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TAIL ASYMPTOTICS FOR DELAY IN A HALF-LOADED GI/GI/2 QUEUE

WITH HEAVY-TAILED JOB SIZES

JOSE BLANCHET AND KARTHYEK MURTHY

Abstract. We obtain asymptotic bounds for the tail distribution of steady-state waiting time
in a two server queue where each server processes incoming jobs at a rate equal to the rate of their
arrivals (that is, the half-loaded regime). The job sizes are taken to be regularly varying. When
the incoming jobs have finite variance, there are basically two types of effects that dominate the
tail asymptotics. While the quantitative distinction between these two manifests itself only in
the slowly varying components, the two effects arise from qualitatively very different phenomena
(arrival of one extremely big job (or) two big jobs). Then there is a phase transition that occurs
when the incoming jobs have infinite variance. In that case, only one of these effects dominate
the tail asymptotics, the one involving arrival of one extremely big job.

1. Introduction

The tail behaviour of the distribution of steady-state delay in multiserver queues processing
jobs with heavy-tailed sizes has attracted substantial attention in stochastic operations research.
Most of the literature has focused on the case in which the traffic intensity, ρ, (that is, the ratio
between the mean service requirement and the mean interarrival time) is not an integer and
there are qualitative reasons, as we shall discuss, that make the integer case significantly more
delicate to analyze. Our contribution in this work is to provide the first asymptotic upper and
lower bounds for the tail distribution, that match up to a constant factor, for the integer case. In
that process, we identify the occurrence of a few surprising phenomena that are not common in
the asymptotic analysis of multiserver queues. We concentrate on the two server queue because
it provides a vehicle to study the qualitative phenomenon that is of interest to us.

As mentioned earlier, most of the literature concentrates on the case in which ρ is not an
integer. A series of conjectures relating tail distribution of steady-state delay to the traffic
intensity has been made in [22]. These conjectures turned out to be basically correct for the
case of regularly varying job sizes and were verified for the case of a two-server queue in [11],
where more general asymptotic bounds for subexponential distributions are provided. In [12],
the authors provide bounds (up to constants) that verify the conjecture in [22] for general
multiserver queues with regularly varying job sizes and non-integer traffic intensity. There is a
related body of literature aimed at studying stability properties, such as the existence of the
mean steady-state delay, in terms of the traffic intensity of the system and tail properties of the
incoming traffic. The relations found in this literature, see [20] and [21], again are also derived
only for the case of non-integer traffic intensity and are consistent with the relations found for
the tail distributions mentioned earlier (which can be used to derive the existence of moments).

In order to discuss our contributions in more detail, let us introduce some notation. Let
V denote the amount of time required to service a generic job arriving to the queue and let
B̄(x) = P{V > x}. We assume that B̄(·) is regularly varying with index α > 1, that is,

B̄(x) = x−αL (x) ,
1
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for some function L (·) satisfying limx→∞L (tx) /L (x) = 1 for each t > 0; such a function L (·)
is said to be slowly varying. Jobs are assumed to arrive as a Poisson stream (or, more generally,
a renewal stream) with rate equal to EV and service requirements that are identical copies of
V. Under this setting, the traffic intensity ρ equals 1. Let us write W to denote the steady-state
waiting time of the two-server queue that processes jobs according to FCFS (first-come-first-
serve) discipline. Our first result establishes that if α > 2, then

(1) P {W > b} = Θ
(

b2B̄(b2) + b2B̄2(b)
)

,

as b → ∞. Here recall that f (b) = Θ (g (b)) if and only if f (b) ≤ c1g (b) and g (b) ≤ c2f (b)
for some positive constants c1 and c2 that are independent of b. To get a sense of how subtle
the difference between the terms appearing in (1) are, it is instructive to consider the example
L (x) = log (1 + x), where the second term appearing in the right hand side of (1) dominates the
asymptotic behaviour. On the other hand, if L (x) = 1/ log (1 + x), the first term in the right
hand side of (1) dominates the asymptotic behaviour. Finally, if L (x) ∼ c for some c > 0 (the
asymptotically Pareto case) both terms contribute substantially.

Further, let us contrast the result in (1) with that derived in [11]. For the case ρ < 1, it was
found that

(2) P {W > b} = Θ
(

b2B̄2(b)
)

,

whereas for the case ρ ∈ (1, 2), [11] obtained that

(3) P{W > b} = Θ
(

bB̄(b)
)

,

as b → ∞1. Since there is a sharp difference between the cases ρ < 1 and ρ ∈ (1, 2) as in (2)
and (3), it has been of great interest to identify what happens when ρ equals 1. We resolve this
in our work by noting that (1) is much closer to the case ρ < 1 than it is to the case ρ > 1.
Although, quantitatively, the rates of convergence between the two terms in (1) might differ only
by a multiplicative function which varies slowly, the qualitative picture behind the mechanism
that gives rise to them is dramatically different. The first term in the right hand side of (1)
arises from the same type of phenomena behind the tail behaviour in the case ρ < 1.

In Section 2, in addition to introducing the notation required to precisely state our results,
we discuss at length the intuition behind both the asymptotic results (2) and (3), as well as our
asymptotic expression (1). At this point, it suffices to say that the phenomena underlying the
development of (2) and (3) are a combination of two features, first, arrival of large jobs whose
effects persist for long time scales, and, second, the impact of such effects, which is measured
using the Law of Large Numbers. In contrast, the development of (1) involves not only the
combination of these two features, but, in addition, one has to account for the impact of effects
which occur at the scales governed by the Central Limit Theorem.

We identify another interesting phenomenon when the job sizes have infinite variance: If ρ = 1
and α ∈ (1, 2) , it turns out that the asymptotics are governed by

P {W > b} = Θ
(

bαB̄(bα)
)

,

suggesting that the tail behaviour is closer to the case ρ > 1 than to the case ρ < 1. This is
a sharp transition from the system behaviour when Var[V ] < ∞, where the tail asymptotic is
closer to the ρ < 1 case. Such surprising transitions in system behaviour seem to be unique to
the integer traffic intensity case.

In summary, the qualitative development behind our asymptotic bounds introduces a combi-
nation of elements that are not typical in the asymptotic analysis of multiserver queues. After
developing necessary intuition behind the results (1), (2) and (3) in Section 2, we derive the

1From here on, we avoid the quantification b → ∞ whenever it is evident from the context
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respective lower and upper bounds in (1) in Sections 3 and 4. Apart from unraveling surprising
transitions in the system behaviour that seem to happen only when the traffic intensity is an
integer, an important contribution of this paper is in the use of regenerative ratio representation
and Lyapunov bound techniques to characterize tail behaviour of steady-state delay in multi-
server queues. An alternate proof for the upper bound, that takes inspiration from a completely
different approach due to [11] and [12], is reported in [16]. However, in [11] and [12], it is crucial
to have ρ not equal to an integer so that certain upper bound processes might be defined. So, we
believe that our alternate approach presented in [16] might add useful ideas to the traditional
techniques used in the asymptotic analysis of multiserver queues.

2. The main result and its intuition

We consider a two-server queue that processes incoming jobs under the first-come-first-serve
discipline. Jobs are indexed by the order of arrival. Job 0 arrives at time 0, and for n ≥ 1, job n
arrives at time T1+ . . .+Tn. Job n requires service for time Vn. Here the sequence of interarrival
times (Tn : n ≥ 1) and service times (Vn : n ≥ 0) are taken to be i.i.d. copies, respectively, of the
generic interarrival and service time variables T and V. As mentioned in the Introduction, we
assume that ET = EV, and hence the traffic intensity ρ, which is the ratio between EV and ET,
equals 1. To make the computations easier, we assume, without loss of generality, that ET = 1
(otherwise, time can always be rescaled to make this hold). Additionally, we make the following
assumptions on the distributions of V and T.

Assumption 1. The tail distribution of V admits the representation,

B̄(x) := P{V > x} = x−αL (x) ,

for some α > 1 and a function L (·) slowly varying at infinity, that is, limx→∞L(tx)/L(x) = 1
for every t > 0.

Assumption 2. P{T > x} = o(B̄(x)).

Assumption 2 is quite natural given that typically one models interarrival times as exponentially
distributed random variables. We also use the notation

Xn+1 = Vn − Tn+1 for n ≥ 0.

Since T is non-negative, the right-tail of X := V −T is asymptotically similar to that of V (see,
for example, Corollary 1.11 in Chapter IX of [1]). In other words,

P {X > x} ∼ B̄(x) as x → ∞.(4)

The ordered workload vector of the servers as seen by the nth job during its arrival, denoted

by Wn = (W
(1)
n ,W

(2)
n ), satisfies the well-known Kiefer-Wolfowitz recursion:

W
(1)
n+1 =

(

W (1)
n + Vn − Tn+1

)+
∧
(

W (2)
n − Tn+1

)+
and(5a)

W
(2)
n+1 =

(

W (1)
n + Vn − Tn+1

)+
∨
(

W (2)
n − Tn+1

)+
.(5b)

Since ρ < 2, the queue is stable in the sense that the weak limit (limit in distribution) of Wn,
denoted by W∞, exists and we are interested in deriving bounds for the tail probabilities of the
steady-state waiting time

P

{

W (1)
∞ > b

}

= lim
n→∞

P

{

W (1)
n > b

}

,

for large values of b. Our main result is the following.
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Theorem 1. Suppose that ρ = 1 and Assumptions 1 and 2 are in force. If α > 2, then

(6) P

{

W (1)
∞ > b

}

= Θ
(

b2B̄(b2) + b2B̄2(b)
)

, as b → ∞.

If α ∈ (1, 2), under the additional assumption that B̄(x) ∼ cx−α for some c > 0, we have that

(7) P

{

W (1)
∞ > b

}

= Θ
(

bαB̄(bα)
)

, as b → ∞.

We now proceed to discuss how this result contrasts with what is known in the literature and
thereby expose the intuition behind it.

2.1. Discussion of earlier results in the literature. As indicated in the Introduction, the
tail asymptotics of steady-state delay is known depending on the case ρ < 1 (or) ρ ∈ (1, 2) , and is
given by (2) and (3), respectively. In order to see the mechanism behind these two asymptotics,
let us assume without loss of generality that ET = 1 (if not, time can be rescaled to make
this assumption hold). Additionally, let us assume that the generic interarrival time T has
unbounded support (for example, T is exponentially distributed), and consider the regenerative
ratio representation

(8) P

{

W (1)
∞ > b

}

=
E0

[

∑τ0−1
k=0 I

(

W
(1)
k > b

)]

E0 (τ0)
,

where τ0 = inf{n ≥ 1 : W
(2)
n = 0} denotes the first time when the Kiefer-Wolfowitz process

Wn enters the set {(0, 0)}. Since ρ < 2 and T has unbounded support, the state (0, 0) is
recurrent, thus leading to the regenerative ratio representation (8) For simplicity, throughout our
discussions, we shall assume that T has unbounded support. This assumption is merely technical.
It can be relaxed at the price of using a slightly more complicated regenerative representation.
For further details on the representation (8) and details on relaxing the assumption on support
of T, see, for example, [4], [9], [13], [14], or [10]. Moreover, our alternate proof of the upper
bound presented in [16] does not rely on this assumption.

