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TWO-CHOICE REGULATION IN HETEROGENEOUS CLOSED

NETWORKS

CHRISTINE FRICKER AND NICOLAS SERVEL

Abstract. A heterogeneous closed network with N one-server queues with
finite capacity and one infinite-server queue is studied. A target application
is bike-sharing systems. Heterogeneity is taken into account through clus-
ters whose queues have the same parameters. Incentives to the customer to
go to the least loaded one-server queue among two chosen within a cluster

are investigated. By mean-field arguments, the limiting queue length station-
ary distribution as N gets large is analytically tractable. Moreover, when all
customers follow incentives, the probability that a queue is empty or full is
approximated. Sizing the system to improve performance is reachable under
this policy.

1. Introduction

Product-form networks. A large literature deals with closed Jackson net-
works also called Gordon-Newell networks. First they present an explicit product-
form stationary distribution (see [8]). Second they appear as complex systems in
a wide range of applications as communication, computer, biology and transport
networks.

The problem is that this nice property turns out to be useless for large systems
because of the exponential growth of the state space. Some recent research describes
the asymptotic behavior as these networks get large, in general both the number of
nodes and customers and the ratio of the two numbers tending to some constant λ
(see [9], [10], [4] and reference therein). The main result is the existence of a critical
value of λ such that under this value, the system is stable with each finite set of
queues being asymptotically independent with geometric distributions for queue
lengths, while above this value, some queues, those with the maximum so-called
utilization, behave as bottlenecks with a infinite mean number of customers while
the others are stable. See also [1] for recent advances on a multi-class model.

Mean-field techniques. However, such product-form networks do not cover
the large framework of applications. Without such a invariant measure, for homo-
geneous models, mean-field techniques allow to obtain the limiting steady-state of
the system as it gets large. They are popular for two decades. The main idea is
to obtain the limit of the empirical measure process as a dynamical system, deter-
ministic solution of an ODE, then to study the equilibrium points of this system.
In general, it is proved that there is a unique equilibrium point. Less easy to prove
is that the invariant measure of the empirical measure process concentrates as the
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network gets large to this equilibrium point. It remains in most cases the hard part
of the work. Such convergence is out of the scope of the paper here.

When the network is not homogeneous, the techniques can extend but are
sometimes difficult to apply. To preserve a discrete state space, the network is
divided into clusters whose number remains fixed as the system gets large (see [13]
in another context).

Motivation. The target application here is bike-sharing systems. They have
seen explosive growth last years, giving place to lot of research. Velib’ in Paris plays
an important role, launching the largest program, even now the largestone outside
China. The problem is to manage these systems in order to maintain resources,
both bikes and available spots, where the users need them. Redistribution by trucks
is developed, though it affects only a small number of bikes (around 3 000 moves by
trucks per day in Velib compared to 100 000 bike trips). Incentives to users by the
operator are more promising because more scalable. It is called natural regulation,
made possible because the user can know the system state in real time via his
smartphone for example. The issue which is addressed here is the impact of a two-
choice strategy. It consists for the user to choose two stations to return his bike, then
returning it in the least loaded one. If it regulates very well a homogeneous system
(see [6] for details), one can wonder what happens in a heterogeneous system.

More precisely, the system consists in the following: A user goes to a station,
takes a bike and returns it to another station. But he has to face the lack of
resources, both bikes and available spots. Indeed, when arriving in a station with
no bikes, the user has to decide, either to leave the system or to find a bike in a
station nearby. Then, when returning in a station with no available spot, to return
in a station nearby. Note that he has to return his bike due to the penalty in
case he leaves the bike. The point here is that the user chooses his return station,
by choosing between two stations near its destination the least loaded one. The
operator can help the users to behave like by incentives. Therefore the case where
only a fraction of the customers choose is investigated.

Furthermore the dimensioning problem for the operator is addressed: to find
the system fleet size and the station capacities in order to obtain a system which
performs well.

A model. Such a system can be seen as a closed network. Customers are
bikes, with a fixed fleet size. They go to two kinds of nodes: stations as one-server
queues where the service time is the user inter arrival time to this station, and routes
as infinite-server queues where the service time is the trip time on this route. The
model is proposed in [7] for a vehicle-sharing system. More precisely, in [7], the
user leaves the system if no bike is available when he arrives at a station, and with
stations of infinite capacity, a spot is always available when returning a bike.

The main drawback of the previous models is that it does not take into account
the finite capacity of the stations and the related strategies of the users to be able
to return their bikes. For that, the model proposed here is more simple in some
sense, while the biking users are not distinguished, but it is still a closed network,
with one-server queues for stations, and one infinite-server queue containing the
pool of biking users.

In this model, when joining a saturated one-server queue, the customer reat-
tempts in another queue, after a time with the same distribution, until he returns
his bike. The model could be refined, taking into account the research of a bike for
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a customer arriving at a station with no bike, or taking a mean time for looking for
a station to return the bike smaller than the mean trip time. We claim that these
refinements do not change basically the study.

The network is heterogeneous. Indeed, queues are grouped in clusters. In each
cluster, the queues have the same parameters. Basically, clusters are large and
the customer chooses two stations within a cluster. Other models, may be more
close for realistic ones, where some stations are isolated among stations with other
parameters are out of the scope of the paper. Even if mean-field techniques apply,
the limiting steady-state would be analytically untractable except by numerical
simulations of the dynamical system.

The results. The aim of the paper is to investigate the impact of a two choice
strategy on the limiting steady-state of the queue lengths as the network gets large.

