϕ+U(θ) < ∞, ϕ0U(θ) < ∞, U ∈ G(V ), (4.2)

imply that ϕ(θ) < ∞.

We next consider to minimize the number of the conditions in (4.2) to be verified
by restricting to the case that |V | = 1. To this end, we introduce some notations. For
each i = 0, 1, let {ζi,j; i = 0, 1, j ∈ J} be a 2 × k matrix. For V ∈ K, let ζ(V ) be the
k + 1-dimensional vector whose components are give by

[ζ(V )]i =







ζ0,|V |, i = 0,
ζ1,|V |, i ∈ V,
0, i ∈ J \ V.

(4.3)

Then, we have the following lemma.

Lemma 4.1 For each i = 0, 1, assume that ζi,j is nonincreasing in j ∈ J and

(C1) γ+U(ζ(V )) < 1 and γ0U(ζ(V )) < 1 for each V ∈ K \ {J}, that is, V ∈ K satisfying
|V | ≤ k − 1, and U ∈ Gc(V ).

Then, the condition:

(C2) ϕ+U(ζ(V )) < ∞ for each V ∈ K \ {J} satisfying |V | = 1 and each U ∈ G(V )
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implies that

(ζ0,1, ζ1,k−1) ∈ D(2). (4.4)

Remark 4.1 For V ∈ K \ {J} such that |V | = 1, U ∈ G(V ) if and only if U = V , and
therefore, for this U , ϕ+U(ζ(V )) does not depend on the elements of ζ(V ) except for first
entry, i.e., ζ0,1.

Proof. For (ζ0,k−1, ζ1,k−1) ∈ R
2 , from (3.14), we have

ϕ(ζ0,k−1, ζ1,k−11) =
∑

U∈K

(ϕ0U(ζ0,k−1, ζ1,k−11) + ϕ+U(ζ0,k−1, ζ1,k−11)) . (4.5)

Since (C1) holds for V ∈ K \ {J}, (4.4) is obtained if we verify

ϕ+U(ζ(V )) < ∞, V ∈ K \ {J}, U ∈ G(V ), (4.6)

by Lemma 3.4.

Assume the condition (C2). We inductively verify (4.6) on the value of |V |, where
1 ≤ |V | ≤ k − 1. (4.6) holds for |V | = 1 by (C2). For a fixed ℓ, where 1 < ℓ < k − 1, we
assume that, for V ∈ K satisfying 1 ≤ |V | ≤ ℓ,

ϕ+U(ζ(V )) < ∞, ϕ0U(ζ(V )) < ∞, U ∈ G(V ). (4.7)

If we can show that (4.7) for V ∈ K such that |V | = ℓ+1, then the induction is completed,
and therefore we have (4.6).

Arbitrarily choose U ′ ∈ G(V ′) for V ′ ∈ K satisfying |V ′| = ℓ + 1. We recall that
the expectations in ϕ+U ′ and ϕ0U ′ are taken over the events {Yi = 0; i ∈ U ′} and {M =
0} ∩ {Yi = 0; i ∈ U ′}, respectively. Hence, we have

ϕ+U ′(ζ(V ′)) ≤ ϕ+U ′(ζ(V ′ \ U ′)), ϕ0U ′(ζ(V ′)) ≤ ϕ0U ′(ζ(V ′ \ U ′)), (4.8)

since ζ0,|V ′| ≤ ζ0,|V ′\U ′| and ζ1,|V ′| ≤ ζ1,|V ′\U ′| by the nonincreasing assumption (see also
(4.3)). We note that |V ′ \ U ′| ≤ ℓ for U ′ ∈ G(V ′) since U ′ ∩ V ′ 6= φ. Thus, from the
induction assumption (4.7) for |V | ≤ ℓ, (4.7) is satisfied for |V | = ℓ + 1. This completes
the proof of the lemma.

From this lemma, we have the following fact, which will be used to expand the con-
firmed region.

Lemma 4.2 If (η0, 0) ∈ D(2) for η0 > 0, then (η0,
1

k−1
η0) ∈ D(2).

