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Abstract

We consider a system of processor-sharing queues with state-dependent service rates. These are
allocated according to balanced fairness within a polymatroid capacity set. Balanced fairness is known
to be both insensitive and Pareto-efficient in such systems, which ensures that the performance metrics,
when computable, will provide robust insights into the real performance of the system considered. We
first show that these performance metrics can be evaluated with a complexity that is polynomial in the
system size if the system is partitioned into a finite number of parts, so that queues are exchangeable
within each part and asymmetric across different parts. This in turn allows us to derive stochastic
bounds for a larger class of systems which satisfy less restrictive symmetry assumptions. These results
are applied to practical examples of tree data networks, such as backhaul networks of Internet service
providers, and computer clusters.
Keywords: Processor-sharing queueing systems, performance, balanced fairness, poly-symmetry.

1 Introduction

Systems of processor-sharing queues with state-dependent service rates have been extensively used to model a
large variety of real communication and computation systems like content delivery systems [17, 18], computer
clusters [2, 11] and data networks [8, 14]. They are natural models for such real systems as they capture
the complex interactions between different jobs and also have a promise of analytical tractability of user
performance when subject to stochastic loads. Indeed, in the past two decades researchers have been able to
obtain explicit performance expressions and bounds for several such systems, see [4, 5, 6, 7, 12, 13, 14, 17, 18].

However, few performance results scale well with the system size. Those that do rely on restrictive
assumptions related to the topology or the symmetry of the system [14, 18]. One of the main goals of
this paper is to provide scalable performance results for a class of processor-sharing systems which find
applications in bandwidth-sharing networks and computer clusters.

One of the key features of processor-sharing systems is the allocation of the service rates per queue in
each state. A particular class of resource allocations which is more tractable for performance analysis is
characterized by the balance property which constrains the relative gain in the service rate at one queue
when we remove a job from another queue. Processor-sharing systems where the resource allocation satisfies
this property are called Whittle networks [16]. In particular, if the service rates are constrained by some
capacity set, corresponding to the resources of the real system considered, then there exists a unique policy
which satisfies the balance property while being efficient, namely balanced fairness [3]. In this paper we
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focus on systems which are constrained by a polymatroid capacity set [10, 17] and operate under balanced
fair resource allocation.

It was proved in [17] that balanced fairness is Pareto-efficient when it is applied in polymatroid capacity
sets, which in practice yields explicit recursion formulas for the performance metrics. However, if no further
assumptions are made on the structure of the system, the time complexity to compute these metrics is
exponential with the number of queues. It was proved in [17] that it can be made linear at the cost of strict
assumptions on the overall symmetry of the capacity set and the traffic intensity at each queue. Under
symmetry in interaction across queues, it was shown in [18] that the performance is robust to heterogeneity
in loads and system configuration under an appropriate scaling regime. However, there is little understanding
of performance for scenarios where queues themselves interact in heterogeneous fashion.

In this paper, we consider a scenario where the processor-sharing system is partitioned into a finite
number of parts, so that queues are exchangeable within each part and asymmetric across different parts.
For such systems, that we call poly-symmetric, we obtain a performance expression with computational
complexity which is polynomial in the number of queues. We demonstrate the usefulness of these bounds
by applying them to tree data networks, which are representative of backhaul networks, and to randomly
configured heterogeneous computer clusters. In addition, we provide a monotonicity bound which allows us
to bound performance of systems with capacity regions which are ‘nearly’ poly-symmetric.

The paper is organized as follows. Section 2 introduces the model and shows that it applies to real
systems as varied as tree data networks and computer clusters. We also recall known facts about balanced
fairness. In Section 3, we introduce the notion of poly-symmetry and show that it yields explicit recursion
formulas for the performance metrics which have a complexity that is polynomial in the number of queues
in the processor-sharing system. Finally, Section 4 gives stochastic bounds to compare the performance of
different systems. We conclude in Section 5.