The proposed method is mean-field. The limit as N gets large of the empirical
measure process is obtained and it is proved that it has a unique equilibrium point.
The key argument is that the equilibrium point has a probabilistic interpretation,
in term of the equilibrium point of the dynamical system associated to a open set of
N queues when joining the least loaded queue among two queues, with a arrival-to-
service ratio ρri in cluster i, where ρ is the unique solution of a fixed point equation.
For that, a monotonicity property in the arrival rate is used. Then the equilibrium
point is indeed the concentration point of the queue length distributions as the
system gets large. These results can be straightforwardly extended to the case
where only a portion βi of customers joining cluster i choose among two queues
while the others go to one single queue.

Once these convergence results are stated, an interesting part is the analysis of
the limit. The limiting queue length distribution can be viewed as a function of the
total proportion of customers per queue s by a parametric curve with parameter ρ.
It allows qualitative and quantitative results on the system limiting behavior. We
analyze the probability that a station is empty or full (of customers) called system
performance. This quantity is minimal in a cluster for a very short interval of ρ,
corresponding nevertheless to a wide interval of s. The value of the probabilities
for queues in different clusters can be approximately derived as a function of s on
these plateaux, so this function is quite well understanding.

The influence of the different parameters, as the number of queues per cluster,
the capacities of the queues and the proportion of customers per queue s, can be
discussed. The main conclusion is that choosing the capacities and the total fleet
size can just allow to obtain the best performance in one cluster. To decrease this
value, the number of stations per cluster must be changed, in order to balance the
system.

Related works. Though optimization is the main hot topic about bike-
sharing systems (see [12], [14], [15], [3], [17] and others), few has been done to
understand it as a heterogeneous stochastic network. It is mainly due to the com-
plexity of the system.

It is to our knowledge the first stochastic model devoted to bike-sharing systems
is in [7]. As a BCMP network [2], such a network has a product-form stationary
measure. For a study of this large system, see [10] and reference therein.

There are two companion papers of this one. First [6] deals with a homogeneous
model where different regulation strategies are explored. Simple models to study
the system behavior under incentives to choose and redistribution by trucks are
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proposed and analyzed. Second, a model with clusters is proposed in [5] but for
a basic bike-sharing system, not taken into account incentives or redistribution.
Paper [5] is a first step to work with a heterogeneous model. It allows to understand
how to manage heterogeneity. Our present work has a completely different content,
focusing on two-choice strategy, even if Section 3 has some similarities on methods
used in [6], which are clearly presented.

Outline of the paper. Section 2 deals with the model description. Section 3
presents mean-field convergence results. In Section 4, the limiting stationary queue
length distribution is investigated. As an example, for the two-cluster case, the
probability that a queue is empty or full is studied as a function of s. It gives its
qualitative behavior as well as quantitative bounds. In Section 5, the influence of
the parameters is discussed, especially for the sizing problem. Section 6 gives a
discussion, mainly on model limitations, and the conclusion of the paper.

2. Model Description

This section deals with the description of a closed queueing network. The
heterogeneity is modeled by clusters. The key point is to take into account the
finite capacities at the one-server queues and the resulting route of the customers.
Moreover the behavior of the system under a two-choice strategy when joining the
one-server queues is addressed.

Consider N one-server queues numbered from 1 to N , one infinite-server queue
numbered 0 and a set of M customers. Unless queue 0 is specified, let us call a
queue a one-server queue. In the system, both N and M are large, with the total
proportion of customers per queue M/N tending to a constant s as N tends to
infinity, which is a key quantity in terms of sizing. The queues are grouped in C
clusters, C ≥ 1, such that, in each cluster, the queues have the same parameters.
There are Ni queues with capacity Ki in cluster i, with Ni/N tending to αi, when
N gets large. A customer leaves a queue of cluster i according to a Poisson process
with rate λi. If there is no customer in the queue, nothing happens. She joins
the infinite-sever queue where service time has an exponential distribution with
parameter µ. Then she chooses to join cluster j with probability γj . For that,
she chooses two queues at random in cluster j, and the system indicates the least
loaded among the two queues, ties being solved at random. She returns at this
queue if it is possible. Otherwise, she remains in the infinite-server queue and thus
reattempts selecting another cluster, after some time still exponentially distributed
with parameter µ, then a third one if the two queues chosen in the second one are
saturated, until she joins a one-server queue. All the interarrival and service times
are assumed to be independent.

The key state process is then described. Let the process UN (t) = (UN
i,k(t), 1 ≤

i ≤ C, 0 ≤ k ≤ Ki) be defined where UN
i,k(t) is the proportion of queues of cluster

i with more than or equal to k customers at time t (the number of queues of
cluster i with more than k customers divided by the number Ni of queues of cluster
i). It is a time continuous Markov process irreducible on the finite state space
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UC = {u = (ui,k)1≤i≤C,0≤k≤Ki , k 7→ ui,k decreasing, ui,k ≥ 0, ui,0 = 1}, whose Q-
matrix is given by, for u ∈ UC ,







Q(u, u− 1
Ni
ei,k) = λiNi(ui,k − ui,k+1)1k>0

Q(u, u+ 1
Ni
ei,k+1) = µN(s−

C
∑

c=1
αc

Kc
∑

k=1

uc,k)γi(u
2
i,k − u2

i,k+1)1k<Ki .

The first transition corresponds to the departure of a customer from a queue of
cluster i with k customers (to queue 0), while the second transition to the arrival
of a customer in a queue of cluster i with k customers (from queue 0).

3. Convergence Results

As N gets large, the system behaves as the solution of a dynamical system. It
is given by the following proposition.

3.1. Convergence to the dynamical system.

Proposition 1. If (UN (0)) converges in distribution to x then the Markov process
(UN (t)) converges in distribution to the unique solution (u(t)) of the following ODE,
for 1 ≤ i ≤ C,

(1)























ui,0(t) = 1

u̇i,k(t) = −λi(ui,k(t) − ui,k+1(t)1k<Ki )

+
µγi

αi
(s−

C
∑

c=1

αc

Kc
∑

k=1

uc,k(t))(u2
i,k−1(t) − u2

i,k(t)), 1 ≤ k ≤ Ki

with u(0) = x.