Proof. We will use Lemma 4.1. For this, let ζ0,j = η0 and ζ1,j =
1
j
η0. Then, for i = 0, 1,

ζi,j is nonincreasing in j. Moreover, from Remark 4.1, we have (C2) from our assumption.
If we can verify (C1), then for ζ0,j = η0 and ζ1,j =

1
j
η0, all conditions of Lemma 4.1 are

satisfied, and therefore, (η0,
1

k−1
η0) ∈ D(2).
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In what follows, we check the condition (C1). For this, we consider the case U ∈ Gc(V ).
We recall that V ∩ U = ∅. Thus, for j ∈ J , ζ0,j = η0 and ζ1,j =

1
j
η0,

[ζ(V )]i = ([ζ(V )]i1(i ∈ V ) + [ζ(V )]i1(i ∈ J \ V )) = 0, ∀i ∈ U,
∑

i∈J\U

[ζ(V )]i =
∑

i∈J\U

([ζ(V )]i1(i ∈ V ) + [ζ(V )]i1(i ∈ J \ V )) = η0, |U | = 1,

∑

j∈J\{i}

[ζ(V )]j =
∑

j∈J\{i}

([ζ(V )]j1(j ∈ V ) + [ζ(V )]j1(j ∈ J \ V )) = η0, ∀i ∈ U,

∑

i∈J\U

µie
−[ζ(V )]i =

∑

i∈J\U

µi

(

e−[ζ(V )]i1(i ∈ V ) + e−[ζ(V )]i1(i /∈ V )
)

=
∑

i∈V

µie
− 1

|V |η0 +
∑

i∈J\(U∪V )

µi.

For any i satisfying U = {i}, that is |U | = 1, substituting these equations into (3.9) and
(3.10), we have

γ+U(ζ(V )) = λeζ0,|V |−
∑

j∈J\U [ζ(V )]j +
∑

j∈J\U

µje
−[ζ(|V |)]i + µie

−ζ0,|V |+
∑

j∈J\{i}[ζ(V )]j

= λ+
∑

j∈V

µje
− 1

|V |η0 +
∑

j∈J\(U∪V )

µj + µi

< λ+
∑

j∈V

µj +
∑

j∈J\(U∪V )

µj + µi

= λ+

k
∑

j=1

µj

= 1,

γ0U(ζ(V )) = λeζ0,|V |−
∑

j∈J\U [ζ(V )]j +
∑

j∈J\U

µje
−[ζ(|V |)]j + µi

= λ+
∑

j∈V

µje
− 1

|V |η0 +
∑

j∈J\(U∪V )

µj + µi

< 1,

where we used the assumption (2.2). On the other hand, for |U | ≥ 2, we have

γ+U(ζ(V )) =
∑

i∈U

1

|U |λe
[ζ(V )]i +

∑

i∈J\U

µie
−[ζ(V )]i +

∑

i∈U

µie
−ζ0,|V |+

∑

j∈J\{i}[ζ(V )]j

= λ+
∑

i∈V

µie
− 1

|V |η0 +
∑

i∈J\(U∪V )

µi +
∑

i∈U

µi

< 1.

γ0U(ζ(V )) =
∑

i∈U

1

|U |λe
[ζ(V )]i +

∑

i∈J\U

µie
−[ζ(V )]i +

∑

i∈U

µi

= λ+
∑

i∈V

µie
− 1

|V |η0 +
∑

i∈J\(U∪V )

µi +
∑

i∈U

µi

< 1.

Hence, for each fixed V , we have (C1). This completes the proof.
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4.2 Iterations for expansion

We next consider two dimensional marginals of the moment generating functions (3.9)
and (3.10). For each U ∈ K and (η1, η2) ∈ R

2, we define the moment generating functions

γ
(2)
+U and γ

(2)
0U as

γ
(2)
+U(η0, η1) = γ+U(η0, η11), γ

(2)
0U (η0, η1) = γ0U(η0, η11).

For U ∈ K, let

Γ
(2)
+U = {η = (η0, η1) ∈ R

2; γ
(2)
+U(η) ≤ 1},

∂Γ
(2)
+U = {η = (η0, η1) ∈ R

2; γ
(2)
+U(η) = 1}.

Then, we have the following facts.

Proposition 4.1 Under the assumption of Theorem 2.1, we have the following properties.

(i) Γ
(2)
+U is a convex set in R

2 for U ∈ K.

(ii) {ηi ∈ R; (η0, η1) ∈ ∂Γ
(2)
+U} is bounded for each fixed η1−i and i = 0, 1 and U ∈ K

such that |U | = 1.

(iii) (0, η1) ∈ ∂Γ
(2)
+U for some η1 > 0. and U ∈ K satisfying |U | = 1.

(iv) For U ∈ K such that |U | ≥ 2, {η1 ∈ R; (η0, η1) ∈ ∂Γ
(2)
+U , ∃η0 ∈ R} is bounded

from above.

(v) ∂Γ
(2)
+U intersects at (0, 0) and (log ρ−k, log ρ−1) for each U ∈ K.

