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Abstract

In an M/M/1/C queue, customers are lost when they arrive to find
C customers already present. Assuming that each arriving customer
brings a certain amount of revenue, we are interested in calculating
the value of an extra waiting place in terms of the expected amount of
extra revenue that the queue will earn over a finite time horizon [0, t].

There are different ways of approaching this problem. One involves
the derivation of Markov renewal equations, conditioning on the first
instance at which the state of the queue changes, a second involves
expressing the value of capacity in terms of the entries of a transient
analogue of the deviation matrix, discussed by Coolen-Schrijner and
van Doorn in [6], and a third involves an elegant coupling argument.

In this paper, we shall compare and contrast these approaches and,
in particular, use the coupling analysis to explain why the value of an
extra unit of capacity remains the same when the arrival and service
rates are interchanged when the queue starts at full capacity.

1 Introduction

Assume that you are the manager of an M/M/1/C queue, and you have
the option of acquiring or releasing waiting places, which we shall refer to
as units of capacity, at time points t1, t2, . . . Customers accepted into the
queue remain there until they are served and generate θ units of revenue,
whereas customers that arrive when the queue is full are turned away and
subsequently generate no revenue. At each time point tj, your task is to
determine how much to pay for an additional unit of capacity or how much
you would want to be reimbursed for relinquishing a unit of capacity. To
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determine these prices, you consider that each customer rejected from the
queue is a lost opportunity that costs θ units of revenue, and calculate the
expected revenue lost over the time period [tj, tj+1), given the arrival rate
λ, service rate µ and number of customers X(tj) for various values of the
capacity C.

In this paper we shall compare and contrast three different ways of ap-
proaching the above problem. Specifically we consider the problem of cal-
culating the expected lost revenue of an M/M/1/C queue over a finite time
horizon [0, t). First, in Section 2, we shall employ a Markov renewal analysis
similar to that used in [5] for the M/M/C/C queue. Then, in Section 3,
we shall relate this to a transient analogue of the deviation matrix defined
in Coolen-Schrijner and van Doorn [6], at the same time deriving a number
of interesting properties of this matrix. In Section 4, we shall adopt a com-
pletely different approach, coupling the evolution of M/M/1/C queues with
different initial numbers of customers. In Section 5, we shall progress to a dis-
cussion of how to determine ‘buying’ and ‘selling’ prices for capacity using
coupling arguments. In particular, we shall establish the counter-intuitive
result that the buying and selling prices remain identical if the arrival and
service rates are interchanged. Finally in Section 6, we shall make some
concluding remarks.

2 Expected Lost Revenue

Our first method is based on that of [5], where the expected lost revenue was
calculated for an M/M/C/C queue.

Let Rn,C(t) be the expected revenue lost in the time interval [0, t) given
capacity C and initial queue length n ∈ {0, . . . , C}, and let Rn,C(t|x) be the
same quantity, conditional on the first change in queue length occurring at
time x. Since revenue is lost at rate θλ when the queue is full and not at all
when less than C customers are present, we have

Rn,C(t|x) =


0, 0 ≤ n < C, t < x
θλt, n = C, t < x
R1,C(t− x), n = 0, t ≥ x
µ

λ+µ
Rn−1,C(t− x) + λ

λ+µ
Rn+1,C(t− x) 0 < n < C, t ≥ x

θλx+RC−1,C(t− x) n = C, t ≥ x.
(2.1)

With Fn(·) the distribution function of the time until the first transition
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occurs when there are n customers in the queue at time 0, we have

Rn,C(t) =

∫ t

0

Rn,C(t|x)dFn(x). (2.2)

Substituting Equation (2.1) into Equation (2.2), three distinct cases arise:

Case 1: n = 0. In this case, F0(x) = 1− e−λx, and from (2.1), we obtain

R0,C(t) =

∫ t

0

R0,C(t|x)dF0(x)

=

∫ t

0

R1,C(t− x)λe−λxdx. (2.3)

Case 2: 0 < n < C. In this case, Fn(x) = 1− e−(λ+µ)x, and (2.1) gives

Rn,C(t) =

∫ t

0

Rn(t|x)dFn(x)

=

∫ t

0

[µRn−1(t− x) + λRn+1(t− x)] e−(λ+µ)xdx. (2.4)

Case 3: n = C. In this case, FC(x) = 1− e−µx, so by (2.1),

RC,C(t) =

∫ t

0

RC,C(t|x)dFC(x) +

∫ ∞
t

RC,C(t|x)dFC(x)

=

∫ t

0

RC−1,C(t− x)µe−µxdx+
θλ

µ

(
1− e−µt

)
. (2.5)

For complex s with <(s) > 0, by taking the Laplace transform of (2.3)-(2.5),
we see that R̃n,C(s) =

∫∞
0
e−stRn,C(t)dt satisfies the system of second order

difference equations

R̃0,C(s) =
λ

s+ λ
R̃1,C(s) (2.6)

R̃n,C(s) =
λ

s+ λ+ µ
R̃n+1,C(s) +

µ

s+ λ+ µ
R̃n−1,C(s), 0 < n < C (2.7)

R̃C,C(s) =
µ

s+ µ
R̃C−1,C(s) +

θλ

s(s+ µ)
, (2.8)

which has the explicit solution

R̃n,C(s) = A(s)rn1 (s) +B(s)rn2 (s), 0 ≤ n ≤ C, (2.9)
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where,

r1,2(s) =
λ+ µ+ s±

√
(λ+ µ+ s)2 − 4µλ

2λ
, (2.10)

A(s) = −B(s)

[
1− λ

s+λ
r2(s)

1− λ
s+λ

r1(s)

]
, (2.11)

and

B(s)

[
rC−12

(
r2(s)−

µ

µ+ s

)
− rC−11 (s)

(
1− λ

s+λ
r2(s)

1− λ
s+λ

r1(s)

)(
r1(s)−

µ

s+ µ

)]
=

θλ

s(µ+ s)
. (2.12)

The Laplace transform R̃n,C(s) can be easily inverted numerically using, for
example, the method described in [1].