The proof is classical and omitted.

3.2. A unique equilibrium point for the dynamical system. Let us introduce
the following notations. Let 1 ≤ i ≤ C.

Ri
def
= µγi/λiαi(2)

ri
def
= Ri/max

j
Rj(3)

and

Λ
def
= 1/max

j
Rj .(4)

Ri is called the utilization of a queue in cluster i and ri the relative utilization of
a queue in cluster i.

An equilibrium point of this dynamical system is thus a solution ū of

(5)

{

ui,0 = 1

0 = (ui,k − ui,k+11k<Ki) − ρri(u
2
i,k−1 − u2

i,k) , 1 ≤ k ≤ Ki.

where

ρ
def
= Λ−1(s−

C
∑

c=1

αc

Kc
∑

k=1

uc,k).(6)



6 CHRISTINE FRICKER AND NICOLAS SERVEL

The proof of the uniqueness of the equilibrium point, i.e. the solution of
equation (5) is given in [6]. The sketch of the proof is recalled here for the clarity
of the exposition.

The proof is the following. First, let i ∈ {1, . . . , C} be fixed. There is a proba-
bilistic interpretation for the equilibrium point ūi of the ODE (1). By equation (5),
(ūi,k)0≤k≤Ki is the limiting distribution of the stationary number of customers in
a queue in a system of L queues with the same capacity Ki, where service times at
each queue are independent with exponential distribution with mean 1 and where
the arrival process at the system is a Poisson process with rate ρriL, customers
choosing then two queues at random among the L and going to the least loaded,
ties being solved at random, where ρ is solution of equation (6). Inter arrival times
and service times are assumed to be independent. Note that ρ depends on all the
(ūi,k)0≤k≤Ki , 1 ≤ i ≤ C. Thus its existence and uniqueness has to be proved. Two
main arguments are needed.

First, let such a system of L queues with a two-choice strategy be with a
fixed arrival rate ρL. There exists a unique equilibrium point v̄ for the associated
dynamical system (v(t)), limit as L gets large of the process (V N (t)) where V N (t)
is the vector of the proportion at time t of queues with more than k customers,
0 ≤ k ≤ K. It is given by the following lemma.

Lemma 1. There exists a unique solution v̄ = νρ,K of

(7)

{

v0 = 1

0 = (vk − vk+11k<K) − ρ(v2
k−1 − v2

k) , 1 ≤ k ≤ K.

Proof. If K is infinite, this result is known for a long time (see for example [16] or
[11]) and have an explicit form

v̄k = ρ2k−1−1, k ≥ 0.(8)

In case of finite capacity, the result is given in [6], where the proof is detailed.
Nevertheless, an explicit expression is not available. �

Second, the following monotonicity property is very useful.

Lemma 2. νρ,K is an increasing function of ρ.

Proof. It can be proved by a coupling argument that, if ρ ≤ ρ′ then, for each k,

1 ≤ k ≤ K, for each t > 0, V N,ρ
k (t) ≤st V

N,ρ′

k (t). As usual, such a proof is tedious
but necessary to avoid mistakes. It has been skipped in [6]. It is given here in
Appendix. Taking the limit as N tends to +∞, it ends the proof. �

Proposition 2. There exists a unique solution ū = (ūi,k)1≤i≤C, 0≤k≤Ki to equa-
tion (5), given, for 1 ≤ i ≤ C and 1 ≤ k ≤ Ki, ūi,k = νρri,Ki where ρ is the unique
solution of

s = Λρ+

C
∑

c=1

αc

Kc
∑

k=1

νρrc,Kc(k).(9)

Proof. Let ū be an equilibrium point of the dynamical system. Then, by definition,
ū is solution of (5). By Lemma 1, ūi = νρri,Ki where ρ is given by equation (6).
Therefore, the existence and uniqueness of ū reduces to the existence of such a ρ
solution of (6). This equation can be rewritten as equation (9).
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By Lemma 2, the right hand side of equation (9) is an increasing function of
ρ, from 0 to +∞. Thus there exists a unique ρ > 0 solution of (9). �

3.3. Convergence of the invariant measures. The following proposition en-
sures that the limit as N gets large of the stationary proportion of queues of cluster
i with more that k customers is given by the equilibrium point of the ODE i.e.
ūi,k = νρri,Ki .

Proposition 3. The sequence of invariant measures of (UN (t)) converges as N
gets large to the Dirac mass at ū i.e. UN (∞) converges to the deterministic vector
ū, as N tends to infinity.

3.4. Generalization to the case of incentives. Assume now that only a fraction
βi of customers joining cluster i choose among two queues when leaving the infinite-
server queue. Proposition 1 can be rewritten as follows.

Proposition 4. If (UN (0)) converges in distribution to x then the Markov process
(UN (t)) converges in distribution to the unique solution (u(t)) of the following ODE,
for 1 ≤ i ≤ C,
(10)


































ui,0(t) = 1

u̇i,k(t) = −λi(ui,k(t) − ui,k+1(t)1k<Ki )

+
µγi

αi

(

s−
C
∑

c=1

αc

Kc
∑

k=1

uc,k(t)

)

(

βi(u
2
i,k−1(t) − u2

i,k(t)) − (1 − βi)(ui,k−1(t) − ui,k(t))
)

, 1 ≤ k ≤ Ki

with u(0) = x.

Then proposition 2 can also be rewritten as follows.