We obviously see (i)–(iv). For example, (i) is obtained because γ
(2)
+U is a convex function.

Furthermore, (v) is obtained by letting θ0 = log ρ−k and θ1 = θ2 · · · = θk = log ρ−1 in
(3.9). So far, we omit a detailed proof of this proposition. In Figure 2, for k = 2, we

depict the convex curve ∂Γ
(2)
+U and the region where the condition (3.20) holds.

Using Lemma 4.2, we iteratively find nondecreasing point such that the moment gen-
erating function ϕ(η0, η11) is finite. We illustrate our iteration in Figure 2. For this,

we recall that there exists η
(0)
1 > 0 such that ϕ(0, η

(0)
1 1) is finite by Lemma 3.3. Let

η(0) = (0, η
(0)
1 ) and for ℓ = 1, 2, . . . ,

η(ℓ) = (η
(ℓ)
0 , η

(ℓ)
1 ) ≡ arg sup

(η0,η1)

{η0; γ(2)
+U(η) < 1, ∀U ∈ K, η1 ≤ η

(ℓ−1)
1 }, (4.9)

η(ℓ) = (η
(ℓ)
0 , η

(ℓ)
1 ) ≡

(

η
(ℓ)
0 ,

1

k − 1
η
(ℓ)
0

)

. (4.10)

Then, from Proposition 4.1, we have the following property.

Lemma 4.3 η(ℓ) is nondecreasing in ℓ = 1, 2, . . ..
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Figure 2: The domain and iteration to expand the finite domain

Proof. From (4.10), it is sufficient to show that η
(ℓ)
0 ≤ η

(ℓ+1)
0 for all ℓ = 1, 2, . . .. We

first note that, from (i) and (iii) of Proposition 4.1,

γ
(2)
+U(0, η

(0)
1 ) < 1, ∀U ∈ K s.t |U | = 1.

From this inequality and the properties (i), (iv) and (v), for all ℓ = 1, 2, . . ., it is easy to

see that 0 < η
(ℓ)
0 ≤ log ρ−k. In addition, by (i), (ii), (iv) and (v) of Proposition 4.1,

η(ℓ) = arg sup{η0; γ(2)
+U(η) < 1, U ∈ K, |U | = 1, 0 < η0 ≤ log ρ−k, η1 ≤ η

(ℓ−1)
1 }. (4.11)

From (4.11), if we can obtain η
(ℓ)
1 < η

(ℓ)
1 for all ℓ = 1, 2, . . ., we have η

(ℓ)
0 ≤ η

(ℓ+1)
0 , and the

proof is completed. From convexity and boundedness of γ
(2)
+U (see properties (i) and (ii)

in Proposition 4.1), we obtain

γ
(2)
+U(η

(ℓ)) = 1, ∃U ∈ K, |U | = 1, (4.12)

for ℓ = 1, 2, . . .. Thus, from convexity of γ
(2)
+U , (4.11), (4.12) and 0 < η

(ℓ)
0 ≤ log ρ−k, we

obtain,

η
(ℓ)
1 ≤ 1

k
η
(ℓ)
0 <

1

k − 1
η
(ℓ)
0 = η

(ℓ)
1 , (4.13)

for all ℓ = 1, 2, . . ..

From Lemma 4.3 and (4.11), we can see that η
(ℓ)
0 and η

(ℓ)
1 converge to some points.

Denote them by η
(∞)
0 and η

(∞)
1 , i.e.,

η
(∞)
0 = lim

ℓ→∞
η
(ℓ)
0 , η

(∞)
1 = lim

ℓ→∞
η
(ℓ)
1 .

Then, the finite domain of the moment generating function is obtained as follows.

Lemma 4.4 If (η0, η1) < (η
(∞)
0 , η

(∞)
1 ) , then (η0, η1) ∈ D(2).
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Proof. By induction for ℓ, we will show that, for any ℓ = 1, 2, . . . ,

(η0, η1) ∈ D(2), (η0, η1) < (η
(ℓ)
0 , η

(ℓ)
1 ). (4.14)

For ℓ = 1, we first show that (η0, η1) ∈ D(2) for (η0, η1) < (η
(1)
0 , η

(1)
1 ). For all U ∈ K,

ϕ0U(η
(1)
0 , η

(1)
1 1) is finite since the value of ϕ0U does not depend on the first entry (see

