
Pull-based load distribution

in large-scale heterogeneous service systems

Alexander L. Stolyar
Lehigh University

200 West Packer Avenue, Room 484
Bethlehem, PA 18015
stolyar@lehigh.edu

August 28, 2018

Abstract

The model is motivated by the problem of load distribution in large-scale cloud-based data processing
systems. We consider a heterogeneous service system, consisting of multiple large server pools. The pools
are different in that their servers may have different processing speed and/or different buffer sizes (which
may be finite or infinite). We study an asymptotic regime in which the customer arrival rate and pool
sizes scale to infinity simultaneously, in proportion to some scaling parameter n.

Arriving customers are assigned to the servers by a “router”, according to a pull-based algorithm,
called PULL. Under the algorithm, each server sends a “pull-message” to the router, when it becomes
idle; the router assigns an arriving customer to a server according to a randomly chosen available pull-
message, if there are any, or to a random server, otherwise.

Assuming sub-critical system load, we prove asymptotic optimality of PULL. Namely, as system scale
n → ∞, the steady-state probability of an arriving customer experiencing blocking or waiting, vanishes.
We also describe some generalizations of the model and PULL algorithm, for which the asymptotic
optimality still holds.

Key words and phrases: Large-scale heterogeneous service systems; pull-based load distribution; PULL
algorithm; load balancing; fluid limits; stationary distribution; asymptotic optimality

AMS 2000 Subject Classification: 90B15, 60K25

1 Introduction

Modern cloud-based data processing systems are characterized by very large scale [5]. Service requests in
such systems are processed by large-scale pools of “servers”, which may be physical or virtual. The design
of efficient load distribution, i.e. routing of arriving requests to the servers, in such large-scale systems poses
significant challenges; especially in heterogeneous systems, where the servers may have different capabilities.
Key objectives of a load distribution (routing) scheme are: (a) keep the request response times and blocking
probabilities small and (b) keep the router/server-signaling overhead at a manageable level.

In this paper we consider a generic heterogeneous service system, consisting of multiple server pools. The
pools are different in that their servers may have different processing speed and/or different buffer sizes
(which may be finite or infinite). We propose and study a pull-based routing (load distribution) algorithm,
refered to as PULL.

1

ar
X

iv
:1

40
7.

63
43

v3
 [

m
at

h.
PR

]
 1

0
Ju

n
20

15

The basic model and basic PULL algorithm are as follows. (The model and the algorithm allow multiple
generalizations; see the end of this section and Section 6.) Each new customer (service request) first arrives
at a single “router” (or “dispatcher”), which immediately sends it to one of the servers, as described below.
Each server processes customers in the first-come-first-serve (FCFS) order. At time instants when server
becomes idle it sends a “pull-message” to the router. (In a more general version of PULL in Section 6.1,
a pull-message is sent at time instants when server idleness increases.) Upon arrival of a new customer in
the system, if router has available pull-messages, it sends the customer to one of the servers according to
an available pull-message, chosen randomly uniformly, and “destroys” this pull-message. If no pull-messages
are available, the router sends the customer randomly uniformly to one of the servers in the system. We
assume that pull-messages are never lost or “disappear” for any reason. This effectively means that at any
time the router “knows” which servers are idle (but has no other information about the servers’ parameters
or state).

We consider an asymptotic regime in which the customer arrival rate and pool sizes scale to infinity simulta-
neously in proportion to scaling parameter n; we choose n to be the total number of servers (in all pools) in
the system. Specifically, the arrival rate is λn and the server pool sizes are β1n, . . . , βJn, for some positive
constants λ and βj , j = 1, . . . , J ,

∑
j βj = 1; the service rate at one server in pool j is µj > 0. We assume

sub-criticality of the system load: λ <
∑
j βjµj .

Our main result: PULL algorithm is asymptotically optimal; namely, as n → ∞, the steady-state proba-
bility of an arriving customer experiencing blocking or waiting, vanishes.

A pull-based approach to load distribution has been relatively recently introduced in the literature [1,
5]. However, a rigorous analytic study of pull-based algorithms is lacking, to the best of our knowledge.
(For example, the analysis in [5] does not imply the asymptotic optimality of PULL, even in homogeneous
systems.) Moreover, there are no analytic studies of pull-based schemes in heterogeneous systems, again, to
the best of our knowledge.

Pull-based algorithms are very attractive for practical implementation. Their advantages are best illustrated
(see also [5]) in comparison with the celebrated power-of-d-choices, or join-shortest-queue(d) [JSQ(d)] algo-
rithm [2,3,6,7]. The JSQ(d) algorithm routes an arriving customer to the server that has the shortest queue
out of the d servers picked uniformly at random. (Integer d ≥ 1 is the algorithm parameter.)

Consider first a homogeneous system with all n servers having same service rate µ > 0, exponentially
distributed service times, and infinite buffer sizes. (This is the setting in [7].) The subcriticality condition is
λ < µ. Denote by pnk the steady-state probability that, in the n-th system, a given server has queue length
at least k ≥ 0. The main result of [7] is

lim
n→∞

pnk = (λ/µ)(d
k−1)/(d−1), k ≥ 0. (1)

In the case d = 1 (which is equivalent to random uniform routing) the RHS above is (λ/µ)k. Therefore, if
d ≥ 2, the steady-state queue length tail probability decays dramatically faster than in the case of random
uniform routing. Note that JSQ(d) does not need to maintain information on the queue lengths at all servers.
The required message exchange rate between router and the servers is 2d messages per one customer. (d
queue length request messages from router to servers and d responses.) To summarize, the key advantage of
JSQ(d) with small d > 1, say JSQ(2), over random routing (JSQ(1)) is that a dramatic reduction in queue
length and waiting time is achieved at the cost of only a small message-exchange rate of 2d per customer.

PULL algorithm provides further substantial improvements over JSQ(d). Indeed, our results show that,
under PULL,

lim
n→∞

pnk = 0, k ≥ 2,

and in fact the steady-state probability of an arriving customer having to wait for service vanishes as well.
The message-exchange rate of PULL in steady-state is one message per customer. (So, for example, this is 4
times less that under JSQ(2).) Therefore, when system scale n is large, PULL both dramatically reduces (in
the limit – eliminates) queueing delays and very substantially reduces the message-exchange rate, compared
to JSQ(d).

2

Suppose now that the servers have finite buffer sizes B ≥ 1. For any fixed B, no matter how large, under
JSQ(d), the steady-state blocking probability does not vanish as n→∞. In contrast, under PULL, both the
blocking and waiting probabilities vanish. This is true even when B = 1, i.e. in the pure blocking system,
where each arriving customer either immediately goes to service or is blocked.