Proposition 5. There exists a unique solution ū = (ūi,k)1≤i≤C, 0≤k≤Ki to
(11)










ui,0 = 1

0 = (ui,k − ui,k+11k<Ki) − ρri

(

βi(u
2
i,k−1 − u2

i,k) + (1 − βi)(ui,k−1 − ui,k)
)

,

1 ≤ k ≤ Ki.

given, for 1 ≤ i ≤ C and 1 ≤ k ≤ Ki, by ūi,k = νρri,Ki where ρ is the unique
solution of

s = Λρ+

C
∑

c=1

αc

Kc
∑

k=1

νρrc,Kc(k).(12)

The proof uses that Lemma 1 remains true in the extended framework. Fur-
thermore Proposition 3 holds.

To conclude, convergence results adapt to the case where β ∈]0, 1[. It has a
great importance in applications because in practice, only a fraction of users can
follow incentives to go to a queue given by an advisor.

4. Performance Analysis

In this model, by Propositions 2 and 3, ρ is a parameter for s by equation (12)
and the limiting stationary state given by the νρri,Ki ’s. Thus, as N tends to infinity,
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the limiting proportion of problematic queues in each cluster can be plotted by a
parametric curve in ρ as a function of the proportion s of customers per queue and
then the global limiting proportion of problematic queues. The aim is to investigate
this function. It will reduce to study its behavior around the different minima of
the limiting proportions of problematic queues in each cluster. In the following, the
system is always studied as it gets large even if the word limiting is not mentioned.

Definition 1. Let C ≥ 1 be fixed. Denote by α the vector (αi)1≤i≤C and by K the
vector (Ki)1≤i≤C . Let

P (C, ρ, α,K) =

C
∑

i=1

αiP (ρri,Ki)(13)

where P (ρ,K) = νρ,K(0) + νρ,K(K) be the limiting global proportion of problematic
queues. Note that P (ρri,Ki) is the proportion of problematic queues in cluster
i, also denoted by Pi(ρ) in the following, with a slight abuse of notation, as the
dependence on ri and Ki is not explicitly expressed. Note also that for C = 1,
P (1, ρ, 1,K) reduces to P (ρ,K).

Unfortunately, there is no explicit form for νρ,K as the capacity of the queues
is finite. One can wonder whether the explicit expression of νρ,K for K = +∞ can
be used as a good approximation for K < ∞, because in practice K is equal to a
few tens. In fact this approximation is far to be sufficient. Take the homogeneous
case C = 1. The behavior of the proportion of problematic queues around the
minimum is described by a very short interval ρ < 1, ρ close to 1 (see details in [6,
Theorem 2]). For this interval, the previous approximation collapses. Theorem 2 in
[6] fills this gap by describing precisely the behavior of the performance around its
minimum. In the case of different clusters, the situation is more complicated. The
behavior of the curve when ρ is not close to 1 is also needed. For example for ρ < 1,
the approximation when K = +∞ is used. The following section provides such
approximations. It recalls first the result of Theorem 2 in [6] for the homogeneous
case C = 1, when ρ < 1, ρ close to 1, then gives approximations in the two cases
ρ < 1 and ρ ≥ 1.

4.1. Preliminary results on the homogeneous case. For that, let us focus on
the homogeneous case C = 1. For sake of simplicity, and with a slight abuse of
notation, the notation ū is replaced by either u(ρ,K) or u. The first lemma aims
to rewrite equation

Lemma 3. Equation (7) is equivalent to

(14)







u0 = 1,

uk+1 = ρ(u2
k − 1) + u1, 1 ≤ k ≤ K,

uK+1 = 0.

Proof. Indeed, by equation (7), it holds, for 1 ≤ k ≤ K,

uk − ρu2
k−1 = uk+1 − ρu2

k = u1 − ρ.

The equivalence follows. �

To understand the behavior of the performance, the proportion of problematic
queues denoted by P (ρ,K) and defined as νρ,K(0) + νρ,K(K) has to be determined

as long as
∑K

k=1 uk(ρ,K) which allows to obtain s. These values are needed with
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the largest precision according to the value of parameter ρ. For ρ < 1 and close to
1,

Lemma 4. (i) For ρ ∈ [1 − 2−K/2, 1], P (ρ,K) ≤ 4
√
K2−K/2.

(ii)
K
∑

k=1

uk(1 − 2−K/2,K) ≤ K/2 and
K
∑

k=1

uk(1,K) ≥ K − log2 K − 3.

Corollary 1. In an homogeneous system with 2-choice incentives, the proportion
of problematic queues P (ρ,K) is less than

√
K2−K/2 for all s ∈ [K/2 + λ/µ,K −

log2 K − 3].

Proof. The two previous results are proved in [6, Theorem 2]. �

The following lemma deals with the case ρ < 1.

Lemma 5. For ρ < 1, (i) 1 − ρ ≤ P (ρ,K) ≤ 1 − ρ+ 2ρ2K−1,

(ii) S(ρ,K) − 2K+1ρ2K+1−1 ≤
K
∑

k=1

uk(ρ,K) ≤ S(ρ,K) where S(ρ,K)
def
=

K
∑

k=1

ρ2k−1.

Proof. For ρ ≤ 1, u1 ≤ 1 (see details in [6, Theorem 2]). Then, using equation (14),

for 1 ≤ k ≤ K, uk ≤ ρ2k−1. Thus the last inequality in (ii) holds.
Let ε = ρ− u1. Still using equation (14), for 1 ≤ k ≤ K,

uk+1 = ρu2
k − ε.(15)

Note that the proof of [6, Theorem 2] leads to 0 < ε ≤ K2−K , for each ρ ≤ 1.
If ρ < 1, a better bound can be obtained. Using equation (15), for 1 ≤ k ≤ K,

uk ≤ ρu2
k−1 then by induction, for 1 ≤ k ≤ K, uk ≤ ρ2k−1−1u2k−1

1 . But uK+1 = 0,

thus uK+1 = 0 = ρu2
K − ε ≤ ρ2K−1u2K

1 − ε ≤ ρ2K −1(ρ− ε)2K − ε. Therefore

ε ≤ ρ2K+1−1(1 − ε

ρ
)2K ≤ ρ2K+1−1.