Remark 3.2) and η
(1)
1 ≤ η

(0)
1 . From this and (4.9), for sufficiently small ǫ0, ǫ1 > 0 and

(η0, η1) = (η
(1)
0 − ǫ0, η

(1)
1 − ǫ1), we can use (a) of Lemma 3.4, and we have ϕ(η

(1)
0 −

ǫ0, (η
(1)
1 − ǫ1)1) < ∞. Hence, (η0, η1) ∈ D(2) for (η0, η1) < (η

(1)
0 , η

(1)
1 ). We are ready to

obtain (4.14) for ℓ = 1. We recall that

(η
(1)
0 , η

(1)
1 ) =

(

η
(1)
0 ,

1

k − 1
η
(1)
0

)

. (4.15)

In addition, the conditions in Lemma 4.2 hold with η0 < η
(1)
0 since η

(1)
1 > 0. Thus, from

Lemma 4.2 and (4.15), we have (4.14) for ℓ = 1.

Suppose that (4.14) satisfies for ℓ = ℓ′ ≥ 2. Similarly to the arguments for ℓ = 1, we

have (η0, η1) ∈ D(2) for (η0, η1) < (η
(ℓ′+1)
0 , η

(ℓ′+1)
1 ). Thus, conditions in Lemma 4.2 hold

with η0 < η
(ℓ′+1)
0 again, and we obtain (4.14) for ℓ = ℓ′ + 1.

4.3 The last step of the proof

By Lemma 4.4 and η
(∞)
1 = 1

k−1
η
(∞)
0 , it is sufficient to prove η

(∞)
0 = log ρ−k. From (4.11),

we clearly have

η
(∞)
0 ≤ log ρ−k. (4.16)

Suppose that η
(∞)
0 = α < log ρ−k. Then, it is easy to see that

γ
(2)
+U(α, η

(ℓ′)
1 ) = 1, ∃U ∈ K, |U | = 1,

γ
(2)
+U ′(α, η

(ℓ′)
1 ) < 1, ∀U ′ 6= U, |U ′| = 1,

for some ℓ′ ≥ 1. Thus, from (4.13), we have

1

k
α ≥ η

(ℓ′)
1 .

Moreover, from Proposition 4.1 and (4.11), for any U ∈ K, there exists a small ǫ > 0 such
that

γ
(2)
+U(α− ǫ, η

(ℓ′)
1 ) < 1.

From (4.10),

η
(ℓ′)
1 =

1

k − 1
(α− ǫ) >

1

k
α ≥ η

(ℓ′)
1 ,

since ǫ is sufficiently small. Thus, by Proposition 4.1, there exist δ > 0 and η1 ≤ η
(ℓ′)
1 such

that

γ
(2)
+U(α+ δ, η1) < 1, ∀U ∈ K.

This is a contradiction. From this and (4.16), we obtain η
(∞)
0 = log ρ−k.
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5 Concluding remarks

First of all, we note that our assumption on the tie break can be relaxed. We have as-
sumed that arriving customers choose one of the shortest queues with equal probabilities.
This assumption makes our arguments simpler, but is not essential. Namely, for each
configuration of the shortest queues, we can replace it by any distribution.

In this paper, for the M/M-JSQ with k parallel queues, we obtained the exact tail
asymptotics of the stationary distribution for the minimum queue length given the differ-
ences of queue length between each queue and minimum queue. It may be interesting to
find ch of (2.10) to see the joint distribution of the background state in the asymptotic
formula. For this, we need to derive the left invariant vector x in (3.3) because ch is
proportional to the h-th entry of x. For k = 2, this left invariant vector is obtained in [6].
However, this computation is difficult for the case k ≥ 3. We leave it as an open problem.

In our proof of Theorem 2.1, we obtained the subset of the convergence domainD. This
subset is still useful as we have seen in the proof of Corollary 2.1. However, if we completely
derive the domain D, we could do much better job. For example, we may have another
type of tail asymptotics, e.g., joint queue length and marginal distributions. However,
this would be a hard problem since our reflecting random walk is multidimensional. This
challenging problem is left for future work.

Another challenging problem is to generalize theM/M-JSQ to have dedicated streams.
For k = 2, the rough asymptotics of the minimum queue length have been completely
obtained for this generalized model in [8]. We can use the present formulations by a
QBD process and a reflecting random walk. However, even for k = 2, the answer is very
complicated because A∗(z) of the QBD process may not be positive recurrent. Thus, the
random walk approach may be more suitable for such a generalization.