In order to study (8), define the stopping times

τ
(i)
b := inf{n ≥ 0 : W (i)

n > b}, i = 1, 2.

First, let us consider the event {τ (1)b < τ0}, which is the event that there is at least one customer

who waits more than b units of time in a busy period. Moreover, since τ
(2)
b < τ

(1)
b , it is instructive

to first consider the event {τ (2)b < τ0}, which can be seen, intuitively, to be caused by the arrival
of a big job of size larger than b within the initial O (1) units of time in the busy period. Due
to this reasoning, one can write

P0

{

τ
(2)
b < τ0

}

= Θ(P{V > b}) and P

{

W
(2)

τ
(2)
b

> x
∣

∣

∣
τ
(2)
b < τ0

}

≈ P

{

V > x
∣

∣

∣
V > b

}

.(9)

Therefore, one can approximately characterize the process W, immediately after the arrival of
the first big job of size larger than b, as below:

1

b
W

τ
(2)
b

=
1

b

(

W
(1)

τ
(2)
b

,W
(2)

τ
(2)
b

)

≈ (0, Z) ,(10)

where Z satisfies P{Z > x} = limb→∞ P
{

V > bx
∣

∣ V > b
}

= x−α for x ≥ 1. As per recursions
(5a) and (5b), the server that gets to process this big job cannot process any new arrivals until
both the workloads become comparable again at some time in the future, which we refer as τeq.
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During this period where one of the servers is effectively blocked from processing new arrivals
(call it the blocked server and the other server as active server), the dynamics of the queue is
given by:

Wn =

(

(

W
(1)
n−1 + Vn−1 − Tn

)+
,W

(2)
n−1 − Tn

)

, τ
(2)
b < n < τeq.

The dynamics of the active server matches with that of the single server queue, and hence the
waiting time experienced by the kth job after the big jump can be be roughly approximated, in
distribution, by maximum of k steps of a random walk with increments that are i.i.d. copies
of V − T. Observe that the aforementioned random walk has drift equal to ρ − 1, which can
be positive, zero (or) negative, respectively, based on whether ρ > 1, ρ = 1 (or) ρ < 1. As a
consequence, the maximum of the random walk, in the respective cases, can be of magnitude
O(k), O(

√
k) (or) O(1) in k units of time (this can be seen by invoking Law of Large Numbers

and Central Limit Theorem for i.i.d. sums). Therefore, due to (10), the workload until time τeq
can be approximately written as

W
(1)

τ
(2)
b

+k
≈











c1k if ρ > 1,

c2
√
k if ρ = 1,

O(1) if ρ < 1

and W
(2)

τ
(2)
b

+k
≈ bZ − k(11)

for some positive constants c1 and c2. Because of this clear difference in behaviour of W (1) based
on the value of ρ, we need to consider cases ρ ∈ (1, 2) , ρ < 1 and ρ = 1 separately. We once
again stress that our discussion in this section is completely heuristic, aiming to emphasize the
intuition behind the results. While cases ρ ∈ (1, 2) and ρ < 1 are treated rigorously in [11],
future sections in this paper are devoted to the rigorous treatment of the case ρ = 1.

2.1.1. Case 1: ρ ∈ (1, 2). If ρ ∈ (1, 2) , then one server is not enough to keep the system stable.
As a result, when one server is blocked for O(bZ) units of time due to the arrival of a big job,
the active server effectively becomes a single server processing all the arrivals, and hence the
workload W (1) gradually increases with time as in (11). Recall that τeq is the time where both
the servers have roughly equal workload, and therefore due to (11), we solve for τeq by setting

c1

(

τeq − τ
(2)
b

)

≈ bZ −
(

τeq − τ
(2)
b

)

.

As a result, W (1) increases roughly up to time

τeq ≈ τ
(2)
b +

bZ

c1 + 1
,

when both W (1) and W (2) become comparable, after which both the servers jointly process
incoming arrivals according to (5a) and (5b), resulting in a total decrease of workload at rate
2−ρ. In this mechanism, for any job to be delayed by more than b units of time, it must happen
that c1k ≥ b for some k ≤ bZ/(c1 + 1), and therefore,

lim
b→∞

P0

{

τ
(1)
b < τ0

∣

∣

∣ τ
(2)
b < τ0

}

= lim
b→∞

P

{

c1
bZ

c1 + 1
≥ b

}

= P

{

Z > 1 +
1

c1

}

> 0.(12)
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If we let N1 to denote the number of jobs that experience at least b units of delay up to time
τeq and N2 to denote the respective count after τeq, then the above heuristics suggest that

N1 =

(

W
(1)
τeq − b

)+

c1
=

(

bZ

c1 + 1
− b

c1

)+

and

N2 =

(

W
(1)
τeq − b

)+

2− ρ
=

1

2− ρ

(

c1bZ

c1 + 1
− b

)+

.

Therefore, due to (12), we obtain that

E0

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

]

= E0

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

) ∣

∣

∣
τ
(1)
b < τ0

]

× P

{

τ
(1)
b < τ0

}

≈ E

[

N1 +N2

∣

∣

∣ Z > 1 +
1

c1

]

× P

{

Z > 1 +
1

c1

}

×Θ(P {V > b})

= Θ

(

b× P

{

Z > 1 +
1

r

}

× B̄(b)

)

.

As a result, from (8), we obtain that

P

{

W (1)
∞ > b

}

= Θ
(

bB̄(b)
)

,

which is precisely same as (3). This final form of asymptotic is rigorously established in [11],
albeit, using a different reasoning.

2.1.2. Case 2: ρ < 1. If ρ < 1, conditional on the occurrence of {τ (2)b < τ0}, it is no longer true

that the event {τ (1)b < τ0} happens with positive probability as b → ∞ (compare this with (12)
when ρ ∈ (1, 2)). The reason is that if ρ < 1, the system is stable and the workload remains O(1),
as in (11), even if one removes one server and force it to operate as a single server system. As a
result, we need to invoke heavy-tailed large deviations behaviour, which dictates that arrival of
one more job of size larger than b is required, typically, to experience waiting time larger than

b. This requirement is dealt as follows: Conditional on the occurrence of {τ (2)b < τ0}, as in (11),
we have

W
(1)

τ
(2)
b

+k
= O(1) and W

(2)

τ
(2)
b

+k
≈ bZ − k.

Here, the workload W (2) becomes smaller than b if k > b(Z − 1), and therefore, the cheapest
way to observe large delays (of duration at least b) is to have a K ≤ b(Z − 1) such that the

(τ
(2)
b +K)th job requires service for duration larger than b. Following the same line of reasoning

behind (10), we approximate the size of the second big job by bẐ, where Ẑ is an independent
copy of Z. As a result, we arrive at the following distributional approximation :

W
(1)

τ
(1)
b

≈ min
(

bZ −K1, bẐ
)

and W
(2)

τ
(1)
b

≈ max
(

bZ −K1, bẐ
)

.

Next, the number of jobs that get delayed by more than b units of time (which depends on K)
is approximately given by

N(K) :=
min(bZ −K, bẐ)− b

2− ρ
,
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where K ≤ b(Z − 1). As a result,

E0

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

]

≈ E

[

N (K) I (0 ≤ K ≤ b(Z − 1))
∣

∣

∣
τ
(2)
b < τ0

]

× P

{

τ
(2)
b < τ0

}

= E





b(Z−1)
∑

k=1

min
(

b(Z − 1)− k, b(Ẑ − 1)
)

I
(

V
τ
(2)
b

+k
> b
) ∣

∣

∣
τ
(2)
b < τ0



×Θ(P{V > b})

= Θ
(

b2P {V > b}2
)

,

and therefore, P{W (1)
∞ > b} = Θ(b2B̄2(b)), which coincides with (2).

2.2. Intuitive discussion of Theorem 1: The case ρ = 1. Our goal in this discussion is to
communicate the following insights:

1) Contrary to Case 1 and Case 2, the conditional distribution of the Kiefer-Wolfowitz

vector W given that {τ (1)b < τ0} does not fully explain the mechanism behind the
asymptotic results in Theorem 1.

2) Unlike Cases 1 and 2, it is not enough to account for the impact of the large service
times using linear dynamics which evolve according to the Law of Large Numbers.

We shall first concentrate on the situation where the job sizes V have finite variance, more
precisely, the case α > 2. The case α ∈ (1, 2) can be understood using similar ideas. We shall
leverage off the type of arguments that were given for Case 1 and Case 2. Since ρ = 1 sits right
in the middle we shall consider two mechanisms, one involving two jumps (analogous to Case
2), and one involving one jump (analogous to Case 1).

Delays due to two jumps: Conditional on {τ (2)b < τ0}, similar to cases 1 and 2, the dynamics of
the active server and the blocked server, as in (11), are given respectively by

W
(1)

τ
(2)
b

+k
≈ c2

√
k and W

τ
(2)
b

+k
≈ bZ − k,(13)

for k such that τ
(2)
b +k ≤ τeq. As discussed previously, fluctuations of order

√
k arise in workload

due to the Central Limit Theorem, and this phenomenon, as we shall see below, gains relevance
only when ρ = 1. Since our interest here is in studying delays due to the occurrence of two big

jumps, as in Case 2, if there exists a K < b(Z − 1) such that (K + τ
(2)
b )-th customer brings

a job of size b − O(
√
b) or larger, then at least one job gets delayed by b units or more. The

contribution to P{τ (1)b < τ0} due to the occurrence of 2 jumps can be calculated as below:

P2 jumps(b) := P

{

τ
(2)
b < τ0

}

×Θ
(

P

{

V
τ
(2)
b

+k
> b−

√
b for some k ≤ b(Z − 1)

∣

∣

∣ τ
(2)
b < τ0

})

(14)

= Θ

(

P {V > b} ×
∞
∑

k=1

P

{

bZ > k, Vk > b−
√
b
}

)

= Θ

(

P {V > b}2 ×
∞
∑

k=1

P (bZ > k)

)

= Θ
(

bB̄2(b)
)

.
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Following the same line of reasoning as in Case 2, we obtain the following contribution to

E0[
∑τ0−1

k=0 I(W
(1)
k > b)] due to 2 jumps:

Q2 jumps(b) = Θ
(

b2B̄2(b)
)

.(15)

Delay due to 1 jump: Similar to Case 1, when ρ = 1, the active server accumulates work, albeit
at a slower rate, as given in (13). Since the workload of a critically loaded single server queue

grows like O(
√
k) in k units of time, it is intuitive to expect that if there is a big jump of size

exceeding b2 in the first O(1) units of time of the busy period, subsequently one of the servers
gets blocked for more than b2 units of time, and the active server which faces all the incoming
traffic accumulates workload of size larger than b, with non-vanishing probability, in those b2

units of time. Therefore, similar to (12), we have that

lim
b→∞

P

{

τ
(1)
b < τ0

∣

∣

∣ τ
(2)
b2

< τ0

}

> 0.

Therefore, due to (9), the contribution to P{τ (1)b < τ0} due to the arrival of only one big job is
given by

P1 jump(b) ≈ P

{

τ
(1)
b < τ0

∣

∣

∣
τ
(2)
b2

< τ0

}

× P {τb2 < τ0} = Θ
(

B̄(b2)
)

,

which is negligible compared to the right hand side of (14). As a result, we have that

P

{

τ
(1)
b < τ0

}

∼ P2 jumps(b) = Θ
(

bB̄2(b)
)

.

However, accounting for the number of jobs that experience at least b units of delay dramatically
changes the contribution of this single huge jump in the computation of steady-state delay
probabilities. In particular, a single jump of size exceeding b2 blocks one of the servers for
V | V > b2 ≈ b2Z units of time, and if we perform calculations similar to Case 1, we shall
obtain that Θ(b2) jobs experience delays larger than b. As a consequence, we have the following
contribution in the single, huge jump regime:

Q1 jump := E

[

τ0−1
∑

i=0

I
(

W
(1)
k > b

) ∣

∣

∣
τ
(2)
b2

< τ0

]

× P

{

τ
(2)
b < τ0

}

= Θ
(

b2P
{

V > b2
})

,

which might not be negligible to the corresponding contribution due to 2 jumps derived in (15).
In fact, as demonstrated in an example in the Introduction, this contribution due to single huge
jump could be larger than its counterpart for 2 jumps based on the slowly varying function L(·)
(consider the example L(x) = log(1 + x)). As a result, we have two competing components in
the expression for steady-state probability of delay in (6).

We conclude with a heuristic explanation of the mechanism involving one jump for the case
α ∈ (1, 2) if ρ = 1. In this case, once a server is blocked for k units of time, the active server
operates as a critical single-server queue, processing jobs requiring services with infinite variance,
and due to the generalized Central Limit Theorem, the workload of the critical queue exhibits
fluctuations of order O(k1/α). Therefore, if the initial huge jump, which occurs within O(1)
units of time at the beginning of the busy period, is of size larger than bα, then this huge job
blocks one of the servers for more than bα units of time, and as a result, Θ(bα) jobs wait for
a duration larger than b. Reasoning as in the finite variance case, the contribution to steady-

state delay due to the arrival of one huge job is Θ(bαP{V > bα}) = Θ(bαb−α2
L(bα)). On the

other hand, the contribution arising from two jumps as in Case 2, namely, according to (2),

remains Θ(b2−2αL (b)2), which is negligible compared to Θ(bαb−α2
L(bα)) because α ∈ (1, 2)

implies 2α− 2 > α2 − α. Hence, we arrive at the estimate (7) in Theorem 1.
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3. Proof of lower bound

The objective of this section is to prove the following result.

Proposition 1. Suppose that Assumption 2 holds, and that ρ = 1. Then, if Assumption 1 holds

with α > 2, there exists c1 > 0 and b0 > 0 such that for all b > b0.

P

{

W (1)
∞ > b

}

≥ c1
(

b2B̄(b2) + b2B̄2(b)
)

.

On the other hand, if B̄ (x) ∼ cx−α as x → ∞ for some c > 0 and α ∈ (1, 2), then there exists

c1 > 0 and b0 > 0 such that for all b > b0,

P

{

W (1)
∞ > b

}

≥ c1
(

bαB̄(bα)
)

.

We now provide the proof of Proposition 1.

Case 1: (Under the assumption that α > 2). We first derive a lower bound based on a single
big jump of size exceeding b2. Let NA(t) denote the number of jobs that arrive in the interval
(0, t]. Let b > 2 and consider the event, D1, with the following properties:

1) The coordinate W
(2)
1 > 6b2 (that is, Job 0 blocks one of the servers for Ω

(

b2
)

time units).

2) The total amount of work brought by all the jobs that arrive in the time interval (0, 2b2]
does not exceed 3b2. In other words, V1 + . . .+ VNA(2b2) ≤ 3b2.

3) Every job that arrives in the time interval [b2, 2b2] experiences delay for at least b units
of time before getting processed. That is,

min
NA(b2)≤n≤NA(2b2)

W (1)
n > b.

On the set D1, the dynamics of the queue described by recursions (5a) and (5b) reduces to

W (1)
n = (Wn−1 +Xn)

+ and W (2)
n = W

(2)
1 − (T2 + . . .+ Tn)

for 2 ≤ n ≤ NA(2b
2). Further, if we let S1 := W

(1)
1 = 0 and Sn := X2 + . . .+Xn for n ≥ 2, then

the following holds on the set D1 :

min
NA(b2)≤n≤NA(2b2)

W (1)
n ≥ min

NA(b2)≤n≤NA(2b2)
Sn.

As a result,

E0

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

]

≥ E0

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

;D1

]

≥ E0



NA

(

2b2
)

−NA

(

b2
)

;W
(2)
1 > 6b2, min

NA(b2)≤n≤NA(2b2)
Sn > 1.5b,

NA(2b2)
∑

i=1

Vi ≤ 3b2





≥ P
{

X1 > 6b2
}

E
[

NA

(

2b2
)

−NA

(

b2
)

;D′
1

]

,

where the event

D′
1 :=







NA

(

b2
)

≥ 0.5b2, NA

(

2b2
)

∈
[

1.5b2, 2.5b2
]

, min
0.5b2≤n≤2.5b2

Sn > b,

⌈2.5b2⌉
∑

i=1

Vi ≤ 3b2







has probability at least

P

{

inf
0.5≤t≤2.5

σB(t) > 1

}

(1− o(1))
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because of functional CLT and the facts that NA (x) /x → 1 and (V1 + . . . + Vn)/n → 1 with
probability one. Here B(·) is a standard Brownian motion and σ2 denotes the variance of X.
Additionally, due to the regenerative ratio representation (8) and the regularly varying nature
of the tail of X (recall that P{X > x} ∼ B̄(x) as x → ∞), we conclude that

P

{

W (1)
∞ > b

}

≥ b2P
{

X > 6b2
}

× P (D′
1)

Eτ0
(16)

≥ c1b
2B̄
(

b2
)

for some c1 > 0 and all b large enough.

Case 2: (Also under the assumption that α > 2). We now derive a lower bound based on the
occurrence of two jumps, each of size exceeding b. Let b > 2 and consider the event, D2, with
the following properties:

1) The coordinate W
(2)
1 > 5b (that is, Job 0 blocks one of the servers for Ω (b) time units).

2) Apart from Job 0, only one of the NA(b) jobs that arrive in the time interval (0, b] bring
a service requirement of size exceeding 5b.

3) The number of customers who arrive during the time intervals (0, b] and (b, 2b] are
numbers between 0.5b and 1.5b. Alternatively, NA(b) ∈ [0.5b, 1.5b] and NA(2b)−NA(b) ∈
[0.5b, 1.5b].

So, on the set D2 we have that at least NA(2b) −NA(b) ≥ 0.5b jobs experience a waiting time
more than b units of time, and hence

E0

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

;D2

]

≥ 0.5bP (D2) .

However, since NA(x)/x → ∞, we have that

P {NA(b) ∈ [0.5b, 1.5b], NA(2b) −NA(b) ∈ [0.5b, 1.5b]} ∼ 1,

as b → ∞. As a result,

P (D2) ≥ (1− o(1))
∑

k≤0.5b

P0







W
(2)
1 > 5b, Vk > 5b,

⋂

i≤1.5b,i 6=j

{Vi < 5b}







≥ 0.5bP {X1 > 5b} B̄(5b)
(

1− B̄(5b)
)1.5b

(1− o(1))

≥ bB̄2 (5b) (1− o(1))

Then, as in Case 1, due to the regenerative ratio representation (8) and the regularly varying
nature of B̄(·), we conclude that there exists a constant c2 such that

(17) P

{

W (1)
∞ > b

}

≥ 0.5b × bB̄2(5b)

Eτ0
(1− o(1)) ≥ c1b

2B̄ (b)2 .

Combining (16) and (17) we obtain the statement of Proposition 1 for the case α > 2.

Case 3: We now consider the assumption that α ∈ (1, 2) and B̄ (x) ∼ cx−α as x → ∞. The
strategy is similar to Case 1. Define an event, D3, satisfying the following properties:

1) The coordinate W
(2)
1 > 6bα (that is, Job 0 blocks one of the servers for Ω (bα) time

units).
2) The total amount of work brought by all the jobs that arrive in the time interval (0, 2bα]

does not exceed 3bα. In other words, V1 + . . . + VNA(2bα) ≤ 3bα.
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3) Every job that arrives in the time interval [bα, 2bα] experiences delay for at least b units
of time before getting processed. That is,

min
NA(b2)≤n≤NA(2b2)

W (1)
n > b.

Then, following the same steps as in Case 1, we obtain that

E0

[

τ0
∑

k=1

I
(

W
(1)
k > b

)

]

≥ B̄ (6bα)E
[

NA (2bα)−NA (bα) ;D′
3

]

where the event

D′
3 :=







NA (bα) ≥ 0.5bα, NA (2bα) ∈ [1.5bα, 2.5bα] , min
0.5bα≤n≤2.5bα

Sn > b,

⌈2.5bα⌉
∑

i=1

Vi ≤ 3bα







has non-vanishing probability as b → ∞ because b−1S[tbα] converges weakly in D[0,∞), to a
Stable process Z (·) . As a result, we obtain

E0

[

τ0
∑

k=1

I
(

W
(1)
k > b

)

]

≥ B̄ (6bα)× P

{

inf
1≤t≤3

Z(t) > 1

}

(1− o(1)) .

This observation, along with the regenerative ratio representation (8), concludes the proof of
Proposition 1.

4. Proof of upper bound

The objective of this section is to prove the following proposition.

Proposition 2. Suppose that Assumption 2 holds, and that ρ = 1. Then, if Assumption 1 holds

with α > 2, there exist c1 > 0 and b0 > 0 such that for all b > b0,

P

{

W (1)
∞ > b

}

≤ c1
(

b2B̄(b2) + b2B̄2(b)
)

.

On the other hand, if B̄ (x) ∼ cx−α, as x → ∞, for some c > 0 and α ∈ (1, 2), then one can

find positive constants c1 and b0 such that for all b > b0,

P

{

W (1)
∞ > b

}

≤ c1
(

bαB̄(bα)
)

.

The rest of this section is devoted to the proof of Proposition 2. First, pick δ−, δ, δ+ such that
0 < δ− < δ < δ+ < 1. In addition to the stopping times

τ (i)x = inf
{

n ≥ 0 : W (i)
n > x

}

,

which are defined for x > 0, i = 1 and 2, let us define

τ̄
(2)
bδ+

= inf
{

n ≥ τ
(2)
bδ−

: W (2)
n ≤ bδ+

}

.

Additionally, let

B1 (b) := E0

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

I
(

τ̄
(2)
bδ+

> τ
(1)
bδ

)

]

and

B2 (b) := E0

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

I
(

τ̄
(2)
bδ+

≤ τ
(1)
bδ

)

]

.
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Then, it follows from the regenerative ratio representation (8) that

P

{

W (1)
∞ > b

}

=
B1(b) +B2(b)

E0[τ0]
.(18)

The term B1(b) corresponds to the case where all the actions happen: once there is a large jump

in W (2) which takes it beyond bδ−, one of the servers gets blocked for a long time, and the other
server which faces the entire traffic in that duration piles up work more than bδ. On the other
hand, the term B2(b) corresponds to the case where the first jump is wasted: that is, there is

not enough buildup in W (1) after the occurrence of first jump in W (2). The rigorous procedure
of obtaining upper bounds for B1(b) and B2(b) is divided into several parts:

Part 1) First, we obtain an upper bound for Ew[τ0] uniformly over all initial conditions
w = (w1, w2). This shall be useful in obtaining upper bounds for both B1(b) and B2(b) because
of the simple observation that

Ew

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

]

≤ Ew[τ0].

Additionally, in an attempt to obtain a stochastic description of the workload W (2) after it

exceeds δb−, we derive a stochastic domination result for W
(2)

τ
(2)
b

which shall be useful.

Part 2) We reduce the contribution of the first term B1(b) into a large deviations problem for
zero-mean random walks with regularly varying increments. We use the stochastic domination
result obtained in Part 1) along with another domination argument, in terms of a suitably defined
critically loaded single-server queue, to account for all of what happens after the first jump. In
turn, the introduction of the single-server queue sets the stage for the use of uniform large
deviations for random walks. The analysis of part 2) emphasizes the convenience of partitioning
the numerator in (8) into B1(b) and B2(b).

Part 3.a) This is the portion of the argument that requires α > 2. It invokes classical results
for uniform large deviations of regularly varying random walks available due to Nagaev (uniform
in the sense that the asymptotics jointly account both the Brownian approximations in the CLT
scaling regime and the large deviations approximations in scaling regimes beyond that of CLT).
The execution of part 2) involves routine estimations of one dimensional integrals using basic
properties of regularly varying distributions. We obtain the required upper bound for B1(b)
after some elementary simplifications.

Part 3.b) The analysis here is entirely parallel to that of part 3.a), except that the uniform
estimates involve an approximation using an α-stable process (instead of Brownian motion as
in Part 3.a)).

Part 4) is devoted to obtaining an upper bound for the residual term B2(b). This is accom-
plished by first performing calculations that result in an intermediate bound for B2(b) in terms
of expected number of jobs that wait for duration longer than b after the first jump. The sec-

ond calculation involves obtaining a good upper bound for Pw{τ (2)b < τ0} uniformly over initial
conditions w ∈ {(w1, w2) : w2 < bδ+}.

In the following subsections we shall estimate the contributions of B1(b) and B2(b) following
the outline presented above. In order to streamline the presentation, we present proofs of some
of the results in the appendix.
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Part 1) Some useful upper bounds. Recall our earlier definition X := V −T. As mentioned
previously, the goal of this subsection is to provide some generic bounds which will be useful in
deriving upper bounds for both B1(b) and B2(b).

Lemma 1. Suppose that ρ = 1. Then there exist positive constants C1 and C0 such that for all

w = (w1, w2) satisfying 0 ≤ w1 ≤ w2,

Ew [τ0] ≤ C1w2 + C0.

Remark 1. The conclusion of Lemma 1 holds true for every ρ < 2. Our proof for Lemma 1 can
be easily modified to accommodate every ρ < 2.

Lemma 2. For every x ≥ b and w = (w1, w2) with 0 ≤ w1 ≤ w2 < b,

Pw

{

W
(2)

τ
(2)
b

> x
∣

∣

∣ τ
(2)
b < τ0

}

≤ P {X + b > x | X > b} .

In other words, W
(2)

τ
(2)
b

given τ
(2)
b < τ0 is stochastically dominated by X + b given X > b.

If ρ < 2, it is intuitive to expect the servers to effectively drain work whenever W (2) is large.
Lemma 3, whose proof is given in Appendix B, asserts the same when ρ = 1.

Lemma 3. There exist positive constants C and ε such that

E(w1,w2)

[

W
(1)
1 +W

(2)
1

]

< (w1 + w2)− ε

as long as w2 ≥ C.

Lemma 1 follows as a corollary of Lemma 3 via a standard Lyapunov argument.

Proof of Lemma 1. Let A := inf{(w1, w2) : w1 ≤ w2 ≤ C} and TA := inf{n ≥ 1 : Wn ∈ A}.
Additionally, let V ((w1, w2)) = (w1 + w2)/ε for 0 ≤ w1 ≤ w2. Here C and ε are chosen as in
Lemma 3. It follows from recursions (5a) and (5b) that

sup
(w1,w2)∈A

E(w1,w2)

[

V
(

W
(1)
1 ,W

(2)
2

)]

≤ E
[

(C + V − T )+ + (C − T )+
]

ε
=: C2 < ∞.

This observation, in conjunction with Lemma 3 and Theorem 11.3.4 of [15], results in

E(w1,w2)[TA] ≤
w1 + w2

ǫ
+ C2 ≤

2

ǫ
w2 + C2(19)

for every 0 ≤ w1 ≤ w2. Moreover, since infw∈A Pw{W (2)
1 = 0} ≥ P{T > C} > 0, it follows from

a simple geometric trials argument that supw∈A Ew[τ0] < ∞. This observation, along with (19),
proves the claim. �

Proof of Lemma 2. Note that

Pw

{

W
(2)

τ
(2)
b

> x, τ
(2)
b < τ0

}

=

∞
∑

k=1

Pw

{

W
(2)
k > x, τ0 > k, τ

(2)
b = k

}

.
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If τ
(2)
b = k, it follows from recursion (5b) thatW

(2)
k = W

(1)
k−1+Xk. Here recall thatXk = Vk−1−Tk.

Therefore,

Pw

{

W
(2)

τ
(2)
b

> x, τ
(2)
b < τ0

}

=

∞
∑

k=1

Pw

{

Xk > x−W
(1)
k−1, τ0 > k − 1, τ

(2)
b > k − 1

}

(20)

=

∞
∑

k=1

Ew

[

I
(

τ0 > k − 1, τ
(2)
b > k − 1

)

F̄
(

x−W
(1)
k−1

)]

Observe that W
(2)
k−1 < b whenever τ

(2)
b > k− 1. Additionally, since x is taken to be larger than b,

F̄
(

x−W
(1)
k−1

)

F̄
(

b−W
(1)
k−1

) ≤ F̄ (x− b)

F̄ (b)
∧ 1 = P {X + b > x | X > b}

on the set {τ (2)b > k − 1}. Therefore,

Pw

{

W
(2)

τ
(2)
b

> x, τ
(2)
b < τ0

}

≤ P {X + b > x | X > b} ×
∞
∑

k=1

Ew

[

I
(

τ0 > k − 1, τ
(2)
b > k − 1

)

F̄
(

b−W
(1)
k−1

)]

= P {X + b > x |X > b}Pw

{

τ
(2)
b < τ0

}

,

where the last expression was obtained by letting x = b in the second line in (20). The last
inequality is equivalent to the statement of Lemma 2, and this concludes the proof. �

Part 2) Reduction to a zero-mean random walk problem. Recall our earlier definition
Xn := Vn−1 − Tn for n ≥ 1, where (Vn : n ≥ 1) are i.i.d. copies of V and (Tn : n ≥ 1) are i.i.d.
copies of T. Additionally, we had set V0 := 0. Further, define S0 := 0, Sn := X1 + . . .+Xn, and

NA(t) := sup {n ≥ 0 : T1 + . . . + Tn ≤ t} ∨ 0

for t ≥ 0. Here we follow the usual convention that sup ∅ = −∞. Therefore, NA(0) = 0. Note
that NA(t) is the number of customers that arrive in the time interval (0, t]. In addition to the
above definitions, let X := V − T and define

B3 (b) := E

[

I

(

max
0≤n≤NA(X)+1

2 |Sn| > (δ − δ−) b

)(

X + max
0≤n≤NA(X)+1

|Sn|
)

∣

∣

∣
X > bδ+

]

.

Our objective in this subsection is to show the following result.

Lemma 4. Suppose that Assumptions 1 and 2 hold, and that ρ = 1. Then,

B1 (b) = O
(

P0

{

τ
(2)
bδ+

< τ0

}

×B3(b)
)

.

Let Fn denote the σ−algebra generated by the random variables Vk and Tk, k ≤ n. Then

B1(b) = E0

[

I
(

τ̄
(2)
bδ+

> τ
(1)
bδ

)

E0

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

) ∣

∣

∣ F
τ
(1)
bδ

]]

.

Since W
(1)
k is smaller than b for k < τ

(1)
bδ , on the set {τ (1)b < τ0}, we have

E0

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

) ∣

∣

∣
F
τ
(1)
bδ

]

= EW
τ
(1)
bδ

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

]

≤ EW
τ
(1)
bδ

[τ0] .
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Then, due to Lemma 1,

B1(b) ≤ E0

[

I
(

τ̄
(2)
bδ+

> τ
(1)
bδ , τ

(1)
b < τ0

)

(

C1W
(2)

τ
(1)
bδ

+ C0

)]

.

First, observe that whenever τ̄
(2)
bδ+

> τ
(1)
bδ , we must also have that τ

(2)
bδ+

= τ
(2)
bδ−

. Otherwise, from

the definition of τ̄
(2)
bδ+

, it follows that τ̄
(2)
bδ+

= τ
(2)
bδ−

which in turn occurs earlier than τ
(1)
bδ , and this

contradicts our blanket assumption τ̄
(2)
bδ+

> τ
(1)
bδ . Therefore,

B1(b) ≤ E0

[

I
(

τ̄
(2)
bδ+

> τ
(1)
bδ , τ

(2)
bδ+

= τ
(2)
bδ−

, τ
(1)
b < τ0

)

(

C1W
(2)

τ
(1)
bδ

+ C0

)]

≤ E0

[

I
(

τ
(2)
bδ+

≤ τ
(1)
bδ−

∧ τ0

)

E0

[(

C1W
(2)

τ
(1)
bδ

+ C0

)

I
(

τ̄
(2)
bδ+

> τ
(1)
bδ

) ∣

∣

∣
F
τ
(2)
bδ+

]]

.

As a consequence of strong Markov property of W, we have that

B1(b) ≤ E0

[

I
(

τ
(2)
bδ+

≤ τ
(1)
bδ−

∧ τ0

)

EW
τ
(2)
bδ+

[(

C1W
(2)

τ
(1)
bδ

+ C0

)

I
(

τ̄
(2)
bδ+

> τ
(1)
bδ

)

]

]

If we set ξ1 := W
(1)

τ
(2)
bδ+

and ξ2 := W
(2)

τ
(2)
bδ+

, again due to the Markov property of W,

B1(b) ≤ E

[

I(ξ1 < bδ−)E(ξ1,ξ2)

[(

C1W
(2)

τ
(1)
bδ

+C0

)

I
(

τ̄
(2)
bδ+

> τ
(1)
bδ

)

]]

P0

{

τ
(2)
bδ+

< τ0

}

,(21)

where ξ2, by definition, is larger than bδ+.

Evaluation of the inner expectation. We analyse the inner expectation

χ (ξ1, ξ2) := E(ξ1,ξ2)

[(

C1W
(2)

τ
(1)
bδ

+ C0

)

I
(

τ̄
(2)
bδ+

> τ
(1)
bδ

)

]

in (21) by restarting the queuing system with initial conditions W0 = (ξ1, ξ2). Whenever τ̄
(2)
bδ+

>

τ
(1)
bδ , due to recursions (5a) and (5b), the dynamics of the queue until τ

(1)
bδ is described by

W (1)
n =

(

W
(1)
n−1 +Xn

)+
and W (2)

n = W
(2)
n−1 − Tn

for 1 ≤ n < τ
(1)
bδ , in conjunction with W

(1)
0 = ξ1 < bδ− and W

(2)
0 = ξ2 > bδ+. As a result,

T1 + . . .+ T
τ
(1)
bδ

−1
= ξ2 −W

(2)

τ
(1)
bδ

−1
≤ ξ2 − bδ+

whenever τ̄
(2)
bδ+

> τ
(1)
bδ . Therefore, τ

(1)
bδ ≤ NA (ξ2 − bδ+) + 1, which in turn implies that

max
0<n≤NA(ξ2−bδ+)+1

W (1)
n > bδ.

Consequently,

χ (ξ1, ξ2) ≤ E(ξ1,ξ2)

[(

C1 max
0<n≤NA(ξ2−bδ+)+1

W (2)
n + C0

)

I

(

max
0<n≤NA(ξ2−bδ+)+1

W (1)
n > bδ

)]

.

The following result is verified in Appendix B.
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Lemma 5. Suppose that W0 = (w1, w2), and recall the definitions Xn := Vn−1 − Tn, S0 := 0
and Sn := X1 + . . .+Xn. Then, for all n ≥ 0,

max
0<k≤n

W
(i)
k ≤ 2 max

0≤k≤n
|Sk|+ wi, i = 1, 2.

As a consequence of Lemma 5,

χ (ξ1, ξ2) ≤ C3E

[(

max
0≤n≤NA(ξ2−bδ+)+1

2Sn + ξ2

)

I

(

max
0≤n≤NA(ξ2−bδ+)+1

2Sn + ξ1 > bδ

)

∣

∣

∣ ξ1, ξ2

]

.

where the constant C0 been absorbed in another suitable constant C3. Then it is immediate
from (21) that

B1(b) ≤ C3E

[(

max
0≤n≤NA(ξ2−bδ+)+1

2Sn + ξ2

)

I

(

max
0≤n≤NA(ξ2−bδ+)+1

2Sn > (δ − δ−) b

)]

P0

{

τ
(2)
bδ+

< τ0

}

.

Here, recall that ξ2 := W
(2)

τ
(2)
bδ+

, which is stochastically dominated by the conditional distribution

of X + bδ+ given that X > bδ+ (due to Lemma 2). Since B2(b) is a non-decreasing function of
ξ2, we use the above stochastic dominance to yield

B1(b) ≤ C3P0

{

τ
(2)
bδ+

< τ0

}

×

E

[(

max
0≤n≤NA(X)+1

2Sn +X + bδ+

)

I

(

max
0≤n≤NA(X)+1

2Sn > (δ − δ−) b

)

∣

∣

∣
X > bδ+

]

.

Lemma 4 follows from the above inequality once we observe that X + bδ+ ≤ 2X when X > bδ+.
This completes the proof of Lemma 4. �

Part 3.a) Simplifications using uniform large deviations: the α > 2 case. Using clas-
sical results borrowed from the literature on large deviations for zero-mean random walks, we
aim to prove the following result in this subsection.

Lemma 6. Suppose that Assumptions 1 and 2 are in force, α > 2 and ρ = 1. Then,

B3 (b) = O

(

b2B̄ (b) + b2
B̄
(

b2
)

B̄(b)

)

.

We begin by recalling results on uniform large deviations for regularly varying random walks.
For example, the following large deviations result which holds under Assumptions 1 and 2
assuming that α > 2, is well-known

(22) P{Sm > b} =

(

Φ̄

(

b√
mσ

)

+mP{X1 > b}
)

(1 + o (1)) , as m → ∞,

uniformly for b >
√
m, where Φ̄ (·) is the tail of a standard normal distribution. The asymptotic

approximation (22) is due to A. V. Nagaev (see Theorem 1.9 of [17] or Corollary 7 of [19]).
For our purposes, we need an extension of (22), in which Sn is replaced by max0≤k≤m |Sk|.

However, we do not need exact asymptotic results as in (22), but only an asymptotic upper
bound. This is the content of the following result, which is proved in Appendix B as an immediate
consequence of Corollary 1 of [18]. (For related uniform sample path large deviations results see
[6], and the related Theorem 5 of [5].)
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Lemma 7. Suppose that V satisfies Assumption 1 with α > 2, and T satisfies Assumption 2.

Recall that X1,X2, . . . are i.i.d. copies of X = V − T. Then, there exists a positive integer m0

such that for all x ≥ m1/2 and m > m0

P

{

max
0≤k≤m

|Sk| > x

}

≤ 3

(

P

{

max
0≤t≤1

σ |B (t)| > x

m1/2

}

+mP {|X| > x}
)

,

where σ2 = V ar[X] and B (·) is a standard Brownian motion.

We also need the following pair of standard results on regular variation: Karamata’s theorem
(refer Theorem 1 in Chapter VIII.9 of [8]) and Potter’s bounds (see, for example, Theorem 1.1.4
of [6])

Proposition 3 (Karamata’s theorem). Suppose that v(t) = t−αL(t) for some slowly varying

function L(·) and α satisfying α− β > 1. Then

(23)

∫ ∞

x
uβv(u)du ∼ xβ+1v(x)

α− β − 1
, as x → ∞.

On the other hand, if α− β < 1, then

(24)

∫ x

0
uβv(u)du ∼ xβ+1v(x)

1− α+ β
, as x → ∞.

Proposition 4 (Potter’s bounds). If v(t) = t−αL (t) for some α > 0 and some slowly varying

function L (·) then, for any ε ∈ (0,min(α, 1)) , there exists a tε > 0 such that for all t and c
satisfying t ≥ tε and ct ≥ tε,

(25) (1− ε)min{c−α+ε, c−α−ε} ≤ v(ct)

v(t)
≤ (1 + ε)max{c−α+ε, c−α−ε}.

We establish Lemma 6 in two parts. The first task involves analysing the relatively easier term,
which has the running maximum appearing only in the indicator function.

Lemma 8. Under Assumption 1 with α > 2, and Assumption 2,

E

[

I

(

max
0≤n≤NA(X)+1

2 |Sn| > (δ − δ−) b

)

X
∣

∣

∣ X > bδ+

]

= O

(

b2B̄ (b) + b2
B̄
(

b2
)

B̄(b)

)

.

Following this, we estimate the term in which the running maximum appears both multiplying
and inside the indicator.

Lemma 9. Under Assumption 1 with α > 2, and Assumption 2,

E

[

I

(

max
0≤n≤NA(X)+1

2 |Sn| > (δ − δ−) b

)

max
0≤n≤NA(X)+1

|Sn|
∣

∣

∣ X > bδ+

]

= O
(

b2B̄ (b)
)

.

Lemma 10, whose proof is given in Appendix B, will be useful in proving Lemmas 8 and 9.

Lemma 10. If v(x) = x−αl(x) for some α > 2 and a function l(·) slowly varying at infinity,

then for every c > 0,
∫ ∞

b
v(t) exp

(

−c
b2

t

)

dt = O
(

b2v
(

b2
))

.
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Proof of Lemma 8. Letting c = (δ − δ−)/2, observe that

E

[

I

(

max
0≤n≤NA(X)

2 |Sn| > (δ − δ−) b, NA(X) + 1 ≤ 2X

)

X
∣

∣

∣ X > bδ+

]

≤
∫ ∞

bδ+

tP

{

max
0≤n≤2t

|Sn| > cb

}

P {X ∈ dt}
P {X > bδ+}

≤ 3

∫ ∞

bδ+

tP

{

max
0≤s≤1

σB(s) >
cb√
2t

}

P{X ∈ dt}
P {X > bδ+}

+ 3

∫ c2b2

2

bδ+

2t2P {|X| > cb} P {X ∈ dt}
P {X > bδ+}

(26)

because of the application of the uniform asymptotic presented in Lemma 7 in the region 2t ≤
c2b2 and Central Limit Theorem in the region 2t > c2b2. Recall from (4) that P{X > x} ∼ B̄(x),
and subsequently, due to Karamata’s theorem (23), we obtain

∫ ∞

bδ+

t2P {X ∈ dt} ≤ E
[

X2I (X > bδ+)
]

= O

(
∫ ∞

bδ+

sP {X > s} ds
)

= O
(

b2B̄ (b)
)

and therefore

(27)
P (|X| > cb)

P {X > bδ+}

∫ ∞

b
t2P {X ∈ dt} = O

(

b2B̄ (b)
)

.

To deal with the first term in (26), we do integration by parts (by taking u = P{max0≤s≤1 B(s) >

cb/
√
2σt} and v =

∫∞
t P{X > u}du− tP{X > t}) to obtain

∫ ∞

bδ+

tP

{

max
0≤s≤1

σB(s) >
cb√
2t

}

P{X ∈ dt} = O

(

b

∫ ∞

bδ+

P{X > t}√
t

exp

(

− cb2

4σt

)

dt

)

,

which, in turn, is O(b × bB̄(b2)) because of Lemma 10. Therefore, due to (26) and (27), along
with the observation that P{X > bδ+} = Θ(B̄(b)) (due to regular variation), we obtain

E

[

I

(

max
0≤n≤NA(X)+1

2 |Sn| > (δ − δ−) b,NA(X) + 1 ≤ 2X

)

X
∣

∣

∣
X > bδ+

]

= O

(

b2B̄(b) + b2
B̄(b2)

B̄(b)

)

.

(28)

On the other hand, given that NA(t)/t → 1 as t → ∞, the event {NA(t) > 2t− 1} corresponds
to a large deviations event with exponentially small probability for large values of t. Therefore,
we have that

E

[

I

(

max
0≤n≤NA(X)

2 |Sn| > (δ − δ−) b,NA(X) + 1 > 2X

)

X
∣

∣

∣ X > bδ+

]

≤
∫ ∞

bδ+

tP {NA (t) > 2t− 1}P {X ∈ dt} = O (exp (−γb)) ,

for a suitable γ > 0. This observation, along with (28), concludes the proof of Lemma 8. �

The proof of Lemma 9, where running maximum appears twice, is similar, but more involved,
and is presented in Appendix B, so that we can continue with central arguments in the main
body of the paper. Before moving to Part 3.b) of the proof, it is important to note that Lemma
6 stands proved as an immediate consequence of Lemmas 8 and 9.
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Part 3.b) Simplifications using uniform large deviations: the α ∈ (1, 2) case. We shall
leverage much of the reasoning behind Part 3.a) and prove the following result:

Lemma 11. Suppose that B̄ (x) ∼ cx−α as x → ∞ for some c > 0 and α ∈ (1, 2). Also, suppose
that Assumption 2 holds. Then,

B3 (b) = O

(

bαB̄ (bα)

B̄(b)

)

.

We begin with a uniform convergence result which is a special case of Theorem 3.8.2 of [6]:

Lemma 12. Suppose that B̄ (x) ∼ cx−α as x → ∞ for some c > 0 and α ∈ (1, 2). Also, suppose
that Assumption 2 holds.Then, there exists a positive integer m0 such that for all m ≥ m0,

P

{

max
0≤n≤m

|Sn| > x

}

≤ 3P

{

Z∗ >
x

(cm)1/α

}

,

where Z∗ := max0≤s≤1 Z(s) is the maximum of an α-stable process (Z(t) : 0 ≤ t ≤ 1) satisfying

P{Z(1) > x} ∼ x−α as x → ∞. Additionally, for such a stable process Z(·), we have that

P{Z∗ > x} ∼ x−α as x → ∞.

The adaptation of Theorem 3.8.2 of [6] to the case where maximum of |Sn| appears (instead of
maximum of Sn) is similar to the argument in the proof of Lemma 7 in Part 3.a), and therefore
is omitted. The dominant contribution to B3(b) is accounted for in the following result:

Lemma 13. Suppose that B̄ (x) ∼ cx−α as x → ∞ for some c > 0 and α ∈ (1, 2). Also, suppose
that Assumption 2 holds. Then,

E

[

I

(

max
0≤k≤NA(X)+1

2 |Sn| > (δ − δ−) b

)

X
∣

∣

∣
X > bδ+

]

= O

(

bαB̄ (bα)

B̄(b)

)

.

Proof of Lemma 13. As a consequence of Lemma 12, we get

E

[

I

(

max
0≤k≤2X

2 |Sn| > (δ − δ−) b

)

XI (X > bδ+)

]

≤ 3E

[

P

{

Z∗ >
(δ − δ−)b

2 (2cX)
1
α

}

XI (X > bδ+)

]

= 3E

[

XI

(

X > (bδ+) ∨
(

c̄b

Z∗

)α)]

(29)

where c̄ := (δ − δ−)/(2α+1c)1/α. Additionally, for all large enough x, there exists a constant C
such that E[XI(X > x)] ≤ Cx−(α−1), because of Karamata’s theorem and the observation that
P{X > x} ∼ cx−α as x → ∞. Therefore, for all b large enough, we obtain

E

[

XI

(

X > (bδ+) ∨
(

c̄b

Z∗

)α)]

≤ CE

[

(

(bδ+) ∨
(

c̄b

Z∗

)α)−(α−1)
]

≤ C (bδ+)
−(α−1)

P







Z∗ >
c̄b1−

1
α

δ
1
α
+







+ C (c̄b)−α(α−1)
E

[

Zα2−α
∗

]

,

which, in turn, is O(bαB̄(bα)) because E[Zα2−α
∗ ] < ∞ when α ∈ (1, 2). Therefore, due to (29),

E

[

I

(

max
0≤k≤2X

2 |Sn| > (δ − δ−) b, NA(X) + 1 ≤ 2X

)

XI (X > bδ+)

]

= O
(

bαB̄ (bα)
)

.
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On the other hand, the event {NA(b) + 1 > 2b} is a large deviations event with probabilities
exponentially decaying in b, and as argued in the proof of Lemma 8,

E

[

I

(

max
0≤k≤2X

2 |Sn| > (δ − δ−) b, NA(X) + 1 > 2X

)

XI (X > bδ+)

]

= O (exp(−γb)) ,

for a suitable γ > 0. These two observations, after adjusting for the conditioning by dividing by
P{X > bδ+} = Θ(B̄(b)), prove Lemma 13. �

Lemma 14. Suppose that B̄ (x) ∼ cx−α as x → ∞ for some c > 0 and α ∈ (1, 2). Also, suppose
that Assumption 2 holds. Then,

E

[

I

(

max
0≤k≤NA(X)+1

2 |Sn| > (δ − δ−) b

)

max
0≤k≤NA(X)+1

|Sn|
∣

∣

∣
X > bδ+

]

= O
(

b2B̄ (b)
)

.

As in Part 3.a), the proof of Lemma 14 is furnished in Appendix B. The main result of this
section, Lemma 11, which aims to prove that B3(b) = O(bαB̄(bα)/B̄(b)) is an immediate con-
sequence of Lemmas 13 and 14, along with the observation that b2B̄2(b) = o(bαB̄(bα)) when
α < 2.

Part 4) Estimation of B2(b). The objective of this subsection is to prove Lemma 15, and
subsequently, complete the proof of Proposition 2.

Lemma 15. Suppose that Assumptions 1 and 2 hold, and that ρ = 1. Then,

B2 (b) = O
(

b2B̄ (b)2
)

.

It follows from the definition of B2(b) that

B2(b) = E0

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

I
(

τ̄
(2)
bδ+

≤ τ
(1)
bδ , τ

(2)
bδ−

< τ0

)

]

= E0









I
(

τ̄
(2)
bδ+

≤ τ
(1)
bδ , τ

(2)
bδ−

< τ0

)

E0









τ0−1
∑

k=τ̄
(2)
bδ+

I
(

W
(1)
k > b

) ∣

∣

∣
F
τ̄
(2)
bδ+

















Then due to the Markov property of W, we get

B2(b) = E0

[

I
(

τ̄
(2)
bδ+

≤ τ
(1)
bδ , τ

(2)
bδ−

< τ0

)

EW
τ̄
(2)
bδ+

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

]]

.(30)

Evaluation of inner expectation. Due to a similar conditioning with respect to F
τ
(2)
b

, we

obtain

EW
τ̄
(2)
bδ+

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

]

= EW
τ̄
(2)
bδ+






I
(

τ
(2)
b < τ0

)

EW
τ
(2)
b







τ0−1
∑

k=τ
(2)
b

I
(

W
(1)
k > b

)













≤ EW
τ̄
(2)
bδ+

[

I
(

τ
(2)
b < τ0

)

EW
τ
(2)
b

[τ0]

]

,
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which, due to Lemma 1, admits the following upper bound:

EW
τ̄
(2)
bδ+

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

]

≤ EW
τ̄
(2)
bδ+

[

I
(

τ
(2)
b < τ0

)

(

C1W
(2)

τ
(2)
b

+ C0

)]

= C1EW
τ̄
(2)
bδ+

[

W
(2)

τ
(2)
b

∣

∣

∣ τ
(2)
b < τ0

]

PW
τ̄
(2)
bδ+

{

τ
(2)
b < τ0

}

+ C0PW
τ̄
(2)
bδ+

{

τ
(2)
b < τ0

}

≤ C2bPW
τ̄
(2)
bδ+

{

τ
(2)
b < τ0

}

(31)

for some positive constant C2, because, due to Lemma 2,

EW
τ̄
(2)
bδ+

[

W
(2)

τ
(2)
b

∣

∣

∣
τ
(2)
b < τ0

]

≤ E

[

X + b
∣

∣

∣
X > b

]

= O(b).

Next, we obtain a bound for Pw{τ (2)b < τ0}, and use it in (31).

Lemma 16. Suppose that Assumptions 1 and 2 hold, and that ρ = 1. Let δ+ < 1/2, then there

exists a constant C > 0 such that for all w = (w1, w2) satisfying w1 ≤ w2 < bδ+ we have

Pw

{

τ
(2)
b < τ0

}

≤ C (w2 + 1) B̄ (b) .

The proof of Lemma 16 is instructive, as it employs Lyapunov bound techniques to derive the
above uniform bound. The arguments involved are different from the rest of the paper, and the
whole of Appendix A is dedicated to expose the techniques clearly. Now, we aim to complete
the proof of Lemma 15. Due to Lemma 16 and (31),

EW
τ̄
(2)
bδ+

[

τ0−1
∑

k=0

I
(

W
(1)
k > b

)

]

≤ CC2b

(

W
(2)

τ̄
(2)
bδ+

+ 1

)

B̄(b) ≤ CC2b (bδ+ + 1) B̄(b),

and therefore, due to (30) and a similar application of Lemma 16 with w = 0,

B2(b) ≤ CC2P0

{

τ
(2)
bδ−

< τ0

}

b (bδ+ + 1) B̄(b) = O
(

b2B̄2(b)
)

.

This concludes the proof of Lemma 15.

Proof of Proposition 2. We apply Lemma 16 with w = 0 to the bound for B1(b) in Lemma 4 as
well. This, due to Lemmas 6 and 11, results in

B1(b) = O
(

B̄ (bδ+)×B3(b)
)

=

{

O
(

b2B̄2(b) + b2B̄
(

b2
))

if α > 2,

O
(

bαB̄ (bα)
)

if α ∈ (1, 2).

Additionally, we have that B2(b) = O(b2B̄(b)2) and E0[τ0] < ∞, respectively, from Lemmas 15
and 1. Therefore, from (18), we arrive at the statement of Proposition 2, and this concludes the
proof. �

Appendix A. Lyapunov bound techniques for a uniform bound on Pw{τ (2)b < τ0}
We use the Lyapunov bound technique that has been employed in [2], [3], and [7]. The strategy
is to define a Markov kernel Qθ (w, ·) (indexed by some parameter θ) and a non-negative function
Hb (w1, w2) satisfying the following conditions:
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(L1) For every w = (w1, w2) such that w2 < b,

E
θ
w [rθ (w,W1)Hb (W1)] ≤ Hb (w) ,

where Pw{W1 ∈ ·} is the nominal transition kernel induced by recursions (5a) and (5b),
rθ(w,x) := Pw{W1 ∈ dx}/Qθ(w, dx) is the corresponding Radon-Nikodym derivative
with respect to Qθ(w, ·), and E

θ
w [·] is the expectation associated with the probability

measure in path space for the Markov evolution induced by Qθ (w, ·) .
(L2) Whenever w = (w1, w2) is such that w2 > b, Hb (w1, w2) ≥ 1.

If conditions (L1) and (L2) are satisfied, then following the analysis in Part (iii) of Theorem 2
of [2], we have that

(32) Pw

{

τ
(2)
b < τ0

}

≤ E
θ
w







τ
(2)
b

−1
∏

n=0

rθ (Wn,Wn+1)Hb

(

W
τ
(2)
b

)

I
(

τ
(2)
b < τ0

)






≤ Hb (w1, w2) .

The construction of Qθ (w, ·) and Hb (·) follows the intuition explained in [2] and [3]: We wish to
select Qθ (w, ·) as closely as possible to the conditional distribution of the process {Wn : n ≥ 0}
given that {τ (2)b < τ0}, because in that case, it happens that (32) is automatically satisfied with
equality. Additionally, we shall find a suitable non-negative function Gb (·) so that Hb (w1, w2) =
Gb (w1 + w2) satisfies the Lyapunov inequality (L1).
For ease of notation, let us write

l := w1 + w2, L := W
(1)
1 +W

(2)
2 and ∆ := L− l.

In order to construct Qθ (w, ·) and Gb (·) , first define the Markov transition kernel

Q′ (w, A) = Pw {W1 ∈ A | X1 > a (b− l)} p (w)

+ Pw

{

W1 ∈ A | X1 ≤ a (b− l) ,W
(2)
1 > 0

}

(1− p (w)) ,

where p (w) will be specified momentarily, and the choice a ∈ (0, 1) is arbitrary. On the set

{τ (2)b < τ0}, given w = (w1, w2) with w1 ≤ w2 < b, we have that the nominal kernel Pw{W1 ∈ ·}
is absolutely continuous with respect to Q′ (w, ·) . Now, for z ≥ 0, define

hb (z) =

∫ z+κ0

0
P {X > b− z + t} dt =

∫ b+κ0

b−z
P {X > u} du.

Next, write

Gb (l) = min(κ1hb (l) , 1)

and set

p (w) =
P {X > a (b− l)}

κ2hb (l)

where κ2 is a number larger than

sup
x>0

P {X > ax}
∫ x+l+κ0

x P {X > u} du
< ∞.

Finally, define θ = (κ0, κ1, κ2) and write

Qθ (w, ·) = Q′ (w, ·) I(Gb (l) < 1) +K (w, ·) I(Gb (l) = 1).

Recall the notation l = w1+w2 and L = W
(1)
1 +W

(2)
1 . Condition (L1) is verified via the following

proposition:
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Proposition 5. For every w = (w1, w2) such that w2 < b, we have that

E
θ
w [rθ (w,W1)Gb(L)] ≤ Gb(l).

For proving Proposition 5, we consider only the case Gb(l) < 1. When Gb(l) = 1, the inequality
is satisfied trivially. The following results are crucial in the proof of Proposition 5.

Lemma 17. There exist positive constants µ and C such that

E(w1,w2)

[

∆I
(

W
(2)
1 > 0

)]

< −µ

whenever w2 > C.

Proof. First, observe that

Ew

[

∆I
(

W
(2)
1 > 0

)]

= Ew [∆]− Ew

[

∆I
(

W
(2)
1 = 0

)]

.

Additionally, note that ∆ = −(w1 + w2) when W
(2)
1 = 0. Therefore,

E(w1,w2)

[

∆I
(

W
(2)
1 = 0

)]

= − (w1 + w2)P {w1 + V − T ≤ 0, w2 − T ≤ 0} .
Therefore, due to Lemma 3,

Ew

[

∆I
(

W
(2)
1 > 0

)]

≤ Ew [∆] + (w1 + w2)P {w2 − T ≤ 0}
≤ −ǫ+ 2w2P {T > w2} ,

where w2P{T > w2} can be made arbitrarily small by choosing C > w2 large enough. Hence
the claim stands verified. �

Lemma 18. Recall that l = w1 + w2. The following holds as (b− l) → ∞ :

E
θ
w

[

rθ (w,W1)
Gb (L)

Gb(l)
I (X1 ≤ a (b− l))

]

≤ Pw

{

W
(2)
1 > 0

}

+
P {X > b− l}

hb(l)
Ew

[

∆I
(

W
(2)
1 > 0

)]

(1 + o(1)) .

Proof. Since

Gb (L1) = Gb (l) +

∫ 1

0
G′

b (l + u∆(1))∆ (1) du,

we introduce a uniform random variable U , independent of everything else, to write

E
θ
w

[

rθ (w,W1)
Gb (L)

Gb(l)
I (X1 ≤ a (b− l))

]

= Ew

[

Gb (L)

Gb(l)
I
(

X1 ≤ a (b− l) ,W
(2)
1 > 0

)

]

= Ew

[(

1 +
G′

b (l + U∆)

Gb(l)
∆

)

I
(

X1 ≤ a (b− l) ,W
(2)
1 > 0

)

]

≤ Pw

{

W
(2)
1 > 0

}

+
P {X > b− l}

hb(l)
Ew

[

P {X > b− l − U∆}
P {X > b− l} ∆I

(

X1 ≤ a (b− l) ,W
(2)
1 > 0

)

]

.

(33)

We have used G′
b (l + U∆(1)) = κ1P {X > b− l − U∆(1)} to write the last step. Additionally,

whenever X1 ≤ a (b− l) , observe that

∆ = (w1 +X1)
+ − w1 + (w2 − T1)

+ − w2 ≤ X+
1 ≤ a (b− l) ,
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and therefore, P {X > b− l − U∆} ≤ P {X > (1− a)(b− l)} ≤ m1−aP {X > b− l} , where

mt := sup
x>0

P{X > tx}
P{X > x} < ∞,

for every t > 0. Here, the finiteness of mt follows from the regularly varying nature of the tail
distribution of X (recall that P{X > x} ∼ B̄(x) as x → ∞). As a result, we have the following
uniform bound for various values of b and l :

Ew

[

P {X > b− l − U∆}
P {X > b− l} ∆I

(

X1 ≤ a (b− l) ,W
(2)
1 > 0

)

]

≤ m1−aEX
+.(34)

Consequently, due to dominated convergence theorem, we obtain that

Ew

[

P {X > b− l − U∆}
P {X > b− l} ∆I

(

X1 ≤ a (b− l) ,W
(2)
1 > 0

)

]

∼ Ew

[

∆I
(

W
(2)
1 > 0

)]

,

as (b− l) → ∞. Now, the statement of Lemma 18 is immediate from (33) and the above stated
convergence. �

Proof of Proposition 5. As mentioned before, we consider Gb (l) < 1. First, observe that

E
θ
w

[

rθ (w,W1)
Gb (L)

Gb(l)
I (X1 > a (b− l))

]

= Ew

[

Gb (L)

Gb(l)
I (X1 > a (b− l))

]

≤ P {X > a (b− l)}
κ1hb(l)

(35)

because Gb(·) ≤ 1. For a respective bound on the complementary event {X1 ≤ a(b−l)}, it is easy
to see that our strategy must use Lemmas 17 and 18 in the following way: Given δ > 0, there
exists a constant Cδ large enough such that for all initial conditions w = (w1, w2) satisfying
w2 > C and b− l > Cδ,

E
θ
w

[

rθ (w,W1)
Gb (L)

Gb(l)
I (X1 ≤ a (b− l))

]

≤ Pw

{

W
(2)
1 > 0

}

− (1− δ)µ
P {X > b− l}

hb(l)
.

Combining this bound with (35), we obtain

E
θ
w

[

rθ (w,W1)
Gb (L)

Gb(l)

]

≤ Pw

{

W
(2)
1 > 0

}

+
P {X > a(b− l)}

hb(l)

(

1

κ1
− (1− δ)µ

ma

)

≤ 1 + κ2p (w)

(

1

κ1
− (1− δ)µ

ma

)

which is, in turn, smaller than 1 for κ1 suitably large. In addition to this, in the region {(w1, w2) :
w2 > C, b− l < Cδ}, we simply let Gb(l) = 1 by again choosing κ1 large enough. This flexibility
in the choice of κ1 yields us

E
θ
w

[

rθ (w,W1)
Gb (L)

Gb(l)

]

≤ 1(36)

for initial conditions w = (w1, w2) satisfying w2 > C. Now, turning our attention to the values
of w such that w2 ≤ C, we see that l = w1 + w2 ≤ 2C, and as a consequence of the regularly
varying nature of the tail of X, we obtain

P {X > b− l}
hb(l)

=

(∫ l+κ0

0

P {X > b− l + u}
P {X > b− l} du

)−1

=
1 + o(1)

l + κ0
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as b → ∞. Then, it is immediate from (33) that whenever w2 ≤ C,

E
θ
w

[

rθ (w,W1)
Gb (L)

Gb(l)
I (X1 ≤ a (b− l))

]

≤ P(C,C)

{

W
(2)
1 > 0

}

+
m1−aE

[

X+
1

]

κ0
(1 + o(1)) .

Combining this bound with the one obtained in (35), we get

E
θ
w

[

rθ (w,W1)
Gb (L)

Gb(l)

]

≤ p (w) κ2
κ1

+ P(C,C)

{

W
(2)
1 > 0

}

+
m1−aE

[

X+
1

]

κ0
(1 + o(1)) ,

which can also be made smaller than 1 by picking κ0 and κ1 large enough. Thus, for all initial
conditions w, we have a consistent choice of parameters (κ0, κ1, κ2) that satisfies (L1). �

Since Gb(l) = 1 whenever w1 + w2 ≥ b − Cδ, we also have Gb(l) = 1 if w2 > b. This verifies
condition (L2). Since both (L1) and (L2) are satisfied, it follows from (32) that if w2 < bδ+ for
some δ+ < 1/2, then

Pw

{

τ
(2)
b < τ0

}

≤ κ1hb (l) = κ1

∫ b+κ0

b−l
P {X > u} du

≤ κ1P {X > b− l} (κ0 + l) ≤ κ1B̄ (b (1− 2δ+)) (κ0 + 2w2) (1 + o(1)) .

The right hand side of the previous inequality is equivalent to the statement of Lemma 16, so
we conclude the proof.

Appendix B. Proofs for other estimates

Proof of Lemma 3. First, observe that

E
[

(w1 + V − T )+ − w1

]

= E [V − T ]− E [(V − T )I (w1 + V − T < 0)]− w1P {w1 + V − T < 0}
= −E [(V − T )I (w1 + V − T < 0)]− w1P {w1 + V − T < 0} , and

E
[

(w2 − T )+ − w2

]

= −ET + E [TI (w2 − T < 0)]− w2P {w2 − T < 0} .
Then, it follows from the definition of W1 in recursions (5a) and (5b) that

E(w1,w2)

[(

W
(1)
1 +W

(2)
1

)

− (w1 + w2)
]

= E
[

(w1 + V − T )+ − w1

]

+ E
[

(w2 + T )+ − w2

]

= −E [V I (w1 + V − T < 0)]− w1P {w1 + V − T < 0} − E [TI (w1 + V − T ≥ 0)]

− w2P{w2 − T < 0}+ E [TI (w2 − T < 0)]

which is negative if E[TI(T > w2)] is small enough, and this can be achieved by choosing C < w2

large enough. This completes the proof. �

Proof of Lemma 5. From recursions (5a) and (5b), it is evident that for every 1 ≤ k ≤ n,

W
(i)
k ≤

(

W
(i)
k−1 +Xk

)+
, i = 1, 2.

We repeatedly expand the recursion, as below, to obtain

W
(i)
k ≤ max

{

0, W
(i)
k−1 +Xk

}

≤ max
{

0, Xk, W
(i)
k−2 +Xk−1 +Xk

}

≤ max
{

0, Xk, Xk−1 +Xk, Xk−2 +Xk−1 +Xk, . . . , W
(i)
0 +X1 + . . .+Xk−1 +Xk

}

≤ Sk − min
0≤j≤k

Sj + wi,



26 BLANCHET, J. AND MURTHY, K.

where we have used that S0 := 0, Sj := X1 + . . .+Xj and wi ≥ 0. Then

max
0<k≤n

W
(i)
k ≤ max

0≤k≤n
Sk + max

0<k≤n
max
0≤j≤k

(−Sj) + wi ≤ 2 max
0≤k≤n

|Sk|+ wi,

and this proves the result. �

Proof of Lemma 7. According to Corollary 1 of [18], we have that

(37) P

{

max
0≤n≤m

Sn > x

}

=

(

P

{

max
0≤t≤1

σB (t) >
x

m1/2

}

+mP {X > x}
)

(1 + o (1)) .

uniformly over y ≥ m1/2, as m → ∞ (actually, [18] states that the asymptotic is valid assuming

x/m1/2 → ∞ but the case x/m1/2 = O (1) follows from the Central Limit Theorem). Also,
from the development in [18], because P{T > x} = o

(

B̄ (x)
)

, for each ε > 0, there is a positive
integer mε such that for all m > mε,

(38) P

{

max
0≤n≤m

(−Sn) > x

}

≤ (1 + ε)

(

P

{

max
0≤t≤1

σB (t) >
x

m1/2

}

+mP {−X > x}
)

.

Additionally, since

P

{

max
0≤n≤m

|Sn| > x

}

≤ P

{

max
0≤n≤m

Sn > x

}

+ P

{

max
0≤n≤m

(−Sn) > x

}

the statement of Lemma 7 immediately follows from (37) and (38). �

Proof of Lemma 9. Let

I1(b) := E

[

I

(

max
0≤n≤NA(X)+1

2 |Sn| > (δ − δ−) b,NA(X) + 1 ≤ 2X

)

max
0≤n≤NA(X)+1

|Sn|
∣

∣

∣ X > bδ+

]

,

I2(b) := E

[

I

(

max
0≤n≤NA(X)+1

2 |Sn| > (δ − δ−) b,NA(X) + 1 > 2X

)

max
0≤n≤NA(X)+1

|Sn|
∣

∣

∣ X > bδ+

]

.

Then our objective is to show that I1(b)+ I2(b) = O(b2B̄(b)). This is an immediate consequence
of the following two results.

Lemma 19. Under Assumption 1 with α > 2, and Assumption 2,

I1(b) = O
(

b2B̄(b)
)

.

Lemma 20. Under Assumption 1 with α > 2, and Assumption 2,

I2(b) = O (exp (−νb)) ,

for a suitable ν > 0.

Proof of Lemma 19. First, observe that

I1(b) ≤
∫ ∞

bδ+

E

[

I

(

max
0≤n≤2t

|Sn| >
δ − δ−

2
b

)

max
0≤n≤2t

|Sn|
]

P {X ∈ dt}
P {X > bδ+}

.

Additionally, letting c = (δ − δ−)/2, observe that

E

[

I

(

max
0≤n≤2t

|Sn| > cb

)

max
0≤n≤2t

|Sn|
]

= cbP

{

max
0≤n≤2t

|Sn| > cb

}

+

∫ ∞

cb
P

{

max
0≤n≤2t

|Sn| > u

}

du

Therefore, due to (4),

I1(b) = O

(

1

B̄(bδ+)

∫ ∞

bδ+

(

bP

{

max
0≤n≤2t

|Sn| > cb

}

+

∫ ∞

cb
P

{

max
0≤n≤2t

|Sn| > u

}

du

)

P{X ∈ dt}
)

.

(39)
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Due to the applicability of the uniform asymptotic presented in Lemma 7 in the region 2t ≤ c2b2,
and because of the applicability of Central Limit Theorem in the region 2t > c2b2, we obtain

∫ ∞

bδ+

P

{

max
0≤n≤2t

|Sn| > cb

}

P{X ∈ dt}

= O





∫ ∞

bδ+

P

{

max
0≤s≤1

σ |B(s)| > cb√
2t

}

P{X ∈ dt}+
∫ c2b2

2

bδ+

tP {|X| > cb}P{X ∈ dt}





= O

(

b

∫ ∞

bδ+

P {X > t}√
t3

exp

(

− c2b2

4σ2t

)

dt+ P{|X| > cb}E
[

XI

(

X ∈
[

bδ+,
c2b2

2

])])

due to integration by parts. Now, one can apply Lemma 10 to evaluate the first integration,
and Karamata’s theorem for the second integration, together with the observation that P{|X| >
x} = O(B̄(x)), to obtain

∫ ∞

bδ+

P

{

max
0≤n≤2t

|Sn| > cb

}

P{X ∈ dt} = O
(

B̄
(

b2
)

+ B̄(b)× bB̄(b)
)

(40)

On similar lines of reasoning using Lemma 7, again via careful integration by parts and subse-
quent application of Lemma 10 and Karamata’s theorem, one can derive

∫ ∞

bδ+

∫ ∞

cb
P

{

max
0≤n≤2t

|Sn| > u

}

duP{X ∈ dt}

= O

(∫ ∞

bδ+

∫ ∞

cb
P

{

max
0≤s≤1

σ |B(s)| > u√
2t

}

du P{X ∈ dt}+
∫ ∞

bδ+

∫ ∞

√
2t
tP {|X| > u} du P{X ∈ dt}

)

= O





∫ ∞

bδ+

P{X > t}√
t

exp

(

− c2b2

4σ2t

)

dt+

∫ ∞
√

2bδ+

∫ u2

2

bδ+

tP{X ∈ dt}P{|X| > u}





= O
(

bB̄
(

b2
)

+ bB̄(b)× bB̄(b)
)

.

This bound, along with (39), (40) and the observation that B̄(bδ+) = Θ(B̄(b)), prove Lemma
19. �

Proof of Lemma 20. Since T1+. . .+TNA(t) ≤ t (follows from the definition of NA(t)) and V0 := 0,

E

[

I (NA(t) + 1 > 2t) max
0≤n≤NA(t)+1

|Sn|
]

≤ E



I (NA(t) > 2t− 1)

NA(t)+1
∑

n=1

(Vn−1 + Tn)





≤ E



I (NA(t) > 2t− 1)





NA(t)
∑

n=1

Vn + t+ TNA(t)+1









≤ EV × E [NA(t)I (NA(t) > 2t− 1)] + (t+ ET )P {NA(t) > 2t− 1}

≤ C1tP {NA(t) > 2t− 1}+ C2

∫ ∞

2t−1
P {NA(t) > s} ds
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for suitable positive constants C1 and C2 independent of t. Here, note that the penultimate
inequality is simply due to the independence between Vn and Tn for n ≥ 1. Therefore,

I2(b) ≤
∫ ∞

bδ+

E

[

I (NA(t) + 1 > 2t) max
0≤n≤NA(t)+1

|Sn|
]

P {X ∈ dt}
P {X > bδ+}

≤ C1

∫ ∞

bδ+

tP {NA(t) > 2t− 1} P {X ∈ dt}
P {X > bδ+}

+ C2

∫ ∞

bδ+

∫ ∞

2t−1
P {NA(t) > s} ds P {X ∈ dt}

P {X > bδ+}

≤ P {NA (bδ+) > 2bδ+ − 1}
(

C1

∫ ∞

bδ+

t
P {X ∈ dt}
P {X > bδ+}

+ C2

∫ ∞

2bδ+−1

P
{

X > s
2

}

P {X > bδ+}
ds

)

,

(41)

where we have used a simple change of order of integration to arrive at the above conclusion.
Since NA(x)/x → 1 as x → ∞, the event {NA(bδ+) > 2bδ+ − 1} is a large deviations event with
probability exponentially decaying in b, whereas the sum appearing in the parenthesis in (41) is
O(b) due to Karamata’s theorem. This proves the claim that I2(b) = O(exp(−νb)) for a suitable
constant ν > 0. �

As mentioned earlier, Lemmas 19 and 20, together complete the proof of Lemma 9. �

Proof of Lemma 10. Due to Potter’s bounds (25), given ε > 0, we have

∫ ∞

b

v(t)

v (b2)
exp

(

−cb2

t

)

dt = O

(

∫ ∞

b

(

b2

t

)α−ε

exp

(

−cb2

t

)

dt

)

for all suitably large values of b. Changing variables u = b2/t, we obtain
∫ ∞

b

v(t)

v (b2)
exp

(

−cb2

t

)

dt = O

(

b2
∫ ∞

0
uα−2−ǫ exp(−cu)du

)

= O
(

b2
)

for all ǫ small enough such that α− 2− ǫ > 0, and this verifies the claim. �

Proof of Lemma 14. Letting c̄ = (δ − δ−)/2, observe that

E

[

I

(

max
0≤n≤2X

|Sn| > c̄b

)

max
0≤n≤2X

|Sn|
∣

∣

∣ X > bδ+

]

= c̄bP

{

max
0≤n≤2X

|Sn| > c̄b
∣

∣

∣
X > bδ+

}

+

∫ ∞

c̄b
P

{

max
0≤n≤2X

|Sn| > u
∣

∣

∣
X > bδ+

}

du

≤ 3c̄bP

{

Z∗ >
c̄b

(2cX)
1
α

∣

∣

∣ X > bδ+

}

+ 3

∫ ∞

c̄b
P

{

Z∗ >
u

(2cX)
1
α

∣

∣

∣ X > bδ+

}

du(42)

because of Lemma 12. Since P{X > x} ∼ cx−α as x → ∞, after simple integration using
Karamata’s theorem (24), one can show that

c̄bP

{

Z∗ >
c̄b

(2cX)
1
α

∣

∣

∣ X > bδ+

}

= c̄bE





P

{

X > 1
2c

(

c̄b
Z∗

)α}

P {X > bδ+}
∧ 1



 = O
(

b2B̄(b)
)

, and

∫ ∞

c̄b
P

{

Z∗ >
u

(2cX)
1
α

∣

∣

∣
X > bδ+

}

du =

∫ ∞

c̄b





P

{

X > uα

2cZα
∗

}

P {X > bδ+}
∧ 1



 du = O
(

b2B̄(b)
)

.
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Therefore, due to (42), we obtain

E

[

I

(

max
0≤n≤2X

|Sn| > c̄b, NA(X) + 1 ≤ 2X

)

max
0≤n≤2X

|Sn|
∣

∣

∣
X > bδ+

]

= O
(

b2B̄(b)
)

.

On the other hand, the component corresponding to the large deviations event {NA(X) + 1 ≥
2X} is handled similar to Lemma 20, and this upper bounding procedure results in

E

[

I

(

max
0≤n≤2X

|Sn| > c̄b, NA(X) + 1 > 2X

)

max
0≤n≤2X

|Sn|
∣

∣

∣
X > bδ+

]

= O (exp(−νb)) ,

for some ν > 0. The last two upper bounds are enough to conclude the statement of Lemma
14. �
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