By a direct recurrence, already in the proof of [6, Theorem 2], uk ≥ max(ρ2k−1 −
(2k − 1)ε, 0), and therefore uk ≥ max(ρ2k−1 − 2kε, 0). It yields

K
∑

k=1

uk ≥
K
∑

k=1

(ρ2k−1 − 2kε) ≥ S(ρ,K) − (2K+1 − 2)ε ≥ S(ρ,K) − 2K+1ρ2K+1−1.

Furthermore, to prove (ii), P (ρ,K) = 1−u1+uK = 1 − u1 +

√

ρ− u1

ρ
= 1 − ρ+ ε+

√

ε

ρ
where

ε+
√

ε/ρ ≤ ρ2K+1
−1 + ρ2K

−1 ≤ 2ρ2K
−1.(16)

It ends the proof. �

For ρ ≥ 1, queues tend to be overloaded. It is thus interesting to introduce
the number wk of queues with more than k empty slots, instead of the number of
queues with more than k customers. The study of w leads to the following result.

Lemma 6. For ρ ≥ 1,
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(i) ζ(ρ,K) ≤
K
∑

k=1

uk ≤ K − 1

2ρ− 1
+ η(ρ,K)

where ζ(ρ,K) =

K
∑

k=1

xk with x1 =
√

(ρ− 1)/ρ, xk+1 =
√

(xk − 1)/ρ+ 1

and η(ρ,K) =
1

(2ρ− 1)(2ρ)K
+
K22−K

2ρ− 1
+

K2−K

(2ρ− 1)2(2ρ)K
.

(ii)
√

1 − 1/ρ ≤ P (ρ,K) ≤
√

1 − 1/ρ+K2−K(1 + 1/2
√

ρ(ρ− 1)).

Remark. First here ζ has not an explicit expression but is numerically com-
putable. Second, the value of η(ρ,K) is negligible for the practical values of K.
Numerically, note first that s is close to K for ρ = 1.1. The mean capacity of
stations in Paris is more than 32, with a standard deviation of 13. For ρ = 1.1 and
K = 20, η(ρ,K) ≈ 0.026 which is negligible compared to 1.

The proof is given in Appendix.

4.2. Results on the two-cluster case. This section deals with the two-cluster
case in order to have simple and readable results. The two clusters are numbered
such that r1 ≤ r2. By definition, r2 = 1. As investigated in Section 4.1, the interval
of ρ for which the proportion of problematic queues of cluster i is minimal is very
centered around ρri = 1. In the case of two clusters, the trends are the follow-
ing: the proportion of problematic queues in cluster 1 is minimal on an interval
corresponding to ρr1 close to 1, i.e. for ρ close to 1/r1. This interval does not
correspond to ρr2 = ρ close to 1, thus does not match with the region where the
proportion of problematic queues in cluster 2 is minimal, which is very centered
around ρ = 1. Therefore there are two different regions where the proportion of
problematic queues is minimal in each cluster. Concerning the global proportion
of problematic queues, there are two plateaux. The first one corresponds to ρ = 1
and the second one to ρ = 1/r1.

4.3. The first plateau. A result similar to Corollary 1 holds for the first plateau
corresponding to ρ = 1.

Recall that as given in Definition 1, P (ρri,Ki) is the proportion of problematic
queues in cluster i given by P (ρri,Ki) = νρri,Ki(0) + νρri,Ki(Ki), P (C, ρ, α,K) is
the global proportion of problematic queues in the system given by equation (13),
and s is given as a function of ρ by equation (12).

Proposition 6. In a two-cluster system with two-choice incentives, a first plateau
corresponds to ρ close to 1 and P1(ρ) ≈ 1 − r1 while P2(ρ) ≈ 0 . More precisely,

α1(1 − r1) ≤ P (2, ρ) ≤ α1(1 − r1) + 4α2

√

K22−K2/2 + α1(r12−K2/2 + 2r2K1 −1
1 )

for all s in

[Λ + α2K2/2 + α1S(r1,K1),

Λ + α2(K2 − log2 K2 − 3) + α1(S(r1,K1) − 2K1+1r2K1+1−1
1 )

]

.

Proof. Let ρ be in [1−2−K2/2, 1]. On one hand, by Lemma 4, P (ρ,K2) ≤ 4
√
K22−K2/2.

On the other hand, on this interval of ρ, ρr1 ∈ [r1(1 − 2K2/2), r1]. But

P (ρr1,K1) = 1 − νρr1,K1
(1) + νρr1,K1

(K1).
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Let ǫρ,K = ρ− νρ,K(1). By equation (14), thus, νρr1,K1
(K1) =

√

ǫρr1,K1
/(ρr1) and

then, by definition of P (ρ,K),

P (ρr1,K1) = 1 − r1 + r1(1 − ρ) + ǫρr1,K1
+
√

ǫρr1,K1
/(ρr1).(17)

As ρr1 < 1, by equation (16), the sum of the two last terms of the right-hand side

of equation (17) is less than 2(ρr1)2K1 −1. Hence,

1 − r1 ≤ P (ρr1,K1) ≤ 1 − r1 + r12−K2/2 + 2r2K1 −1
1 .(18)

Furthermore, for ρ = 1 − 2K2/2,
∑K2

k=1 ν1−2K2/2,K2
(k) ≤ K2/2 by Lemma 4 and

∑K1

k=1 ν(1−2K2/2)r1,K1
(k) ≤ S(r1,K1), by Lemma 5 and the monotonicity of S(ρ,K)

as a function of ρ. Then for ρ = 1,
∑K2

k=1 ν1−2K2/2,K2
(k) ≥ K2 − log2 K2 − 3 by

Lemma 4 and
∑K1

k=1 ν(1−2K2/2)r1,K1
(k) ≥ S(r1,K1)−2K1+1r2K1+1

1 −1, by Lemma 5.
Then, for all

s ∈ [Λ+α2K2/2+S(r1,K1),Λ+α2(K2−log2 K2−3)+α1(S(r1,K1)−2K1+1r2K1+1−1
1 )],

ρ ∈ [1 − 2−K2/2, 1]. It ends the proof. �

4.4. The second plateau. Similarly, the following result holds. Let us denote
ρ1 = (1 − 2−K1/2)/r1. Only the case where ρ1 > 1 will be investigated. A similar
result will be proved in the other case.