Including this generalization, various modifications of the M/M-JSQ can be described
by a multidimensional reflecting random walk with skip free jumps. Thus, it is very
interesting to solve the tail asymptotic problems for a general multidimensional reflecting
random walk. Some related results can be found in [4, 10]. The approach in this paper
may be useful to get the rough and exact asymptotics of the multidimensional reflecting
random walk.
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A Proof of Lemma 3.1

Let S(h) = {i ∈ J ;h ∈ H, hi = 0}, that is, the set of severs having minimum queue. For
its proof, we give detailed form of Ai for i = 0,±1. For h,h′ ∈ H, we recall that [Ai]h,h′

is the (h,h′)-th block of Ai.

(a) Entries of A+1 : In this case, the minimum queue length increases by 1. This
implies |S(h)| = 1. If S(h) = {i}, arriving customers join the queue i, and the
difference of queue length between queue j and the minimum queue decreases by 1
for j 6= i. Hence, we have

[A+1]h,h−1+ei
= λ, h ∈ H, |S(h)| = 1, i ∈ S(h).

(b) Entries of A0 : The level is unchanged. When a customer arrives, it is required
that |S(h)| 6= 1 and the arriving customer joins queue i ∈ S(h) with probability
|S(h)|−1, which changes the background state from h to h+ ei. Hence, we have

[A0]h,h+ei
= |S(h)|−1λ, h ∈ H, |S(h)| 6= 1, i ∈ S(h).

When a customer finishes service, it must be at queue j ∈ J \ S(h), by which the
difference of queue length between queue j and the shortest queue decreases by 1.
Hence, we have

[A0]h,h−ej
= µj , h ∈ H, j ∈ J \ S(h).

(c) Entries of A−1 : This case implies minimum queue length decreases by 1. That is,
service completes at queue i ∈ S(h), by which the background state changes from
h to h+ 1− ei. Hence, we have

[A−1]h,h+1−ei
= µi, h ∈ H, i ∈ S(h).

Proof of Lemma 3.1 For h ∈ H, y = (yh) and S(h) ∈ K satisfying |S(h)| = 1 and
i ∈ S(h), from (a), (b) and (c), the h-th element of A∗(z)y is given by

[A∗(z)y]h = z−1µiyh+1−ei
+
∑

j 6=i

µjyh−ej
+ zλyh−1+ei

.

Substituting z = ρ−k and yh = ρ−h1 into this equation, we have

[A∗(ρ
−k)y]h = = ρkµiρ

−h1−(k−1) +
∑

j 6=i

µjρ
−h1+1 + ρ−kλρ−h1+(k−1)

= ρ−h1

(

k
∑

j=1

µjρ+ λρ−1

)

= yh,

where we use our assumption (2.2) for the last equality.
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We next consider 2 ≤ |S(h)| ≤ k. Then, from (b) and (c), we have, for h ∈ H,

[A∗(z)y]h =
∑

i∈S(h)

z−1µiyh+1−ei
+

∑

j∈J\S(h)

µjyh−ej
+
∑

i∈S(h)

1

|S(h)|λyh+ei
.

Hence, we have

[A∗(ρ
−k)y]h =

∑

i∈S(h)

ρkµiρ
−h1−(k−1) +

∑

j /∈S(h)

µjρ
−h1+1 + λρ−h1−1

= ρ−h1

(

k
∑

j=1

µjρ+ λρ−1

)

= yh.

B Proof of Lemma 3.2

From the Foster’s theorem (see e,g., [1, 7]), for some ǫ > 0, it is sufficient to find a function
f and finite set F ⊂ H such that

inf
h∈H

f(h) > −∞, (B.1)
∑

h′∈H

ph,h′f(h′) < ∞, ∀h ∈ F , (B.2)

∑

h′∈H

ph,h′f(h′)− f(h) ≤ −ǫ, ∀h ∈ H \ F , (B.3)

where ph,h′ are the (h,h′)-th entry of ∆−1
y A∗(ρ

−k)∆y. The entries of the stochastic matrix
∆−1

y A∗(ρ
−k)∆y are given by the following forms.

• For |S(h)| = 1,

ph,h′ =















λρ−1, h′ = h− 1+ ei, i ∈ S(h),
µiρ, h′ = h+ 1− ei, i ∈ S(h)

or h′ = h− ei, i ∈ J \ S(h),
0, otherwise.

• For 2 ≤ |S(h)| ≤ k,

ph,h′ =















λρ−1

|S(h)|
, h′ = h+ ei, i ∈ S(h),

µiρ, h′ = h+ 1− ei, i ∈ S(h)
or h′ = h− ei, i ∈ J \ S(h),

0, otherwise.
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For h = (h1, h2, . . . , hk) ∈ H, let

f(h) =
1

2

k−1
∑

j=1

k
∑

m=j+1

(hj − hm)
2.