Example: the M/M/1/5 loss system

Figure 2.1: Expected lost revenue function for n = 0, ..., 5 when C = 5, λ = 3
and µ = 5

When C = 5, θ = 1, λ = 3 and µ = 5, the values of Rn,C(t) for t ∈ [0, 10]
are given in Figure 2.1. In Figure 2.2, Rn,C(t) is again plotted with the same
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Figure 2.2: Expected lost revenue function for n = 0, ..., 5 when C = 5, λ = 5
and µ = 3

values of C and θ, but this time with µ = 3 and λ = 5. In both cases R0,5(t)
is the lowest curve and R5,5(t) is the highest.

In Figures 2.1 and 2.2, we observe that, when t becomes large, Rn,C(t)
is well approximated by a linear function with a common gradient for all
n. This is due to the convergence of the continuous-time Markov chain
{X(t) : t ≥ 0}, whose state gives the number of customers, to its stationary
distribution, π, as t becomes large. In the steady state, arriving customers
are rejected with probability

πC =
(1− ρ)ρC

1− ρC+1

where ρ = λ/µ, and hence the gradient of these linear approximations is
θλπC .

The difference in the height of the functions Rn,C(t) reflects the difference
in the expected lost revenue before the steady state is reached. The deviation
and transient deviation matrices, which are the focus of the next section, turn
out to be important in understanding this behavior.
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3 The deviation matrix

As in Section 2, let {X(t) : t ≥ 0} denote the queue length process of an
M/M/1/C queue, and pn,C(t) = P[X(t) = C|X(0) = n]. Observe that the
difference between the expected loss function Rn,C(t) and the linear function
λθπCt can be expressed as

Rn,C(t)− λθπCt = λθ

∫ t

0

pn,C(u)du− λθπCt

= λθ

∫ t

0

[pn,C(u)− πC ] du. (3.1)

The last integral is a transient version of the deviation matrix corresponding
to the Markov chain {X(t) : t ≥ 0}. For an irreducible, positive-recurrent,
continuous-time Markov chain on the state space S with generator Q, this
matrix was studied by Coolen-Schrijner and van Doorn in [6]. It is the matrix
whose (i, j)th element is

Di,j =

∫ ∞
0

[pi,j(u)− πj] du,

where pi,j(u) = P[X(u) = j|X(0) = i] = [exp(Qu)]i,j, and π ≡ (πj) is the
stationary distribution, which satisfies πQ = 0 and π1 = 1.

For a specified column vector g, the deviation matrix comes into play
when solving Poisson’s equation,

Qh = g − w1, (3.2)

for the vector-scalar pair (h, w). When the state space of {X(t)} is finite,
the solution to (3.2) is

h = −Dg + c1,

w = πg,

where c is a constant that needs to be specified.

The entries of the deviation matrix D can be expressed in terms of ex-
pected first passage times:

Di,j = πj (me
j −mi,j), (3.3)

where mi,j is the mean first entrance time from state i to state j, and me
j is

the mean first entrance time to state j from the stationary distribution, that
is,

mi,j = E
[

inf{t : X(t) = j} | X(0) = i
]
, me

j =
∑
i

πimi,j,
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see [6]. Conversely, Equation (3.3) allows us to express the mean first passage
times in terms of the entries of the deviation matrix:

mi,j = π−1j (Dj,j −Di,j).

When the state space is infinite, the deviation matrix does not always
exist. Coolen-Schrijner and van Doorn established a necessary and sufficient
condition for existence, see [6, Theorem 4.1]:

Theorem 1 The deviation matrix D of {X(t)} exists if and only if me
j <∞

for some (and then for every) state j ∈ S.

It follows that D exists for any ergodic Markov chain on a finite number
of states and, in particular, the deviation matrix exists for the M/M/1/C
queue.

Let Π = 1π. The deviation matrix can be written explicitly in terms of
the generator Q as

D = (Π−Q)−1 − Π. (3.4)

It satisfies the properties

D1 = 0, (3.5)

πD = 0, (3.6)

D(−Q) = (−Q)D = I − Π, (3.7)

(−Q)D(−Q) = −Q, (3.8)

D(−Q)D = D. (3.9)

The last three properties imply that not only is D a generalised inverse of
−Q, it is the group, or Drazin inverse of −Q.

For an M/M/1/C queue the mean first passage times mi,j have an explicit
expression, and so have the entries of the deviation matrix, see for instance
[9] and [7].
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3.1 The transient deviation matrix

Observe that Equations (2.3)-(2.5) for the expected loss function can be
rewritten as

R0,C(t) = e−λt
∫ t

0

R1,C(u)λeλudu,

Rn,C(t) = e−(λ+µ)t
∫ t

0

[µRn−1,C(u) + λRn+1,C(u)] e(λ+µ)udu, 1 ≤ n ≤ C − 1

RC,C(t) = e−µt
∫ t

0

RC−1,C(u)µeµudx+
θλ

µ

(
1− e−µt

)
,

which can then be transformed into a time-dependent version of Poisson’s
equation of the form

R′(t) = QR(t) + g,

where g> = (0, . . . , 0, λθ) = λθeC . In (3.1), we effectively wrote the solution,

Rn,C(t) = λθπCt+ λθDn,C(t), (3.10)

in terms of the (n,C)th entry of the matrix

D(t) =

∫ t

0

[P (u)− Π] du.

We shall call this matrix the transient deviation matrix. Indeed, as t → ∞,
D(t)→ D.

Lemma 1 If the matrix D has finite entries, then the matrices D and D(t)
are related via the equation

D(t) =
[
I − eQt

]
D. (3.11)

Proof. By definition of D, we have[
I − eQt

]
D =

∫ ∞
0

[
eQu − Π

]
du− eQt

∫ ∞
0

[
eQu − Π

]
du.

=

∫ ∞
0

[
eQu − Π

]
du−

∫ ∞
0

[
eQ(t+u) − Π

]
du

=

∫ ∞
0

[
eQu − Π

]
du−

∫ ∞
t

[
eQv − Π

]
dv

= D(t)
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All integrals are finite by the assumed existence of D. �

As a consequence of Lemma 1 and (3.4), we can write D(t) explicitly in terms
of the generator Q via the expression

D(t) =
[
I − eQt

]
(Π−Q)−1. (3.12)

We can also write D(t) in terms of Q via an expression that does not involve
a matrix inverse, as described in the next lemma.

Lemma 2 The transient deviation matrix can be expressed in the form

D(t) = [Im, 0m] exp

([
Q Im
0 0

]
t

)
[0m, Im]> + 1πt, (3.13)

where the identity and zero matrices Im and 0m are of the same size as D,
and the zero entries in the matrix exponential are scalar.

Proof. We use a particular case of Theorem 1 in [3] which states that the
integral ∫ t

0

eAuBeC(t−u)du, (3.14)

where A, B and C are matrices of appropriate size, can be evaluated as the
upper right corner of the matrix eponential exp(Mt) where

M =

[
A B
0 C

]
.

Here we have

D(t) =

∫ t

0

eQudu+ 1πt,

and we use the above result with A = Q, B = Im, and C = 0. �

It is easy to show from (3.11) that the transient deviation matrix satisfies
the properties

D(t)1 = 0

πD(t) = 0

D(t)(−Q) = (−Q)D(t) = I − eQt

D′(t) = eQt − Π∫ t

0

D(u) du = [tI −D(t)]D.

Furthermore, we can express the transient deviation matrix as the Drazin
inverse of a particular matrix, as shown in the next lemma.
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Lemma 3 The matrices D(t) and

W (t) := −Q
(
I − eQt + Π

)−1
are Drazin inverses of each other.

Proof. We use the facts that the Drazin inverse of −Q is D, the Drazin

inverse of (I − eQt) is
(
I − eQt + Π

)−1 − Π, and the Drazin inverse of the
Drazin inverse of a matrix X is X itself (by the symmetry of (3.7)-(3.9) in
X = −Q and D). �

An explicit expression for the entries of the transient deviation matrix
can also be obtained in terms of the expected first passage times mij: using
(3.11) and (3.3),

Di,j(t) = Dij −
∑
k

[exp(Qt)]i,kDk,j

= πj (me
j −mi,j)−

∑
k

[exp(Qt)]i,k πj (me
j −mk,j) (3.15)

= πj (
∑
k

[exp(Qt)]i,kmk,j −mi,j). (3.16)

Note that since D and exp(Qt) commute in (3.11), the entries of D(t) can
equivalently be written as

Di,j(t) = πj (
∑
k

mi,k[exp(Qt)]k,j −mi,j). (3.17)

It is not easy to obtain an explicit expression for the entries of exp(Qt),
even in the simple case of the M/M/1/C queue. This is, however, possible
in the Laplace transform domain, as we now show. For complex s with
<(s) > 0, let

D̃(s) =

∫ ∞
0

D(t)e−stdt

be the Laplace transform of the transient deviation matrix. Since the Laplace
transform of exp(Qt) is given by Φ(s) := (sI −Q)−1, using (3.11) and some
algebraic manipulations, we obtain

D̃i,j(s) = s−1[Φi,j(s)− s−1πj]. (3.18)

Alternatively, from (3.16) and (3.17),

D̃i,j(s) = πj (
∑
k

Φi,k(s)mk,j −mi,js
−1)

= πj (
∑
k

mi,k Φk,j(s)−mi,js
−1).
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In the M/M/1/C case, the entries of Φ(s) can be obtained explicitly using
the results in Huang and McColl [8] on the analytical inversion of tridiagonal
matrices:

Φ0,0(s) = (s+ λ− λµ y3/y2)−1

Φj,j(s) = [s+ λ+ µ− λµ (zj−1/zj + yj+3/yj+2)]
−1 , 1 ≤ j ≤ C − 1

ΦC,C(s) = (s+ µ− λµ zC−1/zC)−1

Φi,j(s) = (1{i<j}λ
j−izi/zj + 1{i>j}µ

i−jyi+2/yj+2)Φjj(s), 0 ≤ i 6= j ≤ C,

where

yi =
[y−(s+ µ)− 1]

yC+1
+ (y− − y+)

yi+ +
[1− y+(s+ µ)]

yC+1
− (y− − y+)

yi−, 2 ≤ i ≤ C + 2,

zi =
(s+ λ− z−)

(z+ − z−)
(zi+ − zi−) + zi−, 0 ≤ i ≤ C,

with

y± =
(s+ λ+ µ)±

√
(s+ λ+ µ)2 − 4µλ

2λµ
and z± = λµ y±.

Observe that taking the Laplace transform of (3.10) and using (2.9) pro-
vides another way to obtain an explicit expression for the entries of the last
column of D̃(s) in the M/M/1/C queue:

D̃i,C(s) = (λθ)−1R̃i,C(s)− πC
∫ ∞
0

te−stdt

= (λθ)−1[A(s)ri1(s) +B(s)ri2(s)]− πCs−2,

where A(s), r1,2(s) and B(s) are given in (2.10)-(2.12). Finally, note that the
other columns of the deviation matrix could be obtained in a similar way by
generalising the argument developed in Section 2 to the case where revenue
is lost when the queue length is different from C.