Proposition 7. If ρ1 > 1, in a two-cluster system with two-choice incentives, a
second plateau corresponds to ρ < 1/r1 and close to 1/r1 and P2(ρ) ≈ √

1 − r1

while P1(ρ) ≈ 0. More precisely,

α2

√

1 − r1 + r12−K1/2 ≤ P (2, ρ) ≤ α2

√
1 − r1

+ 4α1

√

K12−K1/2 + α2K12−K1(1 + 1/(2
√

ρ1(ρ1 − 1))).

for all s in
[

Λρ1 + α1K1/2 + α2(K2 − 1

2/r1 − 1
+ η(ρ1,K2)),

Λ/r1 + α1(K1 − log2 K1 − 3) + α2ζ(1/r1,K2)] .

Proof. Let ρ be in [ρ1,
1
r1

]. By Lemma 4, P (ρr1,K1) ≤ 4
√
K12−K1/2. Then,

because ρ1 > 1, by Lemma 6,
√

1 − r1 + r12−K1/2 ≤ P (ρ,K2) ≤ √
1 − r1 +

K12−K1(1 + 1

2
√

ρ1(ρ1−1)
).

Using the same two lemmas, taking ρ = ρ1, as ρ1r1 = 1 − 2−K1/2 is close to 1,

K1
∑

k=1

ν1−2−K1/2,K1
(k) ≤

K1
∑

k=1

ν1,K1
(k) ≤ K1/2,

and
K2
∑

k=1

νρ1,K2
(k) ≤ K2 − 1

2/r1 − 1
+ η(ρ1,K2))

and taking ρ = 1/r1,
K1
∑

k=1

ν1,K1
≥ K1−log2 K1−3 and

K2
∑

k=1

ν1/r1,K2
(k) ≥ ζ(1/r1,K2).

Putting the last two arguments together ends the proof. �
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4.5. Plotting the performance. First, the proportion of problematic queues
Pi(ρ) in each cluster i is plotted as a function of s. The value of the different
parameters are indicated in Figure 1.
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(a) Proportion of problematic queues in
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(b) Proportion of problematic queues in

cluster 2

Figure 1. Proportion of problematic queues in cluster as a fonc-
tion of the mean number of customers per queue s, with Λ = 1, 3,
K1 = 20, K2 = 25, r1 = 0, 8, r2 = 1, α1 = 0, 4, α2 = 1 − α1 = 0, 6.

Both regions analysed in Sections 4.3 and 4.4 are observed for both clusters:

• A region where the proportion of problematic queues is very low, as for
the 2-choice regulated homogeneous model. It corresponds to the interval
[18, 22] of values of s for cluster 1 (Figure 1a) and [7, 14] for cluster 2
(Figure 1b).

• A region where the proportion of problematic queues is quasi constant,
which matches the region where it is minimal for the other cluster. For
cluster 1, it is interval [7, 14] and on this interval P1(ρ) ≈ 1 − r1 = 0, 2.
For cluster 2, on P2(ρ) ≈ √

1 − r1 ≈ 0, 45 on [18, 22].

Then Figure 3 plots the global proportion of problematic queues for the model
with the same parameters. Note the presence of the two plateaux:

• the first one for ρ < 1, ρ close to 1, due to cluster1-queues. By equa-
tion (1),

P (ρ) ≈ α1P1(ρ,K1) ≈ α1(1 − r1) = 0, 08.

It corresponds to the interval [7, 14] of s . By blue dashed lines, the
interval of s [9.42, 12.34] determined in Proposition 6 is drawn. Recall
that on this interval, explicit bounds on performance are given.

• a second one for ρ close to 1/r1, due to cluster2-queues. On this interval,

P (ρ) ≈ α2P2(ρ,K2) ≈ α2

√
1 − r1 ≈ 0, 27.

This plateau corresponds to s in [18, 22]. Green dashed lines draw bounds
obtained in Proposition 7, i.e. s in [19.9, 21.1].

4.6. Influence of the model parameters.
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Figure 2. Global proportion of problematic queues as a fonction
of the mean number of customers per queue s.

4.6.1. Influence of Λ. Eventually, Figure 4 represents the influence of Λ on the
model. By Definition 2, Λ is directly related to the load characteristics of the
different clusters and generalizes λ/µ when C = 1. By equation (12), Λ appears
in the expression of s only by the term Λρ, increasing Λ will shift the curve to the
right just slightly modifying the different interval shape or size.

4.6.2. Influence of K. The different cacacities do not change the performance for
the plateaux. They change the intervals where these performances are achieved.
The intervals are shifted to the right where the Ki are larger.

4.6.3. Influence of the utilizations. A large imbalance between queues increases the
probability of problematic queues. The second plateau is also shifted to the right.

4.6.4. Influence of the cluster sizes. A small cluster with the lowest utilisation,
α1small, gives a lower proportion of problematic queues. Moreover, while α2 is
large, the plateaux are shifted to the right.

To conclude, the worse configuration is a small cluster of queues with high
utilization with respect to a large cluster of queues with low utilization.