For this f , we obviously have (B.1). We note that i ∈ S(h) implies hi = 0. For i ∈ S(h)
and h′ = h− 1+ ei or h

′ = h+ ei, we have

(h′
j − h′

m)
2 =







(hj − hm)
2, j,m 6= i,

(hj − hm)
2 − (2hj − 1), j < m = i,

(hj − hm)
2 − (2hm − 1), j = i < m.

Thus, we have

ph,h′f(h′) = =
λρ−1

2|S(h)|

(

k−1
∑

j=1

k
∑

m=j+1

(hj − hm)
2 −

i−1
∑

j=1

(2hj − 1)−
k
∑

m=i+1

(2hm − 1)

)

=
λρ−1

|S(h)|

(

f(h)−
k
∑

j=1

hj +
k − 1

2

)

.

Similarly, for h′ = h+ 1− ei and i ∈ S(h),

ph,h′f(h′) = µiρ

(

f(h) +

k
∑

j=1

hj +
k − 1

2

)

.

For h′ = h− ei and i ∈ J \ S(h), we also obtain,

(h′
j − h′

m)
2 =







(hj − hm)
2, j,m 6= i,

(hj − hm)
2 + 2(hj − hm) + 1, j < m = i,

(hj − hm)
2 + 2(hm − hj) + 1, j = i < m,

so we have the following inequality.

ph,h′f(h′) = µiρ

(

f(h) +

i−1
∑

j=1

(

hj − hi +
1

2

)

+

k
∑

m=i+1

(

hm − hi +
1

2

)

)

≤ µiρ

(

f(h) +

k
∑

j=1

hj +
k − 1

2

)

.
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From (2.2), we have

∑

h′∈H

ph,h′f(h′) ≤
∑

i∈S(h)

λρ−1

|S(h)|

(

f(h)−
k
∑

j=1

hj +
k − 1

2

)

+
∑

i∈S(h)

µiρ

(

f(h) +

k
∑

j=1

hj +
k − 1

2

)

+
∑

i∈J\S(h)

µiρ

(

f(h) +
k
∑

j=1

hj +
k − 1

2

)

= f(h) +

(

λ−
k
∑

j=1

µj

)

h1+
k − 1

2
.

Thus, from the stability condition (2.1), (B.2) and (B.3) hold with

F =

{

h ∈ H;h1 ≤ k − 1 + ǫ

2(
∑k

i=1 µi − λ)

}

.

We complete the proof.

C Proof of Lemma 3.3

For the proof of the first statment in Lemma 3.3, it suffices to prove that there exists α
such that

E(eα
√

∑k
i=1 L

2
i ) < ∞, (C.1)

since E(e
α√
k

∑k
i=1 Li) ≤ E(eα

√
∑k

i=1 L
2
i ). To prove (C.1), we consider a Lyapunov function

such that

f(u) = eα
√

∑k
i=1 u

2
i ,

for u = (u1, u2, · · · , uk) ∈ Z
k
+, and for each β > 0, define

Fβ =

{

u ∈ Z
k
+;

k
∑

i=1

ui ≤ β

}

.

Obviously, Fβ is a finite set. To verify (C.1), if we can show that

E(f(Ln+1)|Ln = u)− f(u) ≤ −c1f(u), ∀u ∈ Z
k
+ \ Fβ, (C.2)

for some c1 > 0, then, for any u ∈ Z
k
+,

E(f(Ln+1)|Ln = u)− (1− c1)f(u) ≤ s(u),

where s is a function defined

s(u) = (E(f(Ln+1)|Ln = u)− (1− c1)f(u))
+1(u ∈ Fβ).
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Thus, by Theorem 14.3.7 of [7], we have

c1
∑

u∈Zk
+

f(u)P(L = u) = c1E(e
α
√

∑k
i=1 L

2
i ) ≤

∑

u∈Zk
+

s(u)P(L = u) < ∞,

which implies (C.1). We will show that, for 0 < α <
√
k log ρ−1, we can find β > 0 such

that (C.2) holds.

For u ∈ Z+, let uℓ = (uℓ1, uℓ2, . . . , uℓk) be a permutation of u satisfying

uℓ1 ≤ uℓ2 ≤ · · · ≤ uℓk . (C.3)

We exclude the case uℓ1 = uℓ2 = · · · = uℓk = 0, that is, we assume the following condition.