In the next section, we will use coupling methods and develop a com-
pletely different approach to compute explicit expressions for the elements of
the last column of D and D(t) in an M/M/1/C queue.

4 Coupling in the M/M/1/C queue

In the rest of the paper, we denote by Qn,C(t) the queue length of an
M/M/1/C queue at time t, given that it starts with n customers at time
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0, with arrivals and potential services generated by the Poisson processes
{A(t)} and {S(t)} with rates λ and µ, respectively. The number of cus-
tomers Qn,C(t) can be written explicitly in terms of these processes via the
expression

Qn,C(t) = n+ (A(t)− Un,C(t))− (S(t)− Ln,C(t)), (4.1)

where the lower regulating process Ln,C(t) counts the number of potential
services in [0, t] which occur when the system is empty, and the upper regu-
lating process Un,C(t) counts the number of arrivals which occur in [0, t] when
the system is at full capacity, given that the initial queue length is n. We see
that Un,C(t) gives the number of customers rejected from the queue, and so

Rn,C(t) = θE (Un,C(t)) . (4.2)

This means,

Rn+1,C(t)−Rn,C(t) = θE(Un+1,C(t))− θE(Un,C(t)). (4.3)

When Un+1,C(t) and Un,C(t) are defined together on a specific probability
space, Equation (4.3) can be simplified, as shown in the next two subsections.
Expressions for Rn+1,C(t)−Rn,C(t) and limt→∞ [Rn+1,C(t)−Rn,C(t)] can then
be used to calculate the final column of the transient deviation and deviation
matrices, respectively, as we demonstrate in a third subsection.

4.1 The coupling

Suppose we have two M/M/1/C queueing systems with same values of C,
λ, θ and µ, but different initial queue lengths n, n + 1 ∈ {0, 1, ..., C}. Con-
sidering them to be defined on different probability spaces, we denote the
corresponding random variables at time t by

(An(t),Sn(t), Qn,C(t), Un,C(t), Ln,C(t)) (4.4)

and
(An+1(t),Sn+1(t), Qn+1,C(t), Un+1,C(t), Ln+1,C(t)) . (4.5)

Note that we added the subsript n or n+1 to the arrival and potential service
processes in order to differentiate the probability space on which they live.
Since the arrival and service processes of the two systems have the same
distribution, we know that

({An(t)}, {Sn(t)}) =d ({An+1(t)}, {Sn+1(t)}) . (4.6)
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Now define two new queueing systems on the same probability space

(Â(t), Ŝ(t), Q̂n,C(t), Ûn,C(t), L̂n,C(t), Q̂n+1,C(t), Ûn+1,C(t), L̂n+1,C(t)) (4.7)

such that

({Â(t)}, {Ŝ(t)}) =d ({An(t)}, {Sn(t)}) =d ({An+1(t)}, {Sn+1(t)}). (4.8)

Since the queue length process and the upper and lower regulating processes
are functions of A(.)(t), S(.)(t), C and the initial queue length n or n + 1,
Equation (4.8) implies,

(An(t),Sn(t), Qn,C(t), Un,C(t), Ln,C(t)) =d (Â(t), Ŝ(t), Q̂n,C(t), Ûn,C(t), L̂n,C(t)),
(4.9)

with the same equality also holding for system n+ 1. This means,

Rn+1,C(t)−Rn,C(t) = θE(Ûn+1,C(t)− Ûn,C(t)), (4.10)

with both queueing systems generated by the same arrival and potential
service processes. The purpose of defining the queueing systems in this way
is to induce a march coupling (see [4]) on (Q̂n+1,C(t), Q̂n,C(t)−). The term

‘march’ is made in reference to the tendency of Q̂n+1,C(t) and Q̂n,C(t) to
move together. This can be understood by inspecting the quasi-birth-and-
death process {(Q̂n,C(t), Q̂n+1,C(t) − Q̂n,C(t)) : t ≥ 0} on the state space
{(k, l) : k = 0, 1, . . . , C − 1, l = 0, 1} ∪ {(C, 0)}, which has initial state (n, 1)
and the following transition rates: for k = 0,

(0, 0)→ (1, 0) at rate λ (4.11)

(0, 1)→
{

(1, 1), at rate λ
(0, 0), at rate µ;

(4.12)

for 0 < k < C − 1,

(k, 0)→
{

(k + 1, 0), at rate λ
(k − 1, 0), at rate µ

(4.13)

(k, 1)→
{

(k + 1, 1), at rate λ
(k − 1, 1), at rate µ;

(4.14)

for k = C − 1,

(C − 1, 0)→
{

(C, 0), at rate λ
(C − 2, 0), at rate µ

(4.15)
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(C − 1, 1)→
{

(C, 0), at rate λ
(C − 2, 1), at rate µ;

(4.16)

and for k = C,
(C, 0)→ (C − 1, 0) at rate µ. (4.17)

On inspection of these rates we can see that phase l = 0 is absorbing.
This means that once equal, the queue length processes remain equal forever.
There are two ways in which the queue length processes can become equal:

• First, a potential service can occur when (Q̂n,C(t), Q̂n+1,C(t) −
Q̂n,C(t)) = (0, 1) resulting in a served customer in system n + 1 and a

‘wasted’ service in system n, which causes L̂n,C(t) to increase by 1 and
both queueing systems to become empty.

• Alternatively, an arrival can occur when (Q̂n,C(t), Q̂n+1,C(t) −
Q̂n,C(t)) = (C − 1, 1). In this case the arrival is accepted to system n

but is rejected from system n + 1, which causes Ûn+1,C(t) to increase
by 1 and both queues to become full.