5. Dimensioning the System

Dimensioning a bike-sharing system means choosing both the capacities and
the value of s in order to have a minimum proportion of problematic queues. The
fluctuations in time of the parameters is one of the problems to manage the system.
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Figure 3. Global proportion of problematic queues as a fonction
of the mean number of customers per queue s, with Λ = 1, 3,
K1 = 20, K2 = 25, r1 = 0, 8, r2 = 1, α1 = 0, 4, α2 = 1 − α1 = 0, 6.

Fluctuations of parameters like arrival rates or probabilities to return in queues
due for example to flows between housing and working areas, peak activities, etc.
just affect quantity Λ. The clusters are assumed to be fixed during the time, thus
the vectors α and K are fixed. Therefore, the problem reduces to obtain a system
able to work for the different values of utilization, more precisely from a very low
Λmin, close to 0 to a maximum Λmax value of Λ.

One-cluster case.

One has to design a system able to work efficiently for different arrival rates.
We consider a two-choice regulated homogeneous system where the capacity K of
the queues and also the proportion s of customers per queue has to be determined.
One has to manage a system working from λmin to λmax. The mean trip time does
not vary over time. In Corollary 1, an interval for s [K/2 + λ/µ,K − log2 K − 3] is
determined where the performance is very good. K must be chosen such that both
intervals for λ = λmin and λ = λmax have a non empty intersection, that is written

K/2 + λmax/µ ≤ λminµ+K − log2 K − 3.

It is equivalent to

K/2 − log2 K ≥ (λmax − λmin)/µ+ 3.

Function ψ : x 7→ x/2− log2 x is strictly increasing on [2/ ln 2,+∞[ and positive for
x ≥ 4. It admits an inverse function defined on ]0,+∞[ and it is just obtained when
K ≥ ψ−1((λmax −λmin)/µ+3). For example, when λmax −λmin/µ = 10, take just
K ≥ 37. Then s must be taken between K/2+λmax/µ and λminµ+K− log2 K−3.
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Figure 4. Influence of Λ on system performance, with K1 = 20,
K2 = 24, r1 = 0, 8, r2 = 1, α1 = 0, 4and α2 = 1 − α1 = 0, 6.

Note that in practice, bounds are not so tight even if they provide an interval
for s where the performance is very weak. In fact this interval is very close to
[K/2 + λ/µ,K + λ/µ]. A lower minimal value of K can be expected. In the
previous numerical example, this minimal value is not far from 20.

It is commonly admitted that in Paris s is fixed to 0.5K while in Lyon to 0.7K,
K being a mean value of the queue capacities. A data analysis would be necessary
to discuss the relevancy of these choices. Of course, a homogeneous model is a very
rough picture of the system.

Two-cluster case. The same kind of dimensioning could be attempted in this
case. Because if the two plateaux, the idea is to manage the system in order to
obtain the lowest proportion of problematic queues. There are two cases according
which of the two plateaux give the best performance. the study is limited to one
of these two cases, the other one being more intricate.

If α1(1−r1) < α2

√
1 − r1 i.e. α1

√
1 − r1/α2 < 1 then one has to chooseK such

that the first plateaux for Λ = Λmin and Λ = Λmax have a non empty intersection,
that is written

α2K2/2 + Λmax ≤ Λminµ+ α2(K2 − log2 K2 − 3).

It is equivalent to

K2/2 − log2 K2 ≥ (Λmax − Λmin)/α2 + 3

then to

K ≥ ψ−1((Λmax − Λmin)/α2 + 3).
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Moreover, for such a K2, s must be taken between α2K2/2 + Λmax/µ and Λminµ+
α2(K2 − log2 K2 − 3). For example, when Λmax − Λmin = 10, α2 = 1/2, take just
K ≥ 57 and for s in the previous interval, the proportion of problematic queues is
minimal equal to α1(1 − r1).

6. Conclusion

Via the analysis of the large closed network with two clusters and a two-choice
strategy, the behavior of this model is quite well understood. The results underscore
that, due of the heterogeneity, the system does not perform well in the sense that
there there always a cluster with a non negligible proportion of problematic queues.
It cannot disappear by sizing the system. Capacities and fleet size can be ajusted
to obtain the lowest proportion of problematic queues, but this value is a function
of the cluster size and imbalance of the stations.

In the dimensioning problem, knowing precisely the intervals where the pro-
portion of problematic queues is low is crucial. Bounds derived for that purpose do
not seem to be tigh and need to be improved. Moreover, this analysis should be
extended to any number of clusters.

In applications, due to incentives, only a fraction of users follow the rule.
Though the convergence results hold, the behavior remains to understand. This is
a challenging problem for future work.

7. Appendix

Proof of Lemma 2

Proposition 8. If ρ ≤ ρ′ then, for each k, 1 ≤ k ≤ K, for each t > 0,

V N,ρ
k (t) ≤st V

N,ρ′

k (t).

Proof. Note that there is no explicit expression for the νρ,K(k)’s for K < +∞.
If K = +∞, using this expression (8), it is clear that, for each k, νρ,K(k) is an
increasing function of ρ. It leads to prove this strongest result.

This result is proved by coupling. Let ρ and ρ̃ be such that ρ < ρ̃. Blue
customers arrive according to a Poisson process with parameter ρN . Independently,
red customers arrive according to a Poisson process with parameter (ρ̃ − ρ)N .
Take two join-the-shortset-queue-among-two systems with N queues described as
previously. In system 1, the arriving process is the process with blue customers. In
system 2, the arriving process is the superposition of the processes with blue and
red customers, which is Poisson with parameter ρ̃. In both systems, blue customers
have the same arriving and service times, and choose the same two queues, ties
being solved with the same Bernoulli random variables.

Let us define the two following operations:
- exchange a red and a blue customer means that they change both color and
residual service times.
- repaint a red in blue occurs at the arrival of a blue customer. This latest one is
lost, but the red one (already queuing) takes his color (blue) and service time.

We construct a coupling repainting sometimes a red customer in blue or ex-
changing a red and a blue customer, such that, at each time, at each queue, the
blue customers are the same in both systems. The same means there is the same
number of customers, in the same order, with the same residual service times, and
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at the beginning of the queue (red are always behind). Let this assertion at time t
be called A(t). It implies that for each t > 0, L(t) ≤ L̃(t).

For that we prove that, if A is true just before an arrival or a departure of
a customer, then it is true after this time. It is obvious at a departure time of a
customer or at an arrival time of a red customer.

At an arrival time of a blue customer, say time t, let the two choosen queues
be i and j. Assume that L̃i(t−) ≤ L̃j(t−). Recall A(t−) is true. Prove A(t)
distinguishing different cases.

(a) If L̃i(t−) < L̃j(t−) and Li(t−) < Lj(t−), then the blue customer is ac-
cepted in queue i in both systems. So A(t) holds.

(b) If L̃i(t−) < L̃j(t−) and Li(t−) = Lj(t−), then the blue customer is ac-
cepted in queue i for system 2. In system 1, there is a tie. If it is solved
with the blue customer in queue i, A(t) holds. Otherwise it is solved with
the blue customer in queue j. But there is at least one red customer in
queue j, so repaint the first one in the queue in blue and the arriving blue
customer (in queue i in system 2) in red. It means also that the service
time of the arriving blue customer is exchanged with the residual service
time of the red one. Notice that this residual service time has also an
exponential distribution with parameter 1. Thus A(t) holds.

(c) If L̃i(t−) = L̃j(t−) < K and Li(t−) 6= Lj(t−), for example Li(t−) <
Lj(t−). Thus in system 1, the arriving blue customer goes to queue i.
There is a choice in system 2 and do as in case (b).

(d) If L̃i(t−) = L̃j(t−) = K and Li(t−) = Lj(t−) = K, the blue customer is
rejected in both systems. A(t) holds.

(e) If L̃i(t−) = L̃j(t−) = K and Li(t−) or Lj(t−) < K. The arriving blue
customer is accepted in system 1, for example in queue i. But the arriving
blue customer is rejected in system 2. Nevertheless, in this case, there
is one red customer in queue i thus the first one is painted in blue, his
remaining service time becomes the same as the service time of the blue
customer accepted in system 1. It is clear that his total service time has
an exponential distribution with parameter 1.

(f) If L̃i(t−) < L̃j(t−) and Li(t−) > Lj(t−), in system 1, the blue customer
is accepted at queue i, in system 2 at queue j. But in system 2, there is
at least one red customer in j, thus exchange the first red one with the
arriving blue one as in case (b). Thus A(t) holds.

Moreover, it remains to check that process (L̃(t)) considered in this coupling is
indeed a join-the-shortset-queue-among-two system with parameter ρ̃N . For that,
it is sufficient to check that the random variable X = σ1σ<τ +(τ+σ)1σ>τ where σ,
σ′ and τ are i.i.d. random variables, with exponential distribution with parameters
1, 1 and ρ, has an exponential distribution with parameters 1. It is straightforward,
replacing first τ by t. �

Letting N tending to infinity, then t, it gives that, for each k ≥ 1, uk is an
increasing function of ρ.

7.1. Proof of Lemma 6. It yields from definition that, for 0 ≤ i ≤ K, wi = 1 −
uK−i+1. Plugging in equation (14), for 0 ≤ i ≤ K, wi+1 = 1 −

√

1 − (wi − wK)/ρ.

In particular, w0 = 1 − uK+1 = 1 and wK = 1 − u1 ≤ K2−K . Indeed, using that
for ρ = 1, 1 − u1 = ǫ ≤ K2−K (see the proof of [6, Theorem 2] for details), and
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applying Lemma 2, which implies that u is an increasing function of ρ, component
by component, the following equation holds,

0 ≤ δ ≤ K2−K(19)

But, by induction then simple algebra, for 0 ≤ i ≤ K,

wi+1 ≥ 1 − (1 − wi − wK

2ρ
)

≥ wi − wK

2ρ

≥ w0

(2ρ)i+1
− wK

2ρ

i
∑

k=0

(
1

2ρ
)k

≥ 1

(2ρ)i+1
− wK

2ρ

1 − (1/(2ρ))i+1

1 − 1/(2ρ)
.

For
K
∑

k=1

uk(ρ,K) = K −
K
∑

k=1

wK−k+1(ρ,K) = K −
K
∑

i=1

wi, summing the previous

inequalities for i from 1 to K, it holds that

K
∑

k=1

uk(ρ,K) ≤ K −
1

2ρ − ( 1
2ρ)K+1

1 − 1
2ρ

+
wK

2ρ− 1
(K −

1
2ρ − ( 1

2ρ)K+1

1 − 1
2ρ

)

≤ K − 1

2ρ− 1
+ η(ρ,K).

As u1 − 1 ≤ 0, using again equation (14),

uK =

√

ρ− u1

ρ
=

√

ρ− 1

ρ
+
u1 − 1

ρ
≥
√

ρ− 1

ρ
.

Besides, as obtaining equation (14), from equation (7), for 1 ≤ k ≤ K, uk+1 −
ρu2

k = uK+1 − ρu2
K = −ρu2

K . Thus,

uk =
√

uk+1/ρ+ u2
K ≥

√

(uk+1/ρ− 1) + 1.

By induction, it is then easy to prove that for 0 ≤ k ≤ K, uk ≥ xK−k+1.
Summing from 1 to K yields the first inequality of (i). Let us prove (ii). By
definition,

P (ρ,K) = 1 − u1 + uK

= 1 − u1 +

√

ρ− u1

ρ

= δ +

√

1 − 1

ρ
+
δ

ρ

Plugging equation (19) in it leads to (ii). It ends the proof.
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