0 < uℓj , ∃j ∈ J. (C.4)

Then, for j ∈ J satisfying (C.4), it follow from the transition matrix of the original queue
length process {Lℓ; ℓ ∈ Z+} that

E(f(Ln+1)|Ln = u)− f(u) = λe
α
√

(uℓ1
+1)2+

∑k
i=2 u

2
ℓi +

k
∑

i=j

µℓie
α
√

(uℓi
−1)2+

∑

m6=i u
2
ℓm

+

j−1
∑

i=1

µℓie
α
√

∑k
m=1 u

2
ℓm − e

α
√

∑k
i=1 u

2
ℓi

= λe
α
√

(uℓ1
+1)2+

∑k
i=2 u

2
ℓi +

k
∑

i=j

µℓie
α
√

(uℓi
−1)2+

∑

m6=j u
2
ℓm

−
(

λ+

k
∑

i=j

µℓi

)

e
α
√

∑k
i=1 u

2
ℓi ,

where we have used (2.2) to get the second equality. Note that
√
1 + u ≤ 1+ u

2
for u ≥ −1,

so we have the following inequalities.

√

√

√

√(uℓ1 + 1)2 +

k
∑

i=2

u2
ℓi

= r

√

1 +
1 + 2uℓ1

r2

≤ r +
1 + 2uℓ1

2r
,

√

(uℓi − 1)2 +
∑

m6=i

u2
ℓm

= r

√

1 +
1− 2uℓi

r2

≤ r +
1− 2uℓi

2r
,
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where r =
√

∑k
i=1 u

2
ℓi
. Hence, we have

E(f(Ln+1)|Ln = u)− f(u))

≤ λeαr+
α(1+2uℓ1

)

2r +

k
∑

i=j

µℓie
αr+

α(1−2uℓi
)

2r −
(

λ+

k
∑

i=j

µℓi

)

eαr

= eαr

(

e
α
2r

(

λe
αuℓ1

r +

k
∑

i=j

µℓie
−

αuℓi
r

)

−
(

λ+

k
∑

i=j

µℓi

))

= f(u)

(

e
α
2r

(

λe
αuℓ1

r +

k
∑

i=j

µℓℓi
e−

αuℓi
r

)

−
(

λ+

k
∑

i=j

µℓi

))

.

From this inequality, for a small α > 0 and a large β > 0, it is enough to find c1 > 0 such
that

e
α
2r

(

λe
αuℓ1

r +
k
∑

i=j

µℓℓi
e−

αuℓi
r

)

−
(

λ+
k
∑

i=j

µℓi

)

≤ −c1, ∀u ∈ Z+ \ Fβ. (C.5)

For this, for a small δ > 0, we partition two cases
αuℓ1

r
< δ and

αuℓ1

r
≥ δ. From our

assumption (C.3) and (C.4), we have

0 ≤ uℓi

r
≤ 1, i = 1, 2, . . . , k, (C.6)

0 ≤ uℓ1

r
≤ 1√

k
, (C.7)

1√
k
≤ uℓk

r
≤ 1. (C.8)

First assume that αu1

r
< δ. In this case, from (C.6) and (C.8), we obtain

e
α
2r

(

λe
αuℓ1

r +

k
∑

i=j

µℓℓi
e−

αuℓi
r

)

−
(

λ+

k
∑

i=j

µℓi

)

≤ e
α
2r

(

λe
αuℓ1

r +

k−1
∑

i=j

µℓi + µℓke
− α√

k

)

−
(

λ+

k
∑

i=j

µℓi

)

= λ
(

e
α
2r

+δ − 1
)

− µℓk

(

1− e
− α√

k

)

.

Then, for small α satisfying 0 < α <
√
k log ρ−1, there exist sufficiently small δ and large

β such that

d1 ≡ λ
(

e
α

2
√

β
+δ − 1

)

− µℓk(1− e
− α√

k ) < 0. (C.9)

We next consider the case
αuℓ1

r
≥ δ. Then, it implies that u1 > 0. From (C.3) and
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(C.7),

e
α
2r

(

λe
αuℓ1

r +
k
∑

i=j

µℓℓi
e−

αuℓi
r

)

−
(

λ+
k
∑

i=j

µℓi

)

= (1 + e
α
2r − 1)

(

λe
αuℓ1

r +
k
∑

i=1

µℓℓi
e−

αuℓi
r

)

−
(

λ+
k
∑

i=1

µℓi

)

≤ (1 + e
α
2r − 1)

(

λe
αuℓ1

r +
k
∑

i=1

µℓℓi
e−

αuℓ1
r

)

−
(

λ+
k
∑

i=1

µℓi

)

=
(

e
αuℓ1

r − 1
)

(

λ−
k
∑

i=1

µℓie
−

αuℓ1
r

)

+ (e
α
2r − 1)

(

λe
αuℓ1

r +
k
∑

i=1

µℓℓi
e−

αuℓ1
r

)

≤
(

e
αuℓ1

r − 1
)

(

λ−
k
∑

i=1

µℓie
−

αuℓ1
r

)

+ (e
α
2r − 1)

(

λe
α√
k +

k
∑

i=1

µℓℓi

)

≤
(

eδ − 1
)

(

λ−
k
∑

i=1

µℓie
− α√

k

)

+ (e
α
2r − 1)

(

λe
α√
k +

k
∑

i=1

µℓℓi

)

,

where the last inequality is given by αu1

r
≥ δ and

λ−
k
∑

i=1

µℓie
−

αuℓ1
r ≤ λ−

k
∑

i=1

µℓie
− α√

k < 0,

for 0 < α <
√
k log ρ−1. Thus, for fixed α and δ, we obtain (C.5) for sufficiently large

β > 0 satisfying

d2 ≡
(

e
α

2
√

β − 1
)

(

λe
α√
k −

k
∑

i=1

µℓℓi

)

+
(

eδ − 1
)

(

λ−
k
∑

i=1

µℓie
− α√

k

)

< 0. (C.10)

We put c1 = −max(d1, d2). Then, from (C.9) and (C.10), we have c1 > 0 and (C.5). This

completes the proof since ϕ(0, θ1) ≤ E(eθ
∑k

i=1 Li) for any θ ≥ 0.

D Proof of Lemma 3.4

We prove (3.16). For this, we apply truncation argument for the moment generating
functions ϕ0U and ϕ+U . For each n = 1, 2, . . . , let

gn(x) = min(x, n), x ∈ R.

Then, for any x, y ∈ R, it is easy to see that

gn(x+ y) ≤ gn(x) +

{

y x ≤ n,
0 x > n.

(D.1)
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The moment generating function E(egn(θZ)) is finite for each n and any θ ∈ R
k+1. So, we

have, by the stationary equation (2.9),

E(egn(θZ)) =
∑

U∈K

(

E

(

egn(θZ+θX(0U))1(Z ∈ S0U )
)

+ E

(

egn(θZ+θX(+U))1(Z ∈ S+U)
))

.

Since X(+U) is independent for Z, from (D.1), we have, for any U ∈ K,

E

(

egn(θZ+θX(+U))1(Z ∈ S+U)
)

≤ E

(

egn(θZ)+θX(+U)

1(Z ∈ S+U , θZ ≤ n)
)

+E
(

egn(θZ)1(Z ∈ S+U , θZ > n)
)

= γ+U(θ)E
(

egn(θZ)1(Z ∈ S+U , θZ ≤ n)
)

+E
(

egn(θZ)1(Z ∈ S+U , θZ > n)
)

.

We have similar result for X(0U). By the decomposition of E(egn(θZ)),

∑

U∈K

(1− γ+U(θ))E
(

egn(θZ)1(Z ∈ S+U , θZ ≤ n)
)

≤
∑

U∈K

(γ0U(θ)− 1)E
(

egn(θZ)1(Z ∈ S0U , θZ ≤ n)
)

.

Hence, we obtain (3.16) as n → ∞ by the monotone convergence theorem. We complete
the proof since we can use a similar argument to (3.19).

E Proof of Corollary 2.1

As we already noted, we only need to prove that

lim sup
n→∞

1

n
logP(M = n) ≤ log ρk. (E.1)

From Lemma 3.5, we have, for η0 < log ρ−k and 0 ≤ η1 <
1

k−1
log ρ−k,

eη0nP(M = n) ≤ E(eη0M) ≤ ϕ(η0, η11) < ∞.

Hence,

η0n+ log P(M = n) ≤ logϕ(η0, η11),

which implies that

lim sup
n→∞

1

n
logP(M = n) ≤ −η0.

Thus, letting η0 ↑ log ρ−k yields (E.1).

27


	1 Introduction
	2 Modeling and exactly geometric asymptotics
	3 Proof of Theorem 2.1
	3.1 QBD process and sufficient conditions for geometric tail decay
	3.2 Stationary inequality for moment generating functions
	3.3 Verifying the sufficient conditions in Proposition 3.1

	4 The proof of Lemma 3.5
	4.1 The first step for expanding the confirmed region
	4.2 Iterations for expansion
	4.3 The last step of the proof

	5 Concluding remarks
	A Proof of Lemma 3.1
	B Proof of Lemma 3.2
	C Proof of Lemma 3.3
	D Proof of Lemma 3.4
	E Proof of Corollary 2.1