2 System model

2.1 Processor-sharing queueing system with a polymatroid capacity set

We consider a system of n processor-sharing queues with coupled service rates and we denote by I =
{1, . . . , n} the set of queue indices. For each i ∈ I, jobs enter the system at queue i according to some
Poisson process with intensity λi and have i.i.d. exponential service requirements with mean σi, resulting in
a traffic intensity ρi = λiσi at queue i. Jobs leave the system immediately after service completion. Such a
queueing system will be called a processor-sharing system throughout the paper.

The system state is described by the vector x = (xi : i ∈ I), where xi is the number of jobs at queue i
for each i ∈ I. For each x ∈ Nn, I(x) = {i ∈ I : xi > 0} denotes the set of active queues in state x. Queues
have state-dependent service rates. For each x ∈ Nn, φ(x) = (φi(x) : i ∈ I) denotes the vector of service
rates per queue when the system is in state x.

The system is characterized by a capacity set, which is defined as the set of all feasible resource allocations
φ = (φi : i ∈ I) ∈ Rn+. This capacity set may be specified by practical constraints like the capacities of
the links in a data network or the service rates of the servers in a computer cluster. We are interested in
queueing systems whose capacity set is a particular type of polytope called a polymatroid [10].

Definition 1. A polytope C in Rn+ is a polymatroid if there exists a non-negative function µ defined on the
power set of I such that

C =

{
φ ∈ Rn+ :

∑
i∈A

φi ≤ µ(A), ∀A ⊂ I

}
and µ satisfies the following properties:

Normalization: µ(∅) = 0,
Monotonicity: for all A,B ⊂ I, if A ⊂ B, then µ(A) ≤ µ(B),
Submodularity: for all A,B ⊂ I, µ(A) + µ(B) ≥ µ(A ∪B) + µ(A ∩B).
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(b) Assignment graph of the cluster
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ρ1 = λ1σ1

ρ2 = λ2σ2

(c) Equivalent processor-sharing system
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(d) Capacity set

Figure 1: A tree data network and a computer cluster with their representation as a processor-sharing system
with n = 2 queues

µ is called the rank function of the polymatroid C.

Before we specify the resource allocation, we give two examples of real systems that fit into this model.

2.2 Tree data networks

The first example is a data network with a tree topology [6], representative of backhaul networks of Internet
service providers. There are n users that can generate flows in parallel and we denote by I = {1, . . . , n}
the set of user indices. For any i ∈ I, user i generates data flows according to some Poisson process with
intensity λi that is independent of the other users. All flows generated by user i follow the same route in the
network and have i.i.d. exponentially distributed sizes with mean σi in bits, resulting in a traffic intensity
ρi = λiσi in bit/s. The state of the network is described by the vector x = (xi : i ∈ I), where xi is the
number of ongoing flows of user i, for each i ∈ I.

We make the following assumptions on the allocation of the resources. The capacity of each link can be
divided continuously among the flows that cross it. Also, the resource allocation per flow only depends on
the number of flows of each user in progress. In particular, all flows of a user receive the same capacity,
so that the per-flow resource allocation is entirely defined in any state x ∈ Nn by the total capacity φi(x)
allocated to flows of user i, for any i ∈ I.

Under these assumptions, we can represent the data network by a processor-sharing system with n queues,
one per user. For each i ∈ I, the jobs at queue i in the equivalent processor-sharing system are the ongoing
flows of user i in the data network, and the service rate of this queue in state x is the total capacity φi(x)
allocated to the flows of user i. We will now describe the corresponding capacity set.

Each link can be identified by the set of users that cross it. Specifically, we can describe the network by
a family T of subsets of I, where a set L ⊂ I is in T if and only if there is a link crossed by the flows of all
users i ∈ L. We assume that the network is a tree in the following way.

Definition 2. The network is called a tree if for all L,M ∈ T , L ∩M 6= ∅ implies that L ⊂M or M ⊂ L.

3



There is no loss of generality in assuming that I ∈ T , for if not, the network is a forest where each subtree
can be considered independently. For each L ∈ T , we denote by CL the capacity in bit/s of link L. We
assume that all links are constraining since otherwise we can simply ignore the non-constraining ones. The
resource allocation must then satisfy the capacity constraints∑

i∈L
φi(x) ≤ CL, ∀L ∈ T , ∀x ∈ Nn, (1)

so that the capacity set is given by

C =

{
φ ∈ Rn+ :

∑
i∈L

φi ≤ CL, ∀L ∈ T

}
.

Example 1. Figures 1a, 1c and 1d give the example of a tree data network with 2 users. The routes of the
users are given in Figure 1a. The flows of each user cross one link that is individual and another that is
shared by both users. The representation of this data network as a processor-sharing system is given in
Figure 1c and the corresponding capacity set is given in Figure 1d. It is easy to see that it is a polymatroid
for any value of the link capacities.

The following theorem generalizes this last remark to any tree data network.

Theorem 1. The capacity set of a tree data network is a polymatroid with rank function µ defined by

µ(A) = min

{∑
L∈Σ

CL : Σ ⊂ T is a family of disjoints sets s.t. A ⊂
⋃
L∈Σ

L

}

for all non-empty set A ⊂ I. In addition, we have µ(L) = CL for each L ∈ T .

Proof. We can certainly assume that T contains all the singletons since letting C{i} = minL⊂T ,i∈L CL for
each i ∈ I does not modify the capacity set C. We can easily see that the result remains true if we do not
make this assumption.

We apply the following lemma which is a direct consequence of Theorems 2.5 and 2.6 of [10] about
intersecting-submodular functions on intersecting families of subsets.

Lemma 1. Let T be a family of subsets of I and g : T → R such that, for all L,M ∈ T with L ∩M 6= ∅,
we have L ∩M ∈ T , L ∪M ∈ T and g(L) + g(M) ≥ g(L ∪M) + g(L ∩M). Further assume that ∅, I ∈ T ,
g(∅) = 0 and T contains all the singletons of I. Then the set of solutions in Rn of the equations∑

i∈L
φi ≤ g(L), ∀L ∈ T ,

is given by {
φ ∈ Rn :

∑
i∈A

φi ≤ f(A), ∀A ∈ I

}
,

where f is the real-valued, normalized, submodular function defined on the power set of I by

f(A) = min

{∑
L∈Σ

g(L) : Σ ⊂ T is a partition of A

}
, ∀A ⊂ I.

The definition of a tree ensures that T ∪ {∅} satisfies the assumptions of the lemma, with the function g
defined on T ∪ {∅} by g(L) = CL for any L ∈ T and g(∅) = 0. Hence, the set of solutions of the capacity
constraints (1) in Rn is

P =

{
φ ∈ Rn :

∑
i∈A

φi ≤ f(A), ∀A ⊂ I

}
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µ({1, 2}) = f({1, 2})

f({1})µ({1})
= f({1, 2})

P

C

φ1

φ2

Figure 2: Construction of the capacity set of a tree data network in Rn+ from the set of solutions of its
capacity constraints in Rn

where f is the normalized, submodular function given by

f(A) = min

{∑
L∈Σ

CL : Σ ⊂ T is a partition of A

}
, ∀A ⊂ I.

Note that no claim about the monotonicity of f can be made above because the points in P can have negative
components. This is illustrated in Figure 2, where the intersection point of the sides of P corresponding to
the sets {1} and {1, 2} has a negative ordinate because f({1, 2}) < f({1}).

Since the components of a vector of resource allocation are always positive, the capacity set C of the
data network is given by C = P ∩ Rn+. As we will see, since we restrict ourselves to points with positive
components, the function µ which characterizes C is not only normalized and submodular like f but also
non-decreasing. This is illustrated in Figure 2, which shows that we can replace f({1}) by f({1, 2}) to
describe the side corresponding to the set {1} in C.

More formally, we prove that C is equal to the polymatroid C′ with rank function µ given by

µ(A) = min {f(B) : A ⊂ B ⊂ I} , ∀A ⊂ I.

One can check that this function µ coincides with the one given in the theorem statement. We first show
that µ is indeed a rank function and then we prove that C is equal to C′.

The normalization of µ follows from that of f . Also µ is non-decreasing by construction. Finally, for each
A,B ⊂ I, we have µ(A) +µ(B) = f(A′) + f(B′) for some A′, B′ ⊂ I such that A ⊂ A′ and B ⊂ B′, and also

f(A′) + f(B′) ≥ f(A′ ∪B′) + f(A′ ∩B′) ≥ µ(A ∪B) + µ(A ∩B),

where the first inequality holds by submodularity of f and the second by definition of µ, since A∪B ⊂ A′∪B′
and A ∩B ⊂ A′ ∩B′. Hence µ is submodular.

We finally prove that C = C′. It is clear that any vector in C′ is also in C = P ∩Rn+ since µ(A) ≤ f(A) for
all A ⊂ I. Conversely, consider φ ∈ C. If φ is not in C′, then there is A ⊂ I so that

∑
i∈A φi > µ(A), which

implies that µ(A) < f(A). By definition of µ, it follows that there is B ⊂ I so that A is a strict subset of B
and f(B) = µ(A). But then ∑

i∈B\A
φi =

∑
i∈B

φi −
∑
i∈A

φi < f(B)− µ(A) = 0,

so that at least one component of φ is negative. This is a contradiction.
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Figure 3: Representation of a tree data network

Example 2. Figure 3 gives the example of a tree data network with its capacity set. The routes of the users
are given in Figure 3a. Each link is labeled with the set of user indices whose flows cross this link. The
capacity constraints are

φ1 ≤ C{1}, φ2 ≤ C{2}, φ3 ≤ C{3}, φ1 + φ2 ≤ C{1,2}, φ1 + φ2 + φ3 ≤ C{1,2,3}.

The rank function µ of the capacity set is given by

µ({1}) = C{1}, µ({1, 2}) = C{1,2}, µ({1, 2, 3}) = C{1,2,3}.

µ({2}) = C{2}, µ({1, 3}) = min
(
C{1} + C{3}, C{1,2,3}

)
,

µ({3}) = C{3}, µ({2, 3}) = min
(
C{2} + C{3}, C{1,2,3}

)
,

2.3 Computer clusters

We consider a cluster of m servers which can be pooled to process jobs in parallel. The set of servers is
denoted by S = {1, . . . ,m}. There are n classes of jobs and we denote by I = {1, . . . , n} the set of class
indices. For any i ∈ I, class-i jobs enter the cluster as a Poisson process with intensity λi and have i.i.d.
exponential service requirements with mean σi, resulting in a traffic intensity ρi = λiσi for class i. Jobs
leave the cluster immediately after service completion. The state of the cluster is described by the vector
x = (xi : i ∈ I), where xi is the number of jobs of class i, for each i ∈ I.

The class of a job defines the set of servers that can process it. The server assignment is given by a family
(Si : i ∈ I) of subsets of S, where Si denotes the set of servers that can serve class-i jobs, for each i ∈ I.
Equivalently, the server assignment can be described by a bipartite graph

G =

(
I, S,

⋃
i∈S

({i} × Si)

)

called the assignment graph of the computer cluster. The service capacity of server s is µs for each s =
1, . . . ,m. For any set A ⊂ I of job classes, we let

µ(A) =
∑

s∈⋃i∈A Si
µs (2)

denote the aggregate capacity available for the classes in A.
We make the following assumptions on the allocation of the server capacities. Servers can be pooled

to process jobs in parallel. When a job is in service on several servers, its service rate is the sum of the
rates allocated by each server to this job. We also assume that the capacity of each server can be divided
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continuously among the jobs it can serve. Finally, the allocation of the service rates per job only depends on
the number of jobs of each class in the cluster. In particular, all jobs of a class receive service at the same
rate, so that the per-job resource allocation is entirely defined in any state x ∈ Nn by the total capacity
φi(x) allocated to class-i jobs, for each i ∈ I.

Under these assumptions, we can describe the evolution of the cluster with a processor-sharing system
with n queues, one per class. For each i ∈ I, queue i contains class-i jobs and its service rate in state x is
the total capacity φi(x) allocated to class-i jobs collectively. It was proved in [17] that the capacity set of
such a cluster is a polymatroid and that the function µ defined by (2) is its rank function.

Example 3. Figure 1b gives the assignment graph for an example of a computer cluster, where job classes
are on the left and servers are on the right. Server 2 can serve both classes whereas servers 1 and 3 are
specialized. The corresponding processor-sharing system with 2 queues is shown in Figure 1c and its capacity
set, which is a polymatroid in R2

+, is depicted Figure 1d. The vertical and horizontal sides correspond to
the individual constraints of classes 1 and 2, with µ({1}) = µ1 + µ2 and µ({2}) = µ2 + µ3. The diagonal
side corresponds to the joint constraint on classes 1 and 2, with µ({1, 2}) = µ1 + µ2 + µ3.

2.4 Balanced fairness

The service rates are allocated by applying balanced fairness [3] in the polymatroid capacity set C introduced
in Section 2.1.

For each i ∈ I, let ei denote the n-dimensional vector with 1 in position i and 0 elsewhere. Balanced
fairness is defined as the only resource allocation that both satisfies the balance property

φi(x)φj(x− ei) = φi(x− ej)φj(x), ∀x ∈ Nn, ∀i, j ∈ I(x),

and maximizes the resource utilization in the following sense: in any state x ∈ Nn, φ(x) ∈ C and there exists
A ⊂ I(x) such that ∑

i∈A
φi(x) = µ(A).

The balance property ensures that there exists a balance function Φ on Nn such that Φ(0) = 1 and

φi(x) =
Φ(x− ei)

Φ(x)
, ∀x ∈ Nn \ {0}, ∀i ∈ I(x).

The second condition implies that Φ satisfies the recursion

Φ(x) = max
A⊂I(x)

{∑
i∈A Φ(x− ei)
µ(A)

}
, ∀x ∈ Nn \ {0}.

In [17] it is proved that balanced fairness is Pareto-efficient in polymatroid capacity sets, which means that
this maximum is always achieved by the set I(x) = {i ∈ I : xi > 0} of active queues:

Φ(x) =

∑
i∈I(x) Φ(x− ei)
µ(I(x))

, ∀x ∈ Nn \ {0}. (3)

Since the balance property is satisfied, the processor-sharing system defined in Section 2.1 is a Whittle
network [16]. A stationary measure of the system state X = (Xi : i ∈ I) is

π(x) = π(0)Φ(x)ρx, ∀x ∈ Nn,

where we use the notation ρx =
∏
i∈I ρi

xi for any x ∈ Nn. Substituting (3) into this expression yields

π(x) =

∑
i∈I(x) ρiπ(x− ei)

µ(I(x))
, ∀x ∈ Nn \ {0}.

7



It is proved in [3] that the system is stable, in the sense that the underlying Markov process is ergodic, if
and only if ∑

i∈A
ρi < µ(A), ∀A ⊂ I,

which means that the vector of traffic intensities belongs to the interior of the capacity set. In the rest of
the paper, we assume that this condition is satisfied and we denote by π the stationary distribution of the
system state.

2.5 Performance metrics

By abuse of notation, for each A ⊂ I, we denote by π(A) the stationary probability that the set of active
queues is A:

π(A) = P {I(X) = A} =
∑
x∈Nn,
I(x)=A

π(x), ∀A ⊂ I.

For each i ∈ I, let Li = E[Xi] denote the mean number of jobs at queue i and, for each A ⊂ I, let
Li(A) = E [Xi|I(X) = A] denote the mean number of jobs at queue i given that the set of active queues is
A. By the law of total expectation, we have

Li =
∑
A⊂I

Li(A)π(A), ∀i ∈ I.

The following theorem gives a recursive formula for π(A) and Li(A) for any A ⊂ I and i ∈ I. It is a
restatement of Theorem 4 in [17] using the same idea as Proposition 4 and Theorem 1 in [18].

Theorem 2. For each non-empty set A ⊂ I, we have

π(A) =

∑
i∈A ρiπ(A \ {i})
µ(A)−

∑
i∈A ρi

. (4)

Let i ∈ I. For each set A ⊂ I, we have Li(A) = 0 if i /∈ A, and otherwise

π(A)Li(A) =
ρiπ(A \ {i}) + ρiπ(A) +

∑
j∈A\{i} ρjπ(A \ {j})Li(A \ {j})

µ(A)−
∑
j∈A ρj

. (5)

Observe that (4) allows one to evaluate recursively π(A)/π(∅) for each A ⊂ I, from which π(∅) can be
computed. Similarly, for each i ∈ I, (5) allows one to evaluate recursively π(A)Li(A)/π(∅) for each A ⊂ I
and each i ∈ I, from which the value of Li can be deduced. One could then compute performance metrics
like the mean delay or the mean service rate per queue from Li by applying Little’s law. Note that the
complexity is exponential in the number of queues.

3 Poly-symmetry

3.1 Definition

The exponential complexity of the formulas of Theorem 2 makes it impractical when we want to predict the
performance of large-scale systems. To cope with this, we introduce the notion of poly-symmetry, which
allows us to obtain formulas with a complexity that is polynomial in the number of queues at the cost of
some regularity assumptions on the capacity set and the traffic intensity at each queue. Poly-symmetry is a
generalization of the notion of symmetry which was considered in [17, 18].

The following definition will be used subsequently to introduce poly-symmetry. It is easy to check that
it defines an equivalence relation on the set I of indices.

8
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Figure 4: Computer cluster with two exchangeable indices and a third index

Definition 3. Let C be a polymatroid on Rn+ and denote its rank function by µ. Let i, j ∈ I with i 6= j.
We say that indices i and j are exchangeable in C if

µ(A ∪ {i}) = µ(A ∪ {j}), ∀A ⊂ I \ {i, j}.

As the name suggests, two indices are exchangeable if and only if exchanging these indices does not modify
the capacity set. Note that the exchangeability of two indices i and j implies that they have the same
individual constraints µ({i}) = µ({j}). The reverse implication is not true when n > 2, as we will see in the
following example.

Example 4. Consider the computer cluster with the assignment graph depicted in Figure 4a, where all servers
have the same unit capacity. The corresponding polymatroid capacity set is illustrated in Figure 4b. We
have µ({1}) = µ({3}) = 2 and µ({1, 2}) = µ({2, 3}) = 3, so that indices 1 and 3 are exchangeable. Index 2
is not exchangeable with any of the two other indices because µ({1, 2}) = µ({2, 3}) = 3 while µ({1, 3}) = 4.

Let us now define poly-symmetry. Suppose K ≥ 1 and consider a partition Σ = (Ik : k = 1, . . . ,K) of I
in K parts.

Definition 4. Let C be a polymatroid in Rn+. C is called poly-symmetric with respect to partition Σ if for
any k = 1, . . . ,K, all indices in Ik are pairwise exchangeable in C.

Since the exchangeability of indices defines an equivalence relation on I, we can consider the quotient set of I
by this relation, which is the partition of I into the maximal sets of pairwise exchangeable indices. Definition
4 can then be rephrased as follows: a polymatroid C is poly-symmetric with respect to a partition Σ if and
only if Σ is a refinement of the quotient set of I by the exchangeability relation in C. It follows directly from
the definition that the polymatroid of Example 2 is poly-symmetric with respect to partition ({1, 2}, {3})
when C{1} = C{2}, as we can see in Figure 3b. Also in Example 4, the polymatroid is poly-symmetric with
respect to partition ({1, 3}, {2}).

For each k = 1, . . . ,K, let nk = |Ik| denote the size of part k, where by part we mean a subset of the
partition. For any A ⊂ I, let |A|Σ = (|A ∩ Ik| : k = 1, . . . ,K) denote the vector of sizes of each part of A in
the partition. The set of these vectors is denoted by

N =

K∏
k=1

{0, 1, . . . , nk}.

We now give an alternative definition of poly-symmetry which is equivalent to Definition 4. It is a gen-
eralization of the definition of symmetry given in [17, 18]. We will use it to express and prove Theorem
3.
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Figure 5: Computer cluster with a polymatroid capacity set which is poly-symmetric with respect to partition
Σ = ({1, 3}, {2})

Definition 5. Let C be a polymatroid in Rn+ and denote its rank function by µ. C is called poly-symmetric
with respect to partition Σ if for any A ⊂ I, µ(A) depends on A only through the size of A ∩ Ik for each
k = 1, . . . ,K. Equivalently, there exists a componentwise non-decreasing function h : N → R+ such that
µ(A) = h(|A|Σ) for all A ⊂ I. We call h the cardinality rank function of C with respect to partition Σ.

Proof of the equivalence. We only prove that Definition 4 implies Definition 5; the reverse implication is
clear. For any A,B ⊂ I with |A|Σ = |B|Σ, we can write A = (A \B) t (A ∩B) and B = (B \A) t (A ∩B),
where t denotes the union of two disjoint sets. Since we have |A \ B|Σ = |B \ A|Σ, we are thus reduced to
proving that µ(AtC) = µ(B tC) for all disjoint sets A,B,C ⊂ I such that |A|Σ = |B|Σ. This can be done
by ascending induction on the cardinality of A and B.

Example 5. Consider the computer cluster with the assignment graph depicted in Figure 5, where all servers
have the same unit capacity. The corresponding capacity set is illustrated in Figure 5b. It is poly-symmetric
with respect to partition Σ = ({1, 3}, {2}) and the corresponding cardinality rank function h is given by
h(0, 0) = 0, h(1, 0) = 2 and h(0, 1) = h(1, 1) = 3.

3.2 Performance metrics

Let Σ = (Ik : k = 1, . . . ,K) be a partition of I. We consider a processor-sharing system with a polymatroid
capacity set which is poly-symmetric with respect to Σ. For each A ⊂ I, the vector |A|Σ = (|A ∩ Ik| : k =
1, . . . ,K) gives the number of active queues in each part of the partition when the set of active queues is A.
By abuse of notation, for each k = 1, . . . ,K, we denote by ek the vector of NK with 1 in component k and
0 elsewhere.

As in Section 2.4, the resources are allocated by applying balanced fairness in this capacity set under
some vector of traffic intensity ρ which satisfies the stability constraints. For simplicity of notation, for
each a ∈ N , we denote by π(a) the probability that the number of active queues in part k is ak for each
k = 1, . . . ,K:

π(a) = P{|I(X)|Σ = a} =
∑
A⊂I,
|A|Σ=a

π(A).

For each k = 1, . . . ,K, let Lk = E
[∑

i∈Ik Xi

]
denote the mean number of jobs in the queues of part k and,

for each a ∈ N , let Lk(a) = E
[∑

i∈Ik Xi||I(X)|Σ = a
]

denote the mean number of jobs in the queues of part
k given that there are al active queues in part l for each l = 1, . . . ,K. The regularity assumptions ensure
that, for each k = 1, . . . ,K, 1

nk
Lk and 1

nk
Lk(a) for each a ∈ N also give the mean numbers of jobs at queue

i for any i ∈ Ik. By the law of total expectation, we have

Lk =
∑
a∈N

Lk(a)π(a), ∀k = 1, . . . ,K.
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The following theorem gives a recursive formula for π(a) and Lk(a) that allows one to compute recursively
these quantities with a complexity O(n1 · · ·nK). The proof is given in Appendix A.

Theorem 3. Consider a system of n processor-sharing queues with state-dependent service rates allocated
according to balanced fairness in a polymatroid capacity set C. Assume that C is poly-symmetric with respect
to partition Σ and denote by h the corresponding cardinality rank function. Further assume that for each
k = 1, . . . ,K, all queues of Ik receive jobs with the same traffic intensity %k, i.e. ρi = %k for all i ∈ Ik. For
each a ∈ N \ {0}, we have

π(a) =

∑K
k=1(nk − ak + 1)%kπ(a− ek)

h(a)−
∑K
k=1 ak%k

. (6)

Let k = 1, . . . ,K. For each a ∈ N , we have Lk(a) = 0 if ak = 0, and otherwise

π(a)Lk(a) =
ak%kπ(a) + (nk − ak + 1)%kπ(a− