Skip to main content
Log in

Queues with random back-offs

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider a broad class of queueing models with random state-dependent vacation periods, which arise in the analysis of queue-based back-off algorithms in wireless random-access networks. In contrast to conventional models, the vacation periods may be initiated after each service completion, and can be randomly terminated with certain probabilities that depend on the queue length. We first present exact queue-length and delay results for some specific cases and we derive stochastic bounds for a much richer set of scenarios. Using these, together with stochastic relations between systems with different vacation disciplines, we examine the scaled queue length and delay in a heavy-traffic regime, and demonstrate a sharp trichotomy, depending on how the activation rate and vacation probability behave as function of the queue length. In particular, the effect of the vacation periods may either (i) completely vanish in heavy-traffic conditions, (ii) contribute an additional term to the queue lengths and delays of similar magnitude, or even (iii) give rise to an order-of-magnitude increase. The heavy-traffic trichotomy provides valuable insight into the impact of the back-off algorithms on the delay performance in wireless random-access networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Borst, S.C.: Polling systems with multiple coupled servers. Queueing Syst. 20, 369–393 (1995)

    Article  Google Scholar 

  2. Bouman, N., Borst, S.C., van Leeuwaarden, J.S.H.: Delays and mixing times in random-access networks. SIGMETRICS Perf. Eval. Rev. 41(1), 117–128 (2013). Proceedings of SIGMETRICS 2013 Conference

    Google Scholar 

  3. Bouman, N., Borst, S.C., van Leeuwaarden, J.S.H.: Delay performance of backlog-based random access. SIGMETRICS Perf. Eval. Rev. 39(2), 32–34 (2011). Proceedings of Performance 2011 Conference

    Article  Google Scholar 

  4. Bouman, N., Borst, S.C., Boxma, O.J., van Leeuwaarden, J.S.H.: Queues with random back-offs. Technical, Report arXiv:1302.3144 (2013)

  5. Bouman, N., Borst, S.C., van Leeuwaarden, J.S.H., Proutière, A.: Backlog-based random access in wireless networks: Fluid limits and delay issues. In Proceedings of ITC 23, 2011

  6. Boxma, O.J., Cohen, J.W.: Heavy-traffic analysis for the GI/G/1 queue with heavy-tailed distributions. Queueing Syst. 33, 177–204 (1999)

    Article  Google Scholar 

  7. Capiński, M., Kopp, E.: Measure, Integral and Probability. Springer, London (2004)

    Book  Google Scholar 

  8. Crabill, T.B.: Sufficient conditions for positive recurrence of specially structured Markov chains. Oper. Res. 16, 858–867 (1968)

    Article  Google Scholar 

  9. Fuhrmann, S.W., Cooper, R.B.: Stochastic decompositions for the M/G/1 queue with generalized vacations. Oper. Res. 33, 1117–1129 (1985)

    Article  Google Scholar 

  10. Ghaderi, J., Srikant, R.: On the design of efficient CSMA algorithms for wireless networks. In Proceedings of CDC 2010 Conference, 2010

  11. Ghaderi, J., Borst, S.C., Whiting P.A.: Backlog-based random-access in wireless networks: Fluid limits and instability issues. In Proceedings of WiOpt 2012 Conference, 2012

  12. Harris, C.M., Marchal, W.G.: State dependence in M/G/1 server vacation models. Oper. Res. 36(4), 560–565 (1988)

    Article  Google Scholar 

  13. Jiang, L., Shah, D., Shin, J., Walrand, J.: Distributed random access algorithm: Scheduling and congestion control. IEEE Trans. Inf. Theory 56(12), 6182–6207 (2010)

    Article  Google Scholar 

  14. Jiang, L., Leconte, M., Ni, J., Srikant, R., Walrand J.: Fast mixing of parallel Glauber dynamics and low-delay CSMA scheduling. In Proceedings of Infocom 2011 Mini-Conference, 2011

  15. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997)

    Google Scholar 

  16. Keilson, J., Servi, L.: A distributional form of Little’s law. Oper. Res. Lett. 7, 223–227 (1988)

    Article  Google Scholar 

  17. Kingman, J.F.C.: On queues in heavy traffic. J. R. Stat. Soc. Ser. B 24(2), 383–392 (1962)

    Google Scholar 

  18. Lotfinezhad, M., Marbach, P.: Throughput-optimal random access with order-optimal delay. In Proceedings of Infocom 2011 Conference, 2011

  19. Ni, J., Tan, B., Srikant, R.: Q-CSMA: queue length based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks. In Proceedings Infocom 2010 Mini-Conference, 2010

  20. Pakes, A.G.: Some conditions for ergodicity and recurrence of Markov chains. Oper. Res. 17, 1058–1061 (1969)

    Article  Google Scholar 

  21. Rajagopalan, S., Shah, D., Shin, J.: Network adiabatic theorem: An efficient randomized protocol for contention resolution. In Proceedings of ACM SIGMETRICS/Performance 2009 Conference, 2009

  22. Sevast’yanov, B.: Limit theorems for branching stochastic processes of special form. Th. Prob. Appl. 2, 321–331 (1957)

    Article  Google Scholar 

  23. Shah, D., Shin J.: Delay-optimal queue-based CSMA. In Proceedings of ACM SIGMETRICS 2010 Conference, 2010

  24. Shah, D., Shin, J., Tetali P.: Medium access using queues. In Proceedings of FOCS 2011 Conference, 2011

  25. Takagi, H.: Queueing Analysis: Vacation and Priority Systems. North-Holland, Amsterdam (1991)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Microsoft Research through its Ph.D. Scholarship Programme, an ERC starting Grant and a TOP Grant from NWO. We thank J.A.C. Resing for bringing the work of Sevast’yanov to our attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bouman.

Appendix: Preliminary results and proofs

Appendix: Preliminary results and proofs

This appendix contains a few technical lemmas and some proofs that have been relegated from the main text. To make this appendix self-contained we restate some results from the main text.

Lemma 7.1

(i):

If \(X_0 {\,{d \over =}\,}X\), then,

$$\begin{aligned} \prod \limits _{i=0}^{\infty }Y(a^ir), \end{aligned}$$

with \(0 \le a <1\), converges for all \(r\in [0,1]\).

(ii):

If \(X_0 >_{\mathrm{st}} X\), then,

$$\begin{aligned} \sum \limits _{j=0}^{\infty }K(a^jr)\prod \limits _{i=0}^{j-1}Y(a^ir), \end{aligned}$$

with \(0 \le a <1\), converges for all \(r\in [0,1]\).

Proof

To prove case \(\mathrm{(i)}\) first note that this infinite product converges if and only if

$$\begin{aligned} \sum \limits _{i=0}^{\infty }(Y(a^ir)-1) \end{aligned}$$

converges. To prove convergence of this infinite series we will use the ratio test (d’Alembert’s criterion). We have, with \(h(r)=\tilde{B}(\lambda (1-r))\) and \(k(r)=\tilde{B}(\lambda (1-r))G_X(r)\),

$$\begin{aligned} \lim _{i\rightarrow \infty } \left| \frac{Y(a^{i+1}r)-1}{Y(a^ir)-1}\right|&= \lim _{i\rightarrow \infty } \frac{(-a^i r + h(a^i r ))(a^{i+1} r - k(a^{i+1}r ))}{(-a^{i+1} r + h(a^{i+1} r ))(a^{i} r - k(a^{i}r))}\\&= \lim _{i\rightarrow \infty } \frac{a^{i+1} r - k(a^{i+1}r)}{a^{i} r - k(a^{i}r)}. \end{aligned}$$

By l’Hôpital’s rule,

$$\begin{aligned}&\lim _{i\rightarrow \infty } \frac{a^{i+1} r - k(a^{i+1}r)}{a^{i} r - k(a^{i}r)}\\&\quad = \lim _{i\rightarrow \infty } a \frac{1+\lambda G_X(a^{i+1}r)\tilde{B}'(\lambda (1-a^{i+1}r))-\tilde{B}(\lambda (1-a^{i+1}r))G'_X(a^{i+1}r)}{1+\lambda G_X(a^{i}r)\tilde{B}'(\lambda (1-a^{i}r))-\tilde{B}(\lambda (1-a^{i}r))G'_X(a^{i+1}r)}. \end{aligned}$$

We thus find

$$\begin{aligned} \lim _{i\rightarrow \infty } \left| \frac{Y(a^{i+1}r)-1}{Y(a^ir)-1}\right| = a < 1, \end{aligned}$$

proving case \(\mathrm{(i)}\).

For case \(\mathrm{(ii)}\) note that

$$\begin{aligned} \lim _{n\rightarrow \infty } \frac{K(a^{n+1}r) \prod _{i=0}^{n}Y(a^ir)}{K(a^{n}r) \prod _{i=0}^{n-1}Y(a^ir)}=Y(0)<1, \end{aligned}$$

for all \(r\) as \(0\le a < 1\). Thus, by the ratio test, the series in case \(\mathrm{(ii)}\) converges. \(\square \)

Lemma 7.2

If \(\alpha y + (1 - \alpha ) z = \alpha ' y' + (1 - \alpha ') z'\), with \(0 \le \alpha , \alpha ' \le 1\) and \(y' \le y \le z \le z'\), then

(i):

If \(g(\cdot )\) is a concave function,

$$\begin{aligned} \alpha g(y) + (1 - \alpha ) g(z) \ge \alpha ' g(y') + (1 - \alpha ') g(z'). \end{aligned}$$
(54)
(ii):

If \(g(\cdot )\) is a convex function,

$$\begin{aligned} \alpha g(y) + (1 - \alpha ) g(z) \le \alpha ' g(y') + (1 - \alpha ') g(z'). \end{aligned}$$
(55)

Proof

Since \(y' \le y \le z \le z'\), there exist \(0 \le \alpha _y, \alpha _z \le 1\), such that \(y = \alpha _y y' + (1 - \alpha _y) z'\), and \(z = \alpha _z y' + (1 - \alpha _z) z'\). It follows from the equality \(\alpha y + (1 - \alpha ) z = \alpha ' y' + (1 - \alpha ') z'\) that \(\alpha ' = \alpha \alpha _y + (1 - \alpha ) \alpha _z\), and \(1 - \alpha ' = \alpha (1 - \alpha _y) + (1 - \alpha ) (1 - \alpha _z)\). Further, if \(g(\cdot )\) is concave,

$$\begin{aligned} \alpha _y g(y') + (1 - \alpha _y) g(z') \le g(y), \end{aligned}$$

and

$$\begin{aligned} \alpha _z g(y') + (1 - \alpha _z) g(z') \le g(z). \end{aligned}$$

We may then write

$$\begin{aligned} \alpha g(y) + (1 - \alpha ) g(z)&\ge \alpha [\alpha _y g(y') + (1 - \alpha _y) g(z')] + (1 - \alpha ) [\alpha _z g(y') + (1 - \alpha _z) g(z')] \\&= [\alpha \alpha _y + (1 - \alpha ) \alpha _z] g(y') + [\alpha (1 - \alpha _y) + (1 - \alpha ) (1 - \alpha _z)] g(z') \\&= \alpha ' g(y') + (1 - \alpha ') g(z'), \end{aligned}$$

which completes the proof for case \(\mathrm{(i)}\). The inequality in (55) follows by symmetry. \(\square \)

Corollary 7.3

For all \(x\), if \(a' \le a < 1\), \(b' \ge b > 1\), then

(i):

If \(g(\cdot )\) is a concave function, \(\gamma _{a', b'}(x) \le \gamma _{a, b}(x) \le 1\) and thus \(\kappa _{a', b'} \ge \kappa _{a, b} \ge 0\).

(ii):

If \(g(\cdot )\) is a convex function, \(\gamma _{a', b'}(x) \ge \gamma _{a, b}(x) \ge 1\) and thus \(\chi _{a', b'} \le \chi _{a, b} \le 0\).

Proof

Taking \(y = a x\), \(y' = a' x\), \(z = b x\), \(z' = b' x\), \(\alpha = (b - 1) / (b - a)\), and \(\alpha ' = (b' - 1) / (b' - a')\) in (54), we obtain for \(g(\cdot )\) concave,

$$\begin{aligned} \frac{(b - 1) g(a x) + (1 - a) g(b x)}{b - a}&= \alpha g(y) + (1 - \alpha ) g(z)\\&\ge \alpha ' g(y') + (1 - \alpha ') g(z')\\&= \frac{(b' - 1) g(a' x) + (1 - a') g(b' x)}{b' - a'}, \end{aligned}$$

which yields the statement for concave \(g(\cdot )\).

The assertion for convex \(g(\cdot )\) follows by symmetry. \(\square \)

Let \(W\) henceforth be a nonnegative integer-valued random variable with probability distribution \(p(x) = {\mathbb {P}}\{{ W = x }\}\). For any \(y \ge 0\), define \(F(y) = {\mathbb {P}}\{{ W \le y }\} = {\mathbb {P}}\{{ W \le \lfloor y \rfloor }\}\), with pseudo inverse

$$\begin{aligned} F^{- 1}(u) = \inf \{y: F(y) \ge u\} \end{aligned}$$

for any \(u \in [0, 1]\), so that we may write

$$\begin{aligned} {\mathbb {E}}\{{ g(W) }\} = \mathop \int \limits _{u = 0}^{1} g(F^{- 1}(u)) du, \end{aligned}$$

and in particular

$$\begin{aligned} {\mathbb {E}}\{{ W }\} = \mathop \int \limits _{u = 0}^{1} F^{- 1}(u) du. \end{aligned}$$

For compactness, denote \(\hat{F}^{- 1}(u) = F^{- 1}(u) / {\mathbb {E}}\{{ W }\}\),

$$\begin{aligned} x_1(\epsilon _1) = \frac{1}{\epsilon _1} \mathop \int \limits _{u = 0}^{\epsilon _1} \hat{F}^{- 1}(u) du, \end{aligned}$$

and

$$\begin{aligned} x_2(\epsilon _2) = \frac{1}{\epsilon _2} \mathop \int \limits _{u = 1 - \epsilon _2}^{1} \hat{F}^{- 1}(u) du. \end{aligned}$$

Lemma 7.4

Let \(0 < \epsilon _1 \le F({\mathbb {E}}\{{ W }\})\), \(0 < \epsilon _2 \le 1 - F({\mathbb {E}}\{{ W }\})\), so that \(x_1(\epsilon _1) \le \hat{F}^{- 1}(\epsilon _1) \le 1\) and \(x_2(\epsilon _2) \ge \hat{F}^{- 1}(1 - \epsilon _2) \ge 1\), with

$$\begin{aligned} \epsilon _1 x_1(\epsilon _1) + \epsilon _2 x_2(\epsilon _2) = \epsilon _1 + \epsilon _2, \end{aligned}$$

or equivalently,

$$\begin{aligned} \mathop \int \limits _{u = \epsilon _1}^{1 - \epsilon _2} \hat{F}^{- 1}(u) du = 1 - \epsilon _1 - \epsilon _2. \end{aligned}$$
(i):

If \(g(\cdot )\) is a concave function,

$$\begin{aligned} (\epsilon _1 + \epsilon _2) \kappa _{x_1(\epsilon _1), x_2(\epsilon _2)} \le 1 - \frac{{\mathbb {E}}\{{ g(W) }\}}{g({\mathbb {E}}\{{ W }\})}. \end{aligned}$$
(56)
(ii):

If \(g(\cdot )\) is a convex function,

$$\begin{aligned} (\epsilon _1 + \epsilon _2) \chi _{x_1(\epsilon _1), x_2(\epsilon _2)} \ge 1 - \frac{{\mathbb {E}}\{{ g(W) }\}}{g({\mathbb {E}}\{{ W }\})}. \end{aligned}$$
(57)

Proof

Write

$$\begin{aligned} {\mathbb {E}}\{{ g(W) }\} \!=\! \mathop \int \limits _{u = 0}^{\epsilon _1} g(F^{- 1}(u)) du + \mathop \int \limits _{u = \epsilon _1}^{1 - \epsilon _2} g(F^{- 1}(u)) du + \mathop \int \limits _{u = 1 - \epsilon _2}^{1} g(F^{- 1}(u)) du.\qquad \end{aligned}$$
(58)

Because of Jensen’s inequality we find for concave \(g(\cdot )\)

$$\begin{aligned} \mathop \int \limits _{u = \epsilon _1}^{1 - \epsilon _2} g(F^{- 1}(u)) du&\le (1 - \epsilon _1 - \epsilon _2) g\left( \frac{1}{1 - \epsilon _1 - \epsilon _2} \mathop \int \limits _{u = \epsilon _1}^{1 - \epsilon _2} F^{- 1}(u) du\right) \\&= (1 - \epsilon _1 - \epsilon _2) g({\mathbb {E}}\{{ W }\}). \end{aligned}$$

Invoking Jensen’s inequality once again,

$$\begin{aligned}&\mathop \int \limits _{u = 0}^{\epsilon _1} g(F^{- 1}(u)) du + \mathop \int \limits _{u = 1 - \epsilon _2}^{1} g(F^{- 1}(u)) du \\&\quad \le \epsilon _1 g\left( \frac{1}{\epsilon _1} \mathop \int \limits _{u = 0}^{\epsilon _1} F^{- 1}(u) du\right) + \epsilon _2 g\left( \frac{1}{\epsilon _2} \mathop \int \limits _{u = 1 - \epsilon _2}^{1} F^{- 1}(u) du\right) \\&\quad = \epsilon _1 g(x_1(\epsilon _1) {\mathbb {E}}\{{ W }\}) + \epsilon _2 g(x_2(\epsilon _2) {\mathbb {E}}\{{ W }\}) \\&\quad = \gamma _{x_1(\epsilon _1), x_2(\epsilon _2)}({\mathbb {E}}\{{ W }\}) (\epsilon _1 + \epsilon _2) g({\mathbb {E}}\{{ W }\}) \\&\quad \le (1 - \kappa _{x_1(\epsilon _1), x_2(\epsilon _2)}) (\epsilon _1 + \epsilon _2) g({\mathbb {E}}\{{ W }\}). \end{aligned}$$

Substituting the above two inequalities in (58) we obtain the statement of the lemma for concave \(g(\cdot )\). The assertion for convex \(g(\cdot )\) follows from symmetry. \(\square \)

Lemma 7.5

Let \(0 < \epsilon _1 \le F({\mathbb {E}}\{{ W }\})\), \(0 < \epsilon _2 \le 1 - F({\mathbb {E}}\{{ W }\})\), so that \(x_1(\epsilon _1) \le \hat{F}^{- 1}(\epsilon _1) \le 1\) and \(x_2(\epsilon _2) \ge \hat{F}^{- 1}(1 - \epsilon _2) \ge 1\), with

$$\begin{aligned} \epsilon _1 x_1(\epsilon _1) + \epsilon _2 x_2(\epsilon _2) = \epsilon _1 + \epsilon _2, \end{aligned}$$

or equivalently,

$$\begin{aligned} \mathop \int \limits _{u = \epsilon _1}^{1 - \epsilon _2} \hat{F}^{- 1}(u) du = 1 - \epsilon _1 - \epsilon _2. \end{aligned}$$
(i):

If \(g(\cdot )\) is a concave function,

$$\begin{aligned} \kappa _{x_1(\epsilon _1), x_2(\epsilon _2)} \ge \max \{\kappa _{\hat{F}^{- 1}(\epsilon _1), 1 + \frac{\epsilon _1}{\epsilon _2} (1 - \hat{F}^{- 1}(\epsilon _1))}, \kappa _{1 - \frac{\epsilon _2}{\epsilon _1} (\hat{F}^{- 1}(1 - \epsilon _2) - 1), \hat{F}^{- 1}(1 - \epsilon _2)}\}. \end{aligned}$$
(ii):

If \(g(\cdot )\) is a convex function,

$$\begin{aligned} \chi _{x_1(\epsilon _1), x_2(\epsilon _2)} \le \min \{\chi _{\hat{F}^{- 1}(\epsilon _1), 1 + \frac{\epsilon _1}{\epsilon _2} (1 - \hat{F}^{- 1}(\epsilon _1))}, \chi _{1 - \frac{\epsilon _2}{\epsilon _1} (\hat{F}^{- 1}(1 - \epsilon _2) - 1), \hat{F}^{- 1}(1 - \epsilon _2)}\}. \end{aligned}$$

Proof

Observing that

$$\begin{aligned} x_2(\epsilon _2) \ge \hat{F}^{- 1}(1 - \epsilon _2), \end{aligned}$$

we obtain

$$\begin{aligned} \epsilon _1 x_1(\epsilon _1) \le \epsilon _1 + \epsilon _2 - \epsilon _2 \hat{F}^{- 1}(1 - \epsilon _2) = \epsilon _1 + \epsilon _2 (1 - \hat{F}^{- 1}(1 - \epsilon _2)). \end{aligned}$$

In addition,

$$\begin{aligned} x_1(\epsilon _1) \le \hat{F}^{- 1}(\epsilon _1), \end{aligned}$$

yielding

$$\begin{aligned} x_1(\epsilon _1) \le \min \{\hat{F}^{- 1}(\epsilon _1), 1 - \frac{\epsilon _2}{\epsilon _1} (\hat{F}^{- 1}(1 - \epsilon _2) - 1)\}. \end{aligned}$$

Likewise,

$$\begin{aligned} x_2(\epsilon _2) \ge \max \{\hat{F}^{- 1}(1 - \epsilon _2), 1 + \frac{\epsilon _1}{\epsilon _2} (1 - \hat{F}^{- 1}(\epsilon _1))\}. \end{aligned}$$

Combining the above two inequalities and using Corollary 7.3 completes the proof. \(\square \)

Proposition 7.5

Assume \(g(\cdot )\) is concave and \(\kappa _{a, b} >0\) for any \(a < 1\) and \(b > 1\), or \(g(\cdot )\) is convex and \(\chi _{a, b} < 0\) for any \(a < 1\) and \(b > 1\). If

$$\begin{aligned} \lim _{\rho \uparrow 1} \frac{{\mathbb {E}}\{{ g(W) }\}}{g({\mathbb {E}}\{{ W }\})} = 1, \end{aligned}$$

then

$$\begin{aligned} \frac{W}{{\mathbb {E}}\{{ W }\}} \xrightarrow {\;d\;}1 \hbox { as } \rho \uparrow 1. \end{aligned}$$

Proof

Take \(\delta > 0\) and \(\epsilon _1 = F((1 - \delta ) {\mathbb {E}}\{{ W }\})\). Then either \(\epsilon _1 = 0\), or \(0 < \epsilon _1 \le F({\mathbb {E}}\{{ W }\})\) and \(x_1(\epsilon ) \le \hat{F}^{- 1}(\epsilon _1) \le 1 - \delta \). In the latter case, define \(\epsilon _2^* = 1-\hat{F}^{-1}({\mathbb {E}}\{{ W }\})\), and observe that

$$\begin{aligned} \mathop \int \limits _{u = \epsilon _1}^{1 - \epsilon _2^*} \hat{F}^{- 1}(u) du \le 1 - \epsilon _1 - \epsilon _2^*, \end{aligned}$$

while

$$\begin{aligned} \mathop \int \limits _{u = \epsilon _1}^{1} \hat{F}^{- 1}(u) du \ge 1 - \epsilon _1. \end{aligned}$$

Hence, by continuity, there must exist an \(\epsilon _2 \in (0, \epsilon _2^*)\) with \(x_2(\epsilon _2) > 1\) and

$$\begin{aligned} \mathop \int \limits _{u = \epsilon _1}^{1 - \epsilon _2} \hat{F}^{- 1}(u) du = 1 - \epsilon _1 - \epsilon _2, \end{aligned}$$

so that the assumptions of Lemmas 7.4 and 7.5 are satisfied. Applying these two lemmas then yields for concave \(g(\cdot )\)

$$\begin{aligned} \kappa _{\hat{F}^{- 1}(\epsilon _1), 1 + \epsilon _1 (1 - \hat{F}^{- 1}(\epsilon _1))} \le \kappa _{\hat{F}^{- 1}(\epsilon _1), 1 + \frac{\epsilon _1}{\epsilon _2} (1 - \hat{F}^{- 1}(\epsilon _1))} \rightarrow 0 \hbox { as } \rho \uparrow 1. \end{aligned}$$

This means that \(\epsilon _1 = {\mathbb {P}}\{{ W \le (1 - \delta ) {\mathbb {E}}\{{ W }\} }\} \rightarrow 0\) as \(\rho \uparrow 1\). A similar argument shows that \({\mathbb {P}}\{{ W \ge (1 + \delta ) {\mathbb {E}}\{{ W }\} }\} \rightarrow 0\) as \(\rho \uparrow 1\). It now follows from the definition of convergence in probability that \(\frac{W}{{\mathbb {E}}\{{ W }\}}\) converges to \(1\) in probability. Hence we conclude that \(\frac{W}{{\mathbb {E}}\{{ W }\}} \xrightarrow {\;d\;}1\) as \(\rho \uparrow 1\) if \(g(\cdot )\) is concave.

The proof for convex \(g(\cdot )\) follows by symmetry. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouman, N., Borst, S.C., Boxma, O.J. et al. Queues with random back-offs. Queueing Syst 77, 33–74 (2014). https://doi.org/10.1007/s11134-013-9374-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-013-9374-6

Keywords

Mathematics Subject Classification

Navigation