Both possibilities are illustrated in Figure 4.1.

Let T = inf{t ≥ 0 : Q̂n+1,C(t)− Q̂n,C(t) = 0} be the coupling time. Note
that T occurs at the time of the first ‘wasted’ service in system n or the first
‘rejected’ customer in system n+1. Before T , no customers are lost by either
system and after T , customers are lost from both systems simultaneously.
This means the only time at which {Ûn+1,C(t)− Ûn,C(t)} can increment is T .

If T occurs at the time of a ‘wasted’ service (Q̂n+1,C(T ) = 0), neither system

loses a customer at T and Ûn+1,C(t) − Ûn,C(t) = 0 for all t > T , but if T

occurs at the time of a ‘lost’ customer (Q̂n,C(T ) = C), system n + 1 loses a

customer and system n does not, which means Ûn+1,C(t) − Ûn,C(t) = 1 for
all t > T . Thus,

Ûn+1,C(t)− Ûn,C(t) = 1{t>T}1{Q̂n,C(T )=C}, (4.18)

which gives,

Rn+1,C(t)−Rn,C(t) = θE(1{t>T}1{Q̂n,C(T )=C}). (4.19)

4.2 The effect of an additional customer at time 0

Let ∆n+1,C(t) = Rn+1,C(t) − Rn,C(t), and ∆n+1,C(t|x) be the same quantity
conditional on the first arrival or potential service occurring at time x. Using
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Figure 4.1: Possible realization of Q̂1,3(t) (solid line) and Q̂2,3(t) (bold dashed
line). In the upper graph the queue length processes couple after an addi-
tional service is missed when there is one customer initially and in the lower
graph the queue length processes couple after an additional customer is lost
when there are two customers initially.

transition rates (4.11)-(4.17) and Equation (4.19), we see that

∆n+1,C(t|x) =


0, n = 0, t ≥ x
0, 0 ≤ n ≤ C, t < x
µ

λ+µ
∆n,C(t− x) + λ

λ+µ
∆n+2,C(t− x), 0 < n ≤ C, t ≥ x

θ, n = C + 1.
(4.20)

Let F (·) denote the distribution of the time until the first arrival or potential
service. Then,

∆n,C(t) =

∫ ∞
0

∆n,C(t|x)dF (x), (4.21)
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where F (·) is exponential with parameter λ + µ. The Laplace transform of
∆n+1,C(t), denoted by ∆̃n+1,C(s), can be found using a method similar to
that of Section 2. This has the form

∆̃n+1,C(s) = A(s)rn+1
1 (s) +B(s)rn+1

2 (s), (4.22)

where,

r1,2(s) =
λ+ µ+ s±

√
(λ+ µ+ s)2 − 4µλ

2λ
, (4.23)

A(s) =
θ

s(rC+1
1 (s)− rC+1

2 (s)
, (4.24)

and B(s) = −A(s).

In Figures 2.1 and 2.2 we noted that as t increases Rn+1,C(t) − Rn,C(t)
stabilized at a constant value. Using a similar method an analytic expression
for limt→∞ [Rn+1,C(t)−Rn,C(t)] can be derived, as we show now.

Theorem 2 If Rn+1,C(t) and Rn,C(t) are calculated using common arrival
and service rates, λ and µ, and common revenue lost per customer, θ, then,

lim
t→∞

[Rn+1,C(t)−Rn,C(t)] =


θ

1− (µ/λ)n+1

1− (µ/λ)C+1
, λ 6= µ

θ
n+ 1

C + 1
, λ = µ,

(4.25)

for any C ∈ N and n ∈ {0, 1, ..., C − 1}.

Proof. We have

Rn+1,C(t)−Rn,C(t) = θE(1{t>T}1{Q̂n,C(T )=C}). (4.26)

Define the free process starting in state n+1 as X̂n+1(t) = (n+1)+Â(t)−Ŝ(t),
and note that T is a stopping time with E(T ) <∞. Then

θE(1{t>T}1{Q̂n,C(T )=C}) = θP(t ≥ T )P(X̂n+1(T ) = C + 1|t ≥ T ) (4.27)

→ θP(X̂n+1(T ) = C + 1) as t→∞. (4.28)

The probability that an increment of {X̂n+1(t)} corresponds to an arrival is
p = λ/(λ+µ) and the probability that an increment of {X̂n+1(t)} corresponds
to a service is 1 − p = µ/(λ + µ). As t becomes large, we can consider the
discrete time counterpart of {X̂n+1(t)} and note that P(X̂n+1(T ) = C) can
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be found by solving an appropriate gambler’s ruin problem (see for instance
[2]) which has a well known solution leading to

θP(X̂n+1(T ) = C + 1) =


θ

1−

(
1−p
p

)n+1

−
(

1−p
p

)C+1

1−
(

1−p
p

)C+1

, λ 6= µ

θ
n+ 1

C + 1
, λ = µ.

(4.29)
When λ 6= µ, Equation (4.29) can be simplified to give the desired result. �

4.3 The transient deviation and deviation matrices

In the previous subsection, we obtained explicit expressions for ∆̃n+1,C(s) and
∆n+1,C := limt→∞ [Rn+1,C(t)−Rn,C(t)]. We now show how these expressions
can be used to calculate the last column of the transient deviation and the
deviation matrix, that is, Dn,C(t) and Dn,C respectively.

Recall that when the M/M/1/C queue reaches its stationary distribution
revenue is lost at a constant rate given by θλπCt. This means that if the
initial queue length follows the stationary distribution, then the lost revenue
is given by θλπCt, that is,

C∑
k=0

πkRk,C(t) = λθπCt. (4.30)

When k < n an alternative expression for Rk,C(t) is,

Rk,C(t) = Rn,C(t)−
n∑

i=k+1

∆i,C(t), (4.31)

and similarly when k > n we have,

Rk,C(t) = Rn,C(t) +
k∑

i=n+1

∆i,C(t). (4.32)

From Equations (4.30), (4.31) and (4.32) we get,

θλDn,C(t) = Rn,C(t)− λθπCt (4.33)

=
n−1∑
k=0

πk

n∑
i=k+1

∆i,C(t)−
C∑

k=n+1

πk

k∑
i=n+1

∆i,C(t). (4.34)
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This implies,

θλDn,C = lim
t→∞

[Rn,C(t)− λθπCt] (4.35)

= lim
t→∞

[
n−1∑
k=0

πk

n−1∑
i=k

∆i,C(t)−
C∑

k=n+1

πk

k∑
i=n+1

∆i,C(t)

]
(4.36)

=
n−1∑
k=0

πk

n∑
i=k+1

∆i,C −
C∑

k=n+1

πk

k∑
i=n+1

∆i,C . (4.37)

Equations (4.34) and (4.37) give the values of the final column of the transient
deviation and deviation matrices, respectively.

5 Buying and selling prices

The use of coupling gave us another perspective on the effect of one additional
initial customer on the expected loss function, and enabled us to derive an
alternative method to calculate the final column of the transient deviation
and deviation matrices. Insight gained from coupling can also be used to
understand a number of puzzling results, as we show in this section.

5.1 Defining the buying and selling prices

We now return to the capacity planning example discussed in Section 2.
Having determined the expected lost revenue in the time interval [0, t) given
an initial queue length n and capacity C, the manager must then be able to
convert these results into the price at which extra capacity should be bought
or sold. Suppose the manager has a planning horizon of a single period with
length t. The manager should then purchase an additional unit of capacity
only when the reduction in the expected lost revenue over [0, t) is greater
than the cost required to purchase the unit of capacity. We therefore let the
buying price, Bn,C(t), be

Bn,C(t) = Rn,C(t)−Rn,C+1(t) for all n ∈ {0, ..., C}, (5.1)

and for similar reasoning we let the selling price Sn,C(t) be

Sn,C(t) =

{
Rn,C−1(t)−Rn,C(t), n ∈ {0, ..., C − 1}
RC−1,C−1(t)−RC,C(t) + θ, n = C.

(5.2)
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Note that when n = C, we assume that selling a unit of capacity causes
a single customer to be lost immediately. This incurs a penalty, which we
have taken to be equal to θ in Equation (5.2). It is arguable that expelling
a customer who is already present has a greater detrimental consequence,
say in terms of customer goodwill, than refusing entry to a customer. If we
wanted to model such a consideration, we could do so by incorporating a
penalty greater than θ in Equation (5.2).

Example: the M/M/1/5 loss system

For a ‘low blocking’ system with C = 5, θ = 1, λ = 3, and µ = 5 the buying
and selling prices, Bn,C(t) (dotted lines) and Sn,C(t) (continuous lines) for
n = 3, 4, 5 are displayed in the upper graph of Figure 5.1. The same results
for a ‘high blocking’ system with C = 5, θ = 1, λ = 5, and µ = 3 are given
in the lower graph of Figure 5.1.

One feature, which is of particular interest to us, is that the selling prices in
the high blocking and low blocking systems converge to the same gradient,
with the same also true for the buying prices. Furthermore, when n = C the
selling prices for the high blocking and low blocking systems are identical for
all t ≥ 0. These are counter-intuitive results, since it is reasonable to expect
that the manager of the high blocking system would place a higher value on
capacity in both the short and long term.

The convergence to the same asymptotic gradient can be understood by
considering the difference in the asymptotic gradient of the expected lost
revenue functions. Using simple algebraic arguments it can be shown that

λ(πC(ρ)− πC+1(ρ)) = µ(πC(ρ−1)− πC+1(ρ
−1))

or equivalently,

λ

[
(1− ρ)ρC

1− ρC+1
− (1− ρ)ρC+1

1− ρC+2

]
= µ

[
(1− ρ−1)ρ−C

1− ρ−(C+1)
− (1− ρ−1)ρ−(C+1)

1− ρ−(C+2)

]
.

However, it is initially unclear why the selling prices for the high blocking
and low blocking systems are identical when n = C. It turns out that this is
a more general phenomenon.

Theorem 3 Consider two M/M/1/C queues with identical values of C and
θ, a ‘high blocking’ queue with parameters λHB, µHB and a ‘low blocking’
queue with parameters λLB, µLB, which are such that λHB > λLB, λHB = µLB
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Figure 5.1: Top: Buying (solid) and selling (dotted) price functions for n =
3, 4, 5 when C = 5, λ = 3 and µ = 5 (low blocking system). Bottom: Buying
(solid) and selling (dotted) price functions for n = 3, 4, 5 when C = 5, λ = 5
and µ = 3 (high blocking system).

and µHB = λLB. If SHBn,C (t) is the selling price of capacity in the high blocking
queue and SLBn,C(t) is the selling price of capacity in the low blocking queue,
then

SHBC,C(t) = SLBC,C(t) for all t ≥ 0. (5.3)

This result is proved in the next subsection in which we first consider general
identities for the selling price.
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5.2 The coupling

Let Un,C−1(t) and Un,C(t) count the number of customers rejected from an
M/M/1/C−1 and an M/M/1/C queue respectively, with common values of
θ, n, λ and µ and no defined dependence. We use the convention that if there
are initially C customers in the M/M/1/C − 1 queue, then one customer is
lost instantaneously, so that

UC,C−1(t) = 1 + UC−1,C−1(t). (5.4)

Using the definition (5.2) of the selling price we have,

Sn,C(t) = Rn,C−1(t)−Rn,C(t) (5.5)

= θE(Un,C−1(t))− θE(Un,C(t)). (5.6)

The state of the two queueing systems M/M/1/C−1 and M/M/1/C at time
t is respectively given by

(AC−1(t),SC−1(t), Qn,C−1(t), Un,C−1(t), Ln,C−1(t)) (5.7)

and
(AC(t),SC(t), Qn,C(t), Un,C(t), Ln,C(t)) . (5.8)

As in Section 4, we again define two new queueing systems on the same
probability space

(Â(t), Ŝ(t), Q̂n,C−1(t), Ûn,C−1(t), L̂n,C−1(t), Q̂n,C(t), Ûn,C(t), L̂n,C(t)) (5.9)

such that

({Â(t)}, {Ŝ(t)} =d ({AC−1(t)}, {SC−1(t)}) =d ({AC(t)}, {SC(t)}) . (5.10)

We refer to these queueing systems as system C and system C − 1, respec-
tively. Condition (5.10) ensures that

(AC(t),SC(t), Qn,C(t), Un,C(t), Ln,C(t)) =d (Â(t), Ŝ(t), Q̂n,C(t), Ûn,C(t), L̂n,C(t)),
(5.11)

with the same equality also holding for system C − 1. This implies,

Sn,C(t) = θE(Ûn,C−1(t)− Ûn,C(t)). (5.12)

By allowing both queues to be generated by common arrival and ser-
vice processes we again induce a march coupling on the queue length
processes, (Q̂n,C−1(t), Q̂n,C(t)). The quasi-birth and death process
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{(Q̂n,C−1(t), Q̂n,C(t) − Q̂n,C−1(t)) : t ≥ 0} on the state space {(k, l) : k =
0, 1, . . . , C − 1, l = 0, 1} has the following transition rates: for k = 0,

(0, 0)→ (1, 0) at rate λ (5.13)

(0, 1)→
{

(1, 1), at rate λ
(0, 0), at rate µ;

(5.14)

for 0 < k < C − 1,

(k, 0)→
{

(k + 1, 0), at rate λ
(k − 1, 0), at rate µ

(5.15)

(k, 1)→
{

(k + 1, 1), at rate λ
(k − 1, 1), at rate µ;

(5.16)

and for k = C − 1,

(C − 1, 0)→
{

(C − 1, 1), at rate λ
(C − 2, 0), at rate µ

(5.17)

(C − 1, 1)→ (C − 2, 1) at rate µ. (5.18)

With reference to Figure 5.2, we see that for all t ≥ 0, either Q̂n,C(t) −
Q̂n,C−1(t) = 0 or Q̂n,C(t)− Q̂n,C−1(t) = 1. When Q̂n,C(t)− Q̂n,C−1(t) = 1:

• both systems lose customers at precisely the same times (for exam-
ple, at t = 2.4, 18.9 in Figure 5.2) which means during these periods
{Ûn,C−1(t)− Ûn,C(t)} remains constant, and

• only system C−1 can ‘waste’ a potential service. Once this occurs (for
example, at t = 3.9 in Figure 5.2), the queue length processes become
equal.

When Q̂n,C(t)− Q̂n,C−1(t) = 0:

• both systems ‘waste’ services at precisely the same times (for example,
at t = 4.5, 8.5, 9.5, 10, 10.7 in Figure 5.2), but

• only system C−1 can lose a customer and, once this occurs (for exam-
ple at t = 1.6, 16.6 in Figure 5.2), the queue length processes become
unequal, resulting in an additional customer lost by system C−1. This
increases {Ûn,C−1(t)− Ûn,C(t)} by one.
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Figure 5.2: A possible realization of Q̂1,2(t) (solid line) and Q̂1,3(t) (dashed
line). Stars represent simulatenous missed services in both systems, upward
pointing triangles represent missed services in system C − 1 and downward
pointing triangles represent lost customers. Additional customers are lost at
times 1.6 and 16.6 and an additional service is missed at time 3.9.

Since systems C and C− 1 have the same initial queue length n we have,
Q̂n,C(0)− Q̂n,C−1(0) = 0. Let T1 be the first time that Q̂n,C(0)− Q̂n,C−1(0) =
1. This is also the time that system C − 1 loses its first customer (T1 = 1.6
in Figure 5.2). At this time system C does not lose a customer and therefore

T1 = inf
{
t ≥ 0 : Ûn,C−1(t)− Ûn,C(t) = 1

}
. (5.19)

After T1, further losses of customers from system C−1 which are not matched
by losses of customers from system C occur according to a renewal process
where the ith renewal of {Ûn,C−1(t)− Ûn,C(t)} can be viewed as the (i+ 1)st
additional lost customer. To see this, let the ith renewal occur at time t,
where Q̂n,C(t) = C and Q̂n,C−1(t) = C − 1. For another additional customer
to be lost two events must take place:

• First, system C−1 must miss an additional service after initially being
full. Let this occur at time t+Ti,L. At this time both queues are empty.
In particular Ti,L is the time taken for system C to become empty after
initially being full.

• Second, system C− 1 must lose an additional customer. Let this occur
at time t+Ti,L+Ti,U and at this time both queues are full. In particular,
Ti,U is the time taken for system C to become full after initially being
empty.
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Further renewals then continue to be generated by this sequence of events.
We now have the base to prove Theorem 3.

Proof of Theorem 3. Using the definitions of T1, Ti,L and Ti,U we have,

Ûn,C−1(t)− Ûn,C(t) = sup{m :
m∑
k=1

[1k=1T1 + 1k≥2 (Tk,U + Tk,L)] ≤ t}. (5.20)

Note that since λHB = µLB and µHB = λLB we have,

THBi,U =d T
LB
i,L for all i ∈ N (5.21)

and
THBi,U =d T

LB
i,L for all i ∈ N. (5.22)

This is because when the arrival and service rates are swapped the distribu-
tion of time taken for system C to become full after starting empty becomes
the distribution of time taken from system C to become empty after starting
full, and vice versa.

For a general initial queue length n, we do not have THB1 =d T
LB
1 and thus,

we do not have ÛHB
n,C−1(t) − ÛHB

n,C (t) =d Û
LB
n,C−1(t) − ÛLB

n,C(t). However, when
n = C and a unit of capacity is sold, a single customer is lost immediately.
Hence,

THB1 = TLB1 = 0. (5.23)

From Equations (5.20), (5.21), (5.22) and (5.23), we have,

ÛHB
C,C−1(t)− ÛHB

C,C (t) =d Û
LB
C,C−1(t)− ÛLB

C,C(t) for all t ≥ 0. (5.24)

and hence,∣∣SHBC (t)− SLBC (t)
∣∣ = θ|E(ÛHB

C,C−1(t)− ÛHB
C,C (t))− E(ÛLB

C,C−1(t)− ÛLB
C,C(t))|

= 0

for all t ≥ 0. This completes the proof. �

Note that,

lim
t→∞

Sn,C(t)

t
=

θ

E(Ti,L) + E(Ti,U)
. (5.25)

From Equations (5.25), (5.21) and (5.22) we have

lim
t→∞

SHBn,C (t)

t
= lim

t→∞

SLBn,C(t)

t
, (5.26)
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for C ∈ N and n ∈ {0, ..., C}. This explains, from a stochastic point of view,
the common asymptotic gradients of the selling prices observed in Figure 5.1.

Observe that the Ti,L are independent phase-type random variables with
initial state (C−1, 1) and absorbing state (0, 0), and the Ti,U are independent
phase-type random variables with initial state (0, 0) and absorbing state (C−
1, 1). The transition rates associated with both phase-type distributions are
given in (5.13)-(5.18), and the expectations appearing in the denominator of
(5.25) can be computed explicitly.

Theorem 3 also gives us properties of the last entry of the expected lost
revenue vector and the lower right entry of the transient deviation matrix.

Corollary 1 For all t ≥ 0,

RHB
C,C(t) = RLB

C,C(t) + θ
(
λHB − λLB

)
t. (5.27)

Proof: We can write

RC,C(t) = R0,0(t) +
C∑
k=1

− (Rk−1,k−1(t)−Rk,k(t)) (5.28)

= θλt+ Cθ +
C∑
k=1

−Sk,k(t), (5.29)

which gives

RHB
C,C(t)−RLB

C,C(t) = θλHBt+ Cθ +
C∑
k=1

−SHBk,k (t) (5.30)

− [θλLBt+ Cθ +
C∑
k=1

−SLBk,k (t)] (5.31)

= θ
(
λHB − λLB

)
t (5.32)

by Theorem 3. �

Corollary 2 For all t ≥ 0,

λHBDHB
C,C(t) = λLBDLB

C,C(t). (5.33)

Proof: On the one hand, we have

θ
(
λHBDHB

C,C(t)− λLBDLB
C,C(t)

)
= RHB

C,C(t)− λHBθπHBC t−RLB
C,C(t) + λLBθπLBC t

(5.34)

= θ
[
λHB − λHBπHBC − λLB + λLBπLBC

]
t,
(5.35)
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while, on the other hand,

λ− λπC = λ− (µ− λ)
(λ/µ)C+1

1− (λ/µ)C+1
(5.36)

=
λ− µ(λ/µ)C+1

1− (λ/µ)C+1
. (5.37)

Thus, the right hand side of (5.35) is equal to

θt

(
λHB − µHB(λHB/µHB)C+1

1− (λHB/µHB)C+1
− λLB − µLB(λLB/µLB)C+1

1− (λLB/µLB)C+1

)
. (5.38)

After observing that λHB = µLB and λLB = µHB, some minor algebraic
manipulation gives the result that expression (5.38) is equal to zero. �

6 Concluding remarks

In the previous sections, we have investigated three different approaches for
computing the expected loss function associated with an M/M/1/C queue,
and the links between these approaches were highlighted. The approach pre-
sented in Section 2 relies on a conditioning argument; the approach presented
in Section 3 makes use of the deviation and the transient deviation matrix;
and the approach used in Sections 4 and 5 involves coupling arguments.

The results of Sections 2, 3 and 4 can be generalised to the case where
the system has 1 ≤ s ≤ C servers. In particular, the same conditioning
argument as in Section 2 was used in [5] to compute the Laplace transform of
the loss function corresponding to an M/M/C/C queue. This argument can
be generalised to any value of s, however, it leads to cumbersome expressions
when 1 < s < C.

The entries of the deviation matrix of an M/M/s/C queue were com-
puted in [9]. The entries of the Laplace transform of the transient deviation
matrix can be computed using (3.18), where explicit expressions for Φi,j in
the M/M/s/C can be obtained using the results in [8].

The coupling argument developed in Section 4 can also be generalised
to the M/M/s/C case. This leads to a generalisation of Theorem 2 and
of the technique to compute the last column of the deviation and transient
deviation matrix. Note that the results in Theorem 2 can also be obtained
directly using the explicit expression for the entries of the last column of the
deviation matrix since limt→∞ [Rn+1,C(t)−Rn,C(t)] = Dn+1,C −Dn,C .
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Finally, the results of Section 5 are specific to the single server case and
do not generalise to multiple servers.
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