Further, consider heterogeneous systems, which are the focus of this paper. In heterogeneous systems the
JSQ(d) algorithm is not even appropriate in general. To illustrate, suppose there are two server pools, each
of size n/2, with service rate parameters µ1 = 2 and µ2 = 1/3. Assume infinite buffer sizes at all servers.
The arrival rate is n, so that the subcriticality holds: 1 < (1/2)2 + (1/2)(1/3). Under JSQ(2) this system
is unstable, because the second (slower) pool will receive new arrivals at the rate at least (1/4)n, while its
maximum service rate is (1/2)n(1/3). In contrast, under PULL, the system is stable (for sufficiently large
n) and the probability of waiting vanishes, as our results show.

Finally, we remark that our basic model and the PULL algorithm can be easily generalized, so that the
asymptotic optimality of (more general) PULL still holds – essentially same proofs as for the basic model
work. In Section 6 we discuss two such generalizations: (a) for the case when a server processing rate depends
on the queue length and (b) for more general service time distributions, namely, those with decreasing hazard
rate (DHR).

1.1 Brief literature review and summary of contributions

The literature on load distribution in service systems is extensive; see e.g. [3,5] for good up-to-date overviews.
A lot of previous work is focused on load balancing, which, we note, is only one of possible objectives of load
distribution. The PULL algorithm, studied in this paper, does not attempt and does not in general achieve
load balancing in the sense of equal load of the servers. (It does provide load balancing within each server
pool.) Nevertheless, it achieves the asymptotic optimality in the sense of eliminating customer waiting and
blocking.

The JSQ(d) algorithm, for homogeneous systems, has received much attention, since it was introduced in the
seminal work [7]. (See [2, 3, 6] for reviews.) Paper [7] considers the (homogeneous) system with exponential
service time distribution, under the same asymptotic regime as in this paper, and proves the limit (1) for
queue length distribution. Significant generalizations of the results of [7] are obtained in [2,3]; in particular,
these papers establish the queue length distribution limit for the case when the service time distribution has
decreasing hazard rate (DHR).

The basic idea of a pull-based load distribution is to make servers “pull” customers for service, as opposed
to router “pushing” it to them (as in JSQ(d)). Paper [1] proposes various pull-based schemes, with the
focus on practical use, and studies them via simulation. Recent work [5] considers a pull-based algorithm
in a homogeneous system; the model in [5] is more general than ours in that it has multiple routers, each
handling equal fraction of customer arrivals; the analytic and simulation study in the paper shows potentially
significant advantages of a pull-based approach over JSQ(d). (But, as we mentioned, it does not prove
asymptotic optimality.)

Summary of this paper contributions:
(1) We propose a specific pull-based load distribution algorithm, called PULL.
(2) We rigorously prove the asymptotic optimality of PULL (namely, elimination of waiting and blocking)
in a heterogeneous service system. In particular, this proves that PULL asymptotic performance is much
superior to that of the celebrated power-of-d-choices [JSQ(d)] algorithm.
(3) We present two generalizations of the model and the PULL algorithm, for which asymptotic optimality
prevails: for the queue length dependent service rates and for service time distributions with DHR.

3

1.2 Basic notation

Symbols R,R+,Z,Z+ denote the sets of real, real non-negative, integer, and integer non-negative numbers,
respectively. For finite- or infinite-dimensional vectors, the vector inequalities are understood component-
wise. We write simply 0 for a zero-vector. We use notation x(·) = (x(t), t ≥ 0) for both a random process
and its realizations, the meaning is determined by the context; the state space (of a process) and the metric
and/or topology on it are defined where appropriate, and we always consider Borel σ-algebra on the state
space. Abbreviation u.o.c. means uniform on compact sets convergence, and w.p.1 means with probability

1. Notations ⇒ and
d
= signify convergence and equality in distribution, respectively, for random elements.

For a process x(·), we denote by x(∞) a random element whose distribution is the lower invariant measure
of the process (defined formally in the text); if the process has unique stationary distribution, it is equal to
the lower invariant measure. For a ∈ R, bac denotes the largest integer less than or equal to a.

1.3 Layout of the rest of the paper

The formal model, asymptotic regime, PULL algorithm definition and the main result (Theorem 2) are given
in Section 2. In Section 3 we study properties of the underlying Markov process, related to – and stemming
from – its monotonicity. Fluid limits (as n → ∞) of the process are studied in Section 4. The proof of
Theorem 2 is given in Section 5. In Section 6 we discuss generalizations of the model and PULL algorithm,
for which our main results still hold, with essentially same proofs.

2 Model and main result

2.1 Model structure

Customers for service arrive according to a Poisson process of rate Λ > 0. There are J ≥ 1 server pools. Pool
j ∈ J ≡ {1, . . . , J} consists of Nj identical servers. Servers in pool 1 at indexed by i ∈ N1 = {1, . . . , N1},
in pool 2 by i ∈ N2 = {N1 + 1, . . . , N1 + N2}, and so on; N = ∪Nj is the set of all servers. Each arriving
customer is immediately routed for service to one of the servers; the service time of a customer at a server
in pool j is an independent, exponentially distributed random variable with mean 1/µj ∈ (0,∞), j ∈ J .
We assume that the customers at any server are served in the first-come-first-serve (FCFS) order. (That is,
at any time only the head-of-the-line customer at each server is served.) The buffer size (maximum queue
length) at any server in pool j is Bj ≥ 1; we allow the buffer size to be either finite, Bj < ∞, or infinite,
Bj =∞. A new customer, routed to a server i ∈ Nj , joins the queue at that server, unless Bj is finite and
the queue length Qi = Bj – in this case the customer is lost (i.e., leaves the system immediately, without
receiving any service).

Remark 1. In the model described above, the FCFS assumption is not important as far the queue lengths
in the system are concerned – any non-idling work-conserving discipline will produce the same queue length
process. In Section 6 we will discuss several generalizations of the above model, for which our main results
still hold. Some of these generalizations, specifically those involving more general service time distributions
(Section 6.2), do require the FCFS assumption.

2.2 Asymptotic regime

We consider the following (many-servers) asymptotic regime. The total number of servers n =
∑
j Nj is the

scaling parameter, which increases to infinity; the arrival rate and the server pool sizes increase in proportion
to n, Λ = λn, Nj = βjn, j ∈ J , where λ, βj , j ∈ J , are positive constants,

∑
j βj = 1. (To be precise, the

values of Nj need to be integer, e.g. Nj = bβjnc. Such definition would not cause any problems, besides

4

clogging notation, so we will simply assume that all βjn “happen to be” integer.) We assume that the
subcritical load condition holds:

λ <
∑
j

βjµj . (2)

2.3 PULL routing algorithm

We study the following pull-based algorithm.

Definition 1 (PULL algorithm). At any given time the algorithm (router) has exactly one pull-message
from each idle server (i.e., server with zero queue length) in the system. (In other words, the algorithm
“knows” which servers are idle.) Each arriving customer is routed immediately to one of the servers. If
there are available pull-messages (idle servers), the customer is routed to one of the idle servers, chosen
randomly uniformly. If there are no available pull-messages (idle servers), the customer is routed to one of
the servers in the system, chosen randomly uniformly.

A practical implementation of PULL algorithm (which motivates it name) is as follows. Assume that pull-
messages are never lost. When a server is “initialized”, it sends one pull-message to the router. After that,
the server sends one new pull-message to the router immediately after any service completion that leaves
the server idle. When a customer arrives, the router picks one of the available pull-messages uniformly at
random, sends the customer to the corresponding server, and destroys the pull-message. If router has no
available pull-messages when a customer arrives, it sends the customer to one of the servers, chosen uniformly
at random. Thus, the algorithm is easily implementable. Of course, in the algorithm analysis, there is no
need to consider the pull-message mechanism – we just assume that the current set of idle servers is known
at any time.

We will discuss implementation aspects of PULL in more detail in Section 2.5, after formally stating our
main result.

2.4 Main result

In the system with parameter n, the system state is the vector Qn = (Qni , i ∈ N), where Qni ∈ Z+ is the
queue length at server i.

Due to symmetry of servers within each pool, the alternative – mean field, or fluid-scale – representation of
the process is as follows. Define xnk,j as the fraction of the (total number of) servers, which are in pool j and
have queue length greater than or equal to k. We consider

xn = (xnk,j , k ∈ Z+, j ∈ J),

to be the system state, and will view states xn, for any n, as elements of the common space

X = {x = (xkj , k ∈ Z+, j ∈ J) | βj = x0j ≥ x1j ≥ x2j ≥ · · · ≥ 0},

equipped with metric

ρ(x, x′) =
∑
j

∑
k

2−k
|xkj − x′kj |

1 + |xkj − x′kj |
, (3)

and the corresponding Borel σ-algebra. Space X is compact.

For any n, the process Qn(t), t ≥ 0, – and its projection xn(t), t ≥ 0, – is a continuous-time, countable
state space, irreducible Markov process. (For any n, the state space of xn(·) is a countable subset of X .) If
the buffer sizes Bj are finite in all pools j, the state space is obviously finite, and therefore the process Qn(·)

5

(and then xn(·)) is ergodic, with unique stationary distribution. We will prove (in Theorem 2) that, in fact,
the ergodicity holds in the general case, when buffer sizes Bj may be infinite in some or all pools.

Define numbers νj ∈ (0, βj), j ∈ J , uniquely determined by the conditions

λ =
∑
j

νjµj , νjµj/(βj − νj) = ν`µ`/(β` − ν`), ∀j, ` ∈ J . (4)

Let us define the equilibrium point x∗ ∈ X by

x∗1,j = νj , x∗k,j = 0, k ≥ 2, j ∈ J . (5)

The meaning of the equilibrium point x∗ definition in (4)-(5) is clear. Point x∗ is such that the fraction
νj < βj of servers (out of the total number of servers) in pool j is occupied by exactly one customer, while
the remaining servers in pool j are idle. The numbers νj are (uniquely) determined by the condition (4),
which simply says that the rate at which new arrivals are routed to pool j (it is proportional to βj − νj) is
equal to the service-completion/departure rate from pool j (it is proportional to νjµj).

If the process xn(·) is ergodic, it has unique stationary distribution; in this case, we denote by xn(∞) a
random element with the distribution equal to the stationary distribution of xn(·). (In other words, xn(∞)
is a random process state in stationary regime.) Our main result is the following

Theorem 2. For all sufficiently large n, the Markov process xn(·) is ergodic (and then has a unique stationary
distribution), and xn(∞)⇒ x∗.

Given the definition of x∗, the result implies that, as n → ∞, the steady-state probability of having an
idle server in the system, goes to 1. Consequently, the steady-state probability of an arriving customer
experiencing blocking or waiting, vanishes.

2.5 Discussion of implementation aspects of PULL algorithm

2.5.1 The notion of servers pools is purely logical.

Note that PULL algorithm uses only the information about which servers are idle; it needs to know neither
the queue lengths at the servers (besides it being zero or not), nor their processing speed (i.e. which pool
j they belong to), nor their buffer sizes. In other words, from the “point of view” of the router, all servers
form a single pool, and the router need not know anything about the servers, besides them being currently
idle or not.

This in particular means that our model’s notion of server pools, each consisting of identical servers of a
certain type, is purely logical, used for the purposes of analysis only. A real system may consist of a single or
multiple pools of non-identical servers. In this case, we consider all servers of a particular type as forming
a logical pool. Our results still apply, as long as the number of servers of each type in the entire system is
large.

2.5.2 Pull-message mechanism.

We already mentioned that PULL algorithm very substantially reduces the message exchange between the
router and the servers. (It is 2d times less than that of JSQ(d).) Furthermore, pull-messages do not contribute
to the routing delay: an arriving customer in not waiting at the router for any pull-message, the routing
decision is made immediately, based on the pull-messages currently available. This is unlike the JSQ(d)
algorithm, where each arriving customer waits for the queue-length request/response message exchange to
complete, before being routed. (See also [5] for a discussion of this issue.)

6

It may appear that a disadvantage of PULL algorithm, compared to JSQ(d), is that the router needs to
maintain the list of available pull messages. In fact, this issue is insignificant for the following reason. Under
any routing algorithm, including JSQ(d) and PULL, the router needs to have the list of all servers in the
system. (It needs to know server “addresses”, in whatever form, to do actual routing of customers.) A
pull-message availability (or not) for a given server, adds just one bit to the server’s entry on the list. For
the purposes of making the random choice of an available pull-message efficient, it might be beneficial to
connect the corresponding server entries to form a virtual list; even in this case, this just adds one additional
field to each server entry.

2.5.3 Amount of computation.

The JSQ(d) algorithm needs to generate d random (or pseudo-random) numbers per each routed customer.
Under PULL algorithm, only one random number is generated per each customer.

3 More general view of the process. Monotonicity. Lower invari-
ant measure

All results in this section concern a system with a fixed n.

It will be convenient to consider a more general system and the Markov process. Namely, we assume that
the queue length in any server i ∈ Nj within a pool j with infinite buffer size (Bj =∞), can be infinite. In
other words, Qi(t) can take values in the set Z̄+

.
= Z+∪{∞}, which is the one-point compactification of Z+,

containing the “point at infinity.” We consider the natural topology and order relation on Z̄+. Obviously,
Z̄+ is compact. (Note that if A is a finite subset of Z+, then sets A and Z̄+ \A are both closed and open.)

Therefore, the state space of the generalized version of Markov process Qn(·) is the compact set Z̄n+. The
process transitions are defined in exactly the same way as before, with the additional convention that if
Qni (t) =∞, then neither new arrivals into this queue nor service completions in it, change the infinite queue
length value, and therefore Qni (τ) ≡ ∞ for all τ ≥ t.

The corresponding generalized version of the process xn(·) is defined as before; if at time t some of the
queues in pool j are infinite, then xn(t) is such that limk→∞ xnk,j(t) > 0. Note that the state space of the
generalized xn(·) is still the compact set X , as defined above.

It is easy to see that, for each n, the (generalized versions of) processes Qn(·) and xn(·) are Feller continuous.

Vector inequalities, Q′ ≤ Q′′ for Q′, Q′′ ∈ Z̄n+ and x′ ≤ x′′ for x′, x′′ ∈ X , are understood component-wise.
The stochastic order relation Q′ ≤st Q′′ [resp. x′ ≤st x′′] for random elements taking values in Z̄n+ [resp. X]
means that they can be constructed on the same probability space so that Q′ ≤ Q′′ [resp. x′ ≤ x′′] holds
w.p.1.

For any n, the processes Qn(·) and xn(·) are monotone. Namely, the following property holds. (For a general
notion of monotonicity cf. [4].)

Lemma 3. Consider two version of the process, Qn(·) and Q̄n(·) [resp. xn(·) and x̄n(·)], with fixed initial
states Qn(0) ≤ Q̄n(0) [resp. xn(0) ≤ x̄n(0)]. Then, the processes can be constructed on a common probability
space, so that, w.p.1, Qn(t) ≤ Q̄n(t) [resp. xn(t) ≤ x̄n(t)] for all t ≥ 0. Consequently, Qn(t) ≤st Q̄n(t)
[resp. xn(t) ≤st x̄n(t)] for all t ≥ 0.

Proof. It suffices to prove the result for Qn(·) and Q̄n(·). We will refer to the systems, corresponding to
Qn(·) and Q̄n(·), as “smaller” and “larger”, respectively. It is clear how to couple the service completions in
the two systems, so that any service completion preserves the Qn(t) ≤ Q̄n(t) condition. We make the arrival

7

process to be common for both systems. It suffuces to show that condition Qn(t) ≤ Q̄n(t) is preserved after
any arrival. Suppose the (joint) system state just before a customer arrival is such that Qn ≤ Q̄n. If all
servers in both the smaller and larger system are busy, we make a common random uniform assignment of
the arrival to one of the servers. If all servers are busy in the larger system, but there are idle servers in the
smaller one, we make independent assignments in the two systems, according to the algorithm. In the case
when there are idle servers in both systems, obvoiusly the idle servers in the larger system form a subset
of those in the smaller one. Then we do the following. We make uniform random choice of an idle server
in the smaller system, we assign the arrival to that server in the smaller system, and in the larger system
as well as long as it happens to be idle in the larger system; if that server is busy in the larger system,
we do an additional step and assign it uniformly randomly to an idle server in the larger system. Clearly,
condition Qn(t) ≤ Q̄n(t) is preserved in each case, and the procedure conforms to the PULL algorithm in
both systems. 2

If the system starts from idle initial state, i.e. Qn(0) = 0 [equivalently, xn1j(0) = 0, j ∈ J], then by Lemma 3
the process is stochastically non-decreasing in time

Qn(t1) ≤st Qn(t2), [resp. xn(t1) ≤st xn(t2)], 0 ≤ t1 ≤ t2 <∞. (6)

Since the state space Z̄n+ [resp. X] is compact, we must have convergence in distribution

Qn(t)⇒ Qn(∞), [resp. xn(t)⇒ xn(∞)], t→∞,

where the distribution of Qn(∞) [resp. xn(∞)] is the lower invariant measure of process Qn(·) [resp. xn(·)].
(The lower invariant measure is a stationary distribution of the process, stochastically dominated by any
other stationary distribution. Cf. [4], in particular Proposition I.1.8(d).)

Observe that the process Qn(·) [resp. xn(·)], as originally defined (without infinite queues), is ergodic if and
only if Qn(∞) [resp. xn(∞)] is proper in the sense that

P{Qni (∞) <∞, ∀i} = 1 [resp. P{xn∞,j(∞) = 0, ∀j} = 1],

where xn∞,j(∞)
.
= limk→∞ xnkj(∞). And if the original process is ergodic, the lower invariant measure is its

unique stationary distribution.

Lemma 4. Suppose for some j and some i ∈ Nj,

P{Qni (∞) =∞} > 0 [and then P{xn∞,j(∞) > 0} > 0].

Then, necessarily, a stronger condition holds:

P{Qni (∞) =∞, ∀i ∈ Nj} = 1 [and then P{xn∞,j(∞) = βj} = 1]. (7)

Proof. Consider a stationary version of Qn(·), with stationary distribution being the lower invariant measure.

Namely, Qn(0)
d
= Qn(∞), and then Qn(t)

d
= Qn(∞) for all t ≥ 0. By the lemma assumption, P{Qni (0) =

∞} = P{Qni (∞) =∞} = δ ∈ (0, 1]. By the (generalized) process definition, under the condition Qni (0) =∞,
w.p.1 Qni (t) ≡ ∞ for all t. By monotonicity, the process conditioned on any fixed initial state stochastically
dominates the process starting from the idle state. Then, for any k ∈ Z+,

lim inf
t→∞

P{Qni (t) ≥ k | Qni (0) <∞} ≥ lim inf
t→∞

P{Qni (t) ≥ k | Qn(0) = 0} ≥ P{Qni (∞) ≥ k} ≥ δ.

(Recall that {Qi ≥ k} is an open subset of Z̄n+.) Therefore, for the overall probability (assuming Qn(0)
d
=

Qn(∞)),

lim inf
t→∞

P{Qni (t) ≥ k} ≥ lim inf
t→∞

P{Qni (t) ≥ k | Qni (0) =∞}+lim inf
t→∞

P{Qni (t) ≥ k | Qni (0) <∞} ≥ δ+(1−δ)δ.

From here,
P{Qni (∞) ≥ k} ≥ lim sup

t→∞
P{Qni (t) ≥ k} ≥ δ + (1− δ)δ.

8

(Recall that {Qi ≥ k} is also a closed subset of Z̄n+.) Then,

δ = P{Qni (∞) =∞} = lim
k→∞

P{Qni (∞) ≥ k} ≥ δ + (1− δ)δ.

We see that (1 − δ)δ ≤ 0 and, as assumed, δ ∈ (0, 1]. This implies δ = 1, that is P{Qni (∞) = ∞} = 1. By
symmetry, this is true for all servers in Nj . 2

By Lemma 4, the non-ergodicity (instability) of the original process is equivalent to condition (7) holding
for at least one j.

In the rest of the paper, for a state xn(t) (with either finite t ≥ 0 or t =∞), we denote by

xn∞,j(t)
.
= lim
k→∞

xnk,j(t) (8)

the fraction of queues that are in pool j and are infinite. (Note that xn∞,j(t) is a function, but not a
component, of xn(t).) Also, denote by ynk,j(t) the fraction of queues that are in pool j and have queue size

exactly k ∈ Z̄+:
ynk,j(t)

.
= xnk,j(t)− xnk+1,j(t), k ∈ Z+, (9)

yn∞,j(t)
.
= xn∞,j(t) = lim

k→∞
xnk,j(t). (10)

4 Fluid limits

In this section, we consider limiting behavior of the sequence of process xn(·) as n → ∞. (We will only
consider the mean-field process xn(·), because this will be sufficient for proving Theorem 2.) In particular, we
will define fluid sample paths (FSP), which arise as limits of the (fluid-scaled) trajectories xn(·) as n→∞.

Without loss of generality, assume that the Markov process xn(·) for each n is driven by a common set of
primitive processes, as defined next.

Let An(t), t ≥ 0, denote the number of exogenous arrival into the system in the interval [0, t]. Assume that

An(t) = Π(a)(λnt), (11)

where Π(a)(·) is an independent unit rate Poisson process. The functional strong law of large numbers
(FSLLN) holds: w.p.1

1

n
Π(a)(nt)→ t, u.o.c. (12)

Denote by Dn
k,j(t), t ≥ 0, 1 ≤ k < ∞, the total number of departures in [0, t] from servers in pool j with

queue length k; assume

Dn
k,j(t) = Π

(d)
k,j

(∫ t

0

nynk,j(s)µjds

)
, (13)

where Π
(d)
k,j(·) are independent unit rate Poisson processes. (Recall that departures from – and arrivals to –

infinite queues can be ignored, in the sense that they do not change the system state.) We have: w.p.1

1

n
Π

(d)
k,j(nt)→ t, u.o.c., 1 ≤ k <∞. (14)

The random routing of new arrivals is constructed as follows. There are two sequences of i.i.d. random
variables,

ξ(1), ξ(2), . . . , and ζ(1), ζ(2), . . . ,

uniformly distributed in [0, 1). The routing of the m-th arrival into the system is determined by the values of
r.v. ξ(m) and ζ(m), as follows. (We will drop index m, because we consider one arrival.) Let xn denote the

9

system state just before the arrival. If
∑
j y

n
0,j = 0, i.e. there are no idle servers, the routing is determined

by ζ as follows. The customer is sent to a server with k, k ≥ 1, customers in pool 1, if ζ ∈ [xnk+1,1, x
n
k,1),

and to a server with k = ∞ customers in pool 1, if ζ ∈ [0, xn∞,1); the customer is sent to a server with k,
k ≥ 1, customers in pool 2, if ζ ∈ [β1 + xnk+1,2, β1 + xnk,2), and to a server with k =∞ customers in pool 2,
if ζ ∈ [β1, β1 + xn∞,2); and so on. If

∑
j y

n
0,j > 0, i.e. there are idle servers, the routing is determined by ξ as

follows. Let a =
∑
j y

n
0,j , pj = yn0,j/a. If ξ ∈ [0, p1), the customer is routed to pool 1; if ξ ∈ [p1, p1 + p2) – to

pool 2; and so on.

Denote

fn(s, u)
.
=

1

n

bnsc∑
m=1

I{ξ(m) ≤ u}, gn(s, u)
.
=

1

n

bnsc∑
m=1

I{ζ(m) ≤ u},

where s ≥ 0, 0 ≤ u < 1. Obviously, from the strong law of large numbers and the monotonicity of fn(s, u)
and gn(s, u) on both arguments, we have the FSLLN: w.p.1

fn(s, u)→ su, gn(s, u)→ su, u.o.c. (15)

It is easy (and standard) to see that, for any n, w.p.1, the realization of the process xn(·) is uniquely

determined by the initial state xn(0) and the realizations of the driving processes Π(a)(·), Π
(d)
k,j(·), ξ(·) and

ζ(·).

A set of uniformly Lipschitz continuous functions x(·) = [xk,j(·), k ∈ Z+, j ∈ J] on the time interval
[0,∞) we call a fluid sample path (FSP), if there exist realizations of the primitive driving processes, satisfying
conditions (12), (14) and (15) and a fixed subsequence of n, along which

xn(·)→ x(·), u.o.c. (16)

Note that, given the metric (3) on X , condition (16) is equivalent to component-wise convergence:

xnk,j(·)→ xk,j(·), u.o.c., k ∈ Z+, j ∈ J .

For any FSP, almost all points t ≥ 0 (w.r.t. Lebesgue measure) are regular, namely all component functions
have proper (equal right and left) derivatives (d/dt)xk,j(t). Note that t = 0 is not a regular point; expression
(d/dt)xk,j(t) for t = 0 means right derivative (if it exists).

Analogously to notation in (8) - (10), we will denote:

x∞,j(t)
.
= lim
k→∞

xk,j(t)

yk,j(t)
.
= xk,j(t)− xk+1,j(t), k ∈ Z+,

y∞,j(t)
.
= x∞,j(t) = lim

k→∞
xk,j(t).

For two FSPs x(·) and x̄(·), x(·) ≤ x̄(·) will mean x(t) ≤ x̄(t), t ≥ 0.

Lemma 5. Consider a sequence in n of processes xn(·) with deterministic initial states xn(0)→ x(0) ∈ X .
Then w.p.1 any subsequence of n has a further subsequence, along which

xn(t)→ x(t) u.o.c.,

where x(·) is an FSP.

Proof is fairly standard. Denote by Ank,j(t), k ∈ Z+, t ≥ 0, the total number of arrivals in [0, t] into servers
in pool j with queue length k. (Recall that arrivals to infinite queues can be ignored.) Obviously, for any
0 ≤ t1 ≤ t2 <∞ ∑

j

∑
1≤k<∞

[Ank,j(t2)−Ank,j(t1)] ≤ An(t2)−An(t1).

10

In addition to xnk,j(·) (and ynk,j(·)), which are fluid-scaled quantities, we define the corresponding ones for
the arrival and departure processes:

ank,j(t) =
1

n
Ank,j(t), 0 ≤ k <∞,

dnk,j(t) =
1

n
Dn
k,j(t), 1 ≤ k <∞.

All processes ank,j(·) and dnk,j(·) are non-decreasing. W.p.1 the primitive processes satisfy the FSLLN (12),
(14) and (15). From here it is easy to observe the following: w.p.1 any subsequence of n has a further
subsequence along which the u.o.c. convergences

ank,j(·)→ ak,j(·), dnk,j(·)→ dk,j(·),

hold for all pairs (k, j), where the limiting functions ak,j(·) and dk,j(·) are non-decreasing, uniformly Lipschitz
continuous. The result easily follows; we omit further details. 2

Lemma 6. (i) If x(·) = (x(t), t ≥ 0) is an FSP, then for any τ ≥ 0, the time shifted trajectory θτx(·) .
=

(x(τ + t), t ≥ 0) is also an FSP.
(ii) For an FSP x(·), at any t ≥ 0, such that

∑
j y0j(t) > 0, all derivatives (d/dt)xk,j(t) exist (for t = 0,

right derivatives exist) and

(d/dt)x1,j(t) = λy0j(t)/(
∑
`

y0`(t))− µjy1,j(t), j ∈ J , (17)

(d/dt)xk,j(t) = −µjyk,j(t) ≤ 0, 2 ≤ k <∞, j ∈ J . (18)

(iii) If initial condition x(0) of an FSP is such that
∑
j y0,j(0) > 0 and

∑
j x2,j(0) = 0, then the FSP is

unique in the interval [0, τ), where τ is the smallest time t when
∑
j y0,j(t) = 0; τ = ∞ if such t does not

exist.
(iv) The FSP x(·) with initial condition x(0) = x∗ is unique, and it is stationary, x(t) ≡ x∗.
(v) The FSP x(·) with idle initial condition, x1,j(0) = 0,∀j, is unique, monotonically increasing, x(t1) ≤
x(t2), t1 ≤ t2, and is such that x(t)→ x∗. This FSP is a lower bound of any other FSP x̄(·): x(·) ≤ x̄(·).
(vi) For any ε > 0, there exist τ > 0 and δ > 0, such that the following holds. If at time t ≥ 0, x1,j(t) = νj
for all j ∈ J , and x2,`(t) ≥ ε for some fixed `, then

x1,`(τ) ≥ ν` + δ.

Proof. (i) This easily follows from the definition of an FSP. Clearly, shifted realizations of the primitive
driving processes, defining FSP x(·), define θτx(·).

(ii) If xn(·) is a sequence of pre-limit trajectories defining FSP x(·), then in a fixed small neighborhood of t,
condition

∑
j y

n
0,j(s) > 0 holds for all sufficiently large n. This means that (for large n), all new arrivals in

that neighborhood are routed to idle servers. Given the FSLLN properties of driving trajectories, we easily
obtain (17)-(18) for any regular t > 0. But then, given the continuity of x(·) and the fact that almost all
time point are regular, we see that (17)-(18) must in fact hold for any t (as long as

∑
j y0,j(s) > 0).

(iii) From (ii) we in particular have the following. For an FSP x(·), at any t ≥ 0 such that
∑
j y0,j(t) > 0

and x2,j(t) = 0 (i.e. y1,j(t) = x1,j(t)) for all j,

(d/dt)xk,j(t) = 0, k ≥ 2, ∀j,

(d/dt)x1,j(t) = λ(βj − x1,j(t))/(
∑
`

(β` − x1,`(t)))− µjx1,j(t).

So, vector (x1,j(t), j ∈ J) = (y1,j(t), j ∈ J) follows an ODE, which has unique solution, up to a point in
time when

∑
j(βj − x1,j(t)) =

∑
j y0,j(t) hits 0.

11

(iv) By (ii) and the definition of x∗, (d/dt)x(t) = 0 if x(t) = x∗. Then we apply (iii).

(v) The FSP x(·), starting from the idle initial condition is unique up to the first time τ1, at which x1,j(t)
for one of the j hits νj . From the structure of the ODE we observe that if x1,j(τ1) = νj for one j, it has to
hold for all j. Therefore, if τ1 < ∞, then x(τ1) = x∗. If so, by (i) and (iv), x(t) = x∗ for all t ≥ τ1. Then,
by (iii), such FSP is unique; moreover,

x(t) ≤ x∗, t ≥ 0. (19)

Consider now the sequence of processes xn(·), starting from the idle initial state for each n. Uniqueness of
the FSP starting from the idle initial condition, along with Lemma 5, implies that xn(·) converges (on the
probability space constructed above in this section) to this unique FSP: xn(·) → x(·), u.o.c, w.p.1. Recall
that, for each n, process xn(·) is stochastically monotone non-decreasing (see (6)). We conclude that the
FSP x(t), t ≥ 0, is non-decreasing in t. Therefore, as t → ∞, x(t) → x∗∗ for some x∗∗ ≤ x∗ (recall (19)).
Finally, again from the structure of the ODE, we see that x∗∗ = x∗ must hold, because otherwise

[(d/dt)
∑
j

x1,j(t)]x(t)=x∗∗ > 0.

(vi) From (ii) and definition of νj , using relation y1,j(t) = x1,j(t)− x2,j(t), we have

(d/dt)x1,j(t) = µjx2,j(t), j ∈ J .

(For t = 0 it is the right derivative.) Also from (ii), we observe that in a sufficiently small fixed neighborhood
of time t, the expression for the derivative (d/ds)x1,`(s) must be uniformly Lipschitz continuous. This implies
that, for an arbitrarily small ε1 > 0, in a (further reduced) small neighborhood t, (d/ds)x1,`(s) ≥ µjε − ε1;
which in turn implies the desired property. 2

5 Proof of Theorem 2

Since space X is compact, any subsequence of n has a further subsequence, along which

xn(∞)⇒ x◦(∞), (20)

where x◦(∞) is a random element in X . Therefore, to prove Theorem 2 it suffices to show that any limit in
(20) is equal (w.p.1) to x∗.

Lemma 7. Any subsequential limit x◦(∞) in (20) is such that

x∗ ≤ x◦(∞), w.p.1.

Proof. For each n, consider the process xn(·), starting from idle initial state. Consider any fixed j. Fix
arbitrary ε > 0, and choose T > 0 large enough so that the FSP x(·) starting from idle initial condition (as
in Lemma 6(v)) is such that x1,j(T) ≥ νj − ε/2. Then, by Lemma 5, P{xn1,j(T) > νj − ε} → 1. We obtain

lim inf
n→∞

P{xn1,j(∞) > νj − ε} ≥ lim inf
n→∞

P{xn1,j(T) > νj − ε} = 1.

Therefore, since {x1,j > νj − ε} is an open set, by the assumed convergence in distribution,

P{x◦1,j(∞) > νj − ε} ≥ 1.

This holds for any ε > 0, so we have P{x◦1,j(∞) ≥ νj} = 1. 2

Proof of Theorem 2. First, we prove ergodicity (stability). Let xn(∞) be a random element, whose dis-
tribution is the lower invariant measure for the process xn(·). Consider the process, starting from the idle

12

initial state, xn1,j(0) = 0, j ∈ J . Since xn(t) is stochastically monotone non-decreasing and converges in
distribution to xn(∞) as n → ∞, we observe that the limit of the average expected (scaled) number of
customer service completions in [0, T], as T →∞, is

lim
T→∞

(1/T)

∫ T

0

[E
∑
j

µjx
n
1,j(t)]dt = E

∑
j

µjx
n
1,j(∞).

This limit cannot exceed λ, which is the the average expected (scaled) number of customer arrivals. (If the
system initially has no customers, the number of service completions in [0, T] cannot, of course, exceed the
number of arrivals.) Therefore,

E
∑
j

µjx
n
1,j(∞) ≤ λ. (21)

By Lemma 4, for any n, instability of the process is equivalent to condition (7), i.e.

P{xn∞,j(∞) = βj} = 1,

holding for at least one j. Consider a subsequence of those n, for which the system is unstable, with the
above property holding for the same j. Consider a further subsequence, along which the convergence (20)
to some x◦(∞) holds; then, w.p.1, x◦1,j(∞) = x◦∞,j(∞) = βj and (by Lemma 7) x◦1,`(∞) ≥ ν` for all `.
Therefore, along the chosen subsequence,

lim
n

E
∑
`

µ`x
n
1,`(∞) = E

∑
`

µ`x
◦
1,`(∞) ≥ βjµj +

∑
` 6=j

ν`µ` > λ.

The contradiction with (21) completes the proof of stability.

So, for every sufficiently large n, the process xn(·) is stable, and the lower invariant measure (which, by
definition, is the distribution of xn(∞)) is its unique stationary distribution. Consider any subsequential
limit x◦(∞) in (20), long a subsequence of n; for the rest of the proof, we consider n along this subsequence.
By Lemma 7,

E
∑
j

µjx
◦
1,j(∞) ≥ λ.

On the other hand, using (21),

E
∑
j

µjx
◦
1,j(∞) = lim

n→∞
E
∑
j

µjx
n
1,j(∞) ≤ λ,

and, therefore,

E
∑
j

µjx
◦
1,j(∞) = λ,

which (again, recalling Lemma 7) is only possible when

x◦1,j(∞) = νj , j ∈ J , w.p.1. (22)

It remains to show that
x◦2,j(∞) = 0, j ∈ J , w.p.1. (23)

Suppose not, that is for at least one `, P{x◦2,`(∞) > ε} = 2ε1, for some ε > 0, ε1 > 0. Then, for all sufficiently
large n (along the subsequence we consider), P{xn2,`(∞) > ε} > ε1. For each sufficiently large n, consider

xn(·) in steady-state, that is xn(t)
d
= xn(∞) for all t ≥ 0. Then P{xn2,`(0) > ε} > ε1. Now, employing

Lemma 5 and Lemma 6(vi), we can easily show that, for some τ > 0, δ > 0, and all large n,

P{xn1,`(τ) ≥ ν` + δ/2} > ε1/2.

But then
P{x◦1,`(∞) ≥ ν` + δ/2} ≥ lim sup

n→∞
P{xn1,`(τ) ≥ ν` + δ/2} ≥ ε1/2,

a contradiction with (22), which proves (23). 2

13

6 Generalizations

Our analysis relies mostly on the monotonicity property. Monotonicity guarantees existence of the unique
lower invariant measure (for each scaling parameter n) for the process considered on the compactified state
space (whether or not the original process stochastically stable). Then, proving stochastic stability and
asymptotic optimality is essentially reduced to establishing the corresponding properties of the lower invariant
measures.

Monotonicity property is preserved under various generalizations of our model. We describe two of them in
this section. In both cases, all our results and proofs hold essentially as is.

6.1 Queue-size dependent service rate

In our basic model we assumed that each server has a fixed processing rate, independent of the queue length.
This assumption is not realistic in many cases of interest. For example, a server may be a processing “device”
(physical or virtual) consisting in fact of C ≥ 1 independent “sub-servers,” that can work in parallel. In this
case, if the service rate of each sub-server is µ1 > 0, the maximum processing rate µ = Cµ1 is achieved when
there are at least C customers at the server, Q ≥ C. The dependence f(Q) of the service rate on the queue
length Q is: f(Q) = Qµ1 when Q < C, and f(Q) = µ when Q ≥ C.

There may be other situations, where simultaneous service of multiple customers by a server is possible,
but the services are not independent (say, processing of different customers requires access to some shared
resources). In this case, the total service rate f(Q) may be an increasing function of Q, but increasing
sub-linearly.

We now describe the model and PULL algorithm generalization, which accommodates the above consid-
erations, while keeping the underlying Markov process a countable-state Markov chain, and preserving
monotonicity. All results of this paper are easily extended to this generalized model.

The model is as before, except each server in pool j has a more general service rate. For each j, there is a
finite integer number Cj , 1 ≤ Cj ≤ Bj , which is the server capacity, in the sense of the maximum number
of customers it can serve simultaneously. The total service rate fj(Q), as a function of queue length Q, is
non-negative non-decreasing and such that fj(0) = 0 and f(Q) = µj for Q ≥ Cj . We assume that the service
requirement of each customer is an independent exponentially distributed random variable with mean 1.
(This is consistent with the basic model considered in the paper.) The service discipline in each server is
arbitrary, as long as it is work-conserving and non-idling.

The routing algorithm is generalized as follows.

Definition 8 (PULL algorithm generalization). At any time, if a server i in pool j has queue length Qi,
then the router has max{Cj − Qi, 0} pull-messages from this server. In other words, at any time router
has as many pull-messages from a server as the server has available “slots” for additional customers to
serve. (A practical implementation of this, assuming pull-messages are never lost, is as follows. When the
server is “initialized”, it sends Cj pull-messages at once. After that, the server sends one new pull-message
immediately after any service completion that leaves its queue length strictly less than Cj.) If at a customer
arrival the router has available pull-messages (recall, that there may be multiple pull-messages from any
server), then it chooses one of them uniformly at random, sends the customer to the corresponding server,
and destroys the “used” pull-message. If there are no available pull-messages at a customer arrival, the
customer is routed uniformly at random to one of the servers in the system.

Note that, as before, the router need not know anything about the parameters or the current states of the
servers, besides the current set of available pull-messages. Again, from the router’s point of view all servers
form a single pool, despite possible differences in the servers’ parameters.

14

The queue length process for this model and PULL algorithm is a monotone countable-state-space Markov
chain. All our results and proofs easily generalize.

6.2 More general service time distributions

The assumption that the service times have exponential distribution, can also be relaxed. To simplify the
discussion, let us assume for now that, as in the basic model, each server is a “single-server” (has constant
processing speed, regardless of the queue length), employing FCFS discipline.

Assume that the service time distribution in each pool j has decreasing hazard rate (DHR), and has positive
finite mean 1/µj . A distribution on R+, with complementary distribution function F c(z), z ≥ 0, has DHR
if the hazard rate

− (d/dz)F c(z)

F c(z)

is a non-increasing function of z. Exponential distribution with mean 1/µ is a special case, with constant
hazard rate µ. Another important example is the (heavy-tailed) Pareto distribution:

F c(z) = [1 + σz]−α,

with parameters σ > 0 and α > 1; it has finite mean value µ−1 = [σ(α− 1)]−1. If service time distributions
have DHR, then the assumption that the service in each queue is FCFS order is essential. The state of
queue i is the pair (Qi, Hi), where, as before, Qi ≥ 0 is the (integer) queue length and Hi ≥ 0 is the (real)
elapsed service time of the head-of-the-line customer. (If Qi = 0 then necessarily Hi = 0.) The order
(Qi, Hi) ≤ (Q′i, H

′
i) is understood component-wise.

The compactification of the state space Z+ × R+ of one server in pool j is done in two steps. In the first
step, we compactify Z+ ×R+ to Z̄+ × R̄+, where each component Z̄+ = Z+ ∪ {∞Q} and R̄+ = R+ ∪ {∞H}
is compactified separately (where∞Q and∞H are the corresponding “points at infinity”), with the product
topology on Z̄+ × R̄+. The second step depends on whether the minimum hazard rate

γj
.
= lim
z→∞

[
−

(d/dz)F cj (z)

F cj (z)

]

is zero or not. (Here F cj (·) is the complementary distribution function of a service time in pool j.) If γj > 0,
we further identify all points (Qi, Hi) with Qi = ∞Q as a single point ∞ at infinity; if γj = 0, we further
identify all points (Qi, Hi) with either Qi = ∞Q or Hi = ∞H as a single point ∞ at infinity. The server
state (Qi, Hi) =∞ is such that it never changes – neither service completions nor new arrival to the server
affect it. The order relation is naturally extended to the compactified state space.

The Markov process, describing system evolution, is monotone. Its stability is understood more generally,
as positive Harris recurrence, and is equivalent to the fact that the lower invariant measure is proper, i.e.,
almost surely every server state belongs to Z+ × R+ .

The corresponding mean field (fluid-scaled) processes and fluid sample paths in this model are more general
– the state component for each (k, j) is not just a number, but a function describing the distribution of
elapsed service times among the servers in pool j with queue length k. The equilibrium point is defined
accordingly; its projection on space X , describing queue lengths only (without regard to elapsed service
times), is still x∗ as defined in (4)-(5) – it is invariant w.r.t. service time distributions given their means
1/µj . The appropriately generalized version of Theorem 2 holds under these assumptions, with essentially
same proof.

The model can be further generalized to assume that each server in pool j consists of a finite number Cj ≤ Bj
of “sub-servers” that can work independently in parallel (as was described at the beginning of Section 6.1).
Within each server, the customers are allocated to sub-servers in FCFS order. (This is essential.) The service

15

time distribution of a customer in one sub-server in pool j has DHR with mean Cj/µj ; so that the maximum
processing rate is Cj [Cj/µj]

−1 = µj . The PULL algorithm is as in Definition 8. The state of a server, besides
the queue length, will now contain the elapsed service times of the customers in service; the states equal up
to a permutation of sub-servers are identified; the state space is compactified analogously to the way it is
done above for the single-server case; the natural order relation is considered. The corresponding Markov
process is monotone. Theorem 2 generalizes to this model as well and, again, it implies that asymptotically,
under the subcritical load condition (2), the steady-state probabilities of waiting or blocking, vanish.

References

[1] Badonnel, R. and Burgess, M. (2008). Dynamic pull-based load balancing for autonomic servers.
Network Operations and Management Symposium, NOMS 2008 , 751–754.

[2] Bramson, M., Lu, Y., and Prabhakar, B. (2012). Asymptotic independence of queues under ran-
domized load balancing. Queueing Systems 71, 247–292.

[3] Bramson, M., Lu, Y., and Prabhakar, B. (2013). Decay of tails at equlibrium for fifo join the
shortest queue networks. The Annals of Applied Probability 23, 1841–1878.

[4] Liggett, T. M. (1985). Interacting Particle Systems. Springer.

[5] Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J., and Greenberg, A. (2011). Join-idle-queue:
A novel load balancing algorithm for dynamically scalable web services. Performance Evaluation 68,
1057–1071.

[6] Mitzenmacher, M. (2001). The power of two choices in randomized load balancing. IEEE Transactions
on Parallel and Distributed Systems 12, 10, 1094–1104.

[7] Vvedenskaya, N., Dobrushin, R., and Karpelevich, F. (1996). Queueing system with selection of
the shortest of two queues: an asymptotic approach. Problems of Information Transmission 32, 1, 20–34.

A Additional corollaries from the main results

A.1 System with infinite buffers: insensitivity to queueing disciplines at the
servers.

It is described in Section 6.2 how our main result, Theorem 2, is generalized to service time distributions
with DHR, under the FCFS assumption on the queueing discipline at each server. The FCFS assumption is
essential for our approach to work. However, in the special case when all buffer sizes are infinite and service
rates are independent of the queue length (i.e. Bj = ∞ and Cj = 1 for all j), the FCFS assumption is,
in fact, not essential. In this special case, no arriving customer is ever blocked and the unfinished work at
each server “drains” at unit rate (when it is non-zero) under any service discipline that is work-conserving
and non-idling. By the definition of PULL, the assignment of each arriving customer depends only on which
servers are currently idle, i.e., which of them have zero unfinished work. Therefore, we obtain the following
simple

Lemma 9. Consider the system with infinite buffer sizes and queue length independent service rates. The
customer service time distributions in different pools are arbitrary. Define a server state as its total amount of
unfinished work, and the system state accordingly. Then, under PULL algorithm, the system state process is
invariant with respect to the service discipline at each server, as long as it is non-idling and work-conserving.

16

As a corollary of the argument in Section 6.2 (which is for the FCFS discipline at the servers) and Lemma 9,
we see that in the special case of infinite buffer sizes and queue length independent service rates, the extension
of Theorem 2 to DHR is valid for arbitrary non-idling work-conserving disciplines at the servers.

A.2 Service time distributions with a positive lower bound on the hazard rate.

Suppose, for each j the service time distribution is such that its hazard rate is lower bounded by γj > 0.
Then we can use the monotonicity approach to compare this system to the corresponding system with
exponential service time distributions with rates γj . Namely, using the same constructions and arguments
as in Section 6.2, we can easily verify the following

Lemma 10. Consider the system described in Section 6.2, with FCFS service discipline at each server. The
service time distribution in pool j has the hazard rate lower bounded by γj > 0. Let us label this system by
S1. Consider the corresponding system with exponential service time distributions with rates γj; let us label
this system by S2. Then, if initial state of S1 is dominated by that of S2, the processes for the two systems
can be coupled so that, w.p.1, this dominance relation prevails at all times.

As a corollary of Theorem 2 and Lemma 10, we obtain the following

Proposition 11. Suppose condition

λ <
∑
j

βjγj (24)

holds (which is condition (2) for system S2). Then, for all sufficiently large n, the system S1 state process is
positive Harris recurrent and its unique stationary distribution is stochastically dominated by that of system
S2.

Proposition 11 implies that the asymptotic optimality of PULL prevails for system S1 under condition (24)
and FCFS discipline at each server.

17

	1 Introduction
	1.1 Brief literature review and summary of contributions
	1.2 Basic notation
	1.3 Layout of the rest of the paper

	2 Model and main result
	2.1 Model structure
	2.2 Asymptotic regime
	2.3 PULL routing algorithm
	2.4 Main result
	2.5 Discussion of implementation aspects of PULL algorithm
	2.5.1 The notion of servers pools is purely logical.
	2.5.2 Pull-message mechanism.
	2.5.3 Amount of computation.

	3 More general view of the process. Monotonicity. Lower invariant measure
	4 Fluid limits
	5 Proof of Theorem ??
	6 Generalizations
	6.1 Queue-size dependent service rate
	6.2 More general service time distributions

	A Additional corollaries from the main results
	A.1 System with infinite buffers: insensitivity to queueing disciplines at the servers.
	A.2 Service time distributions with a positive lower bound on the hazard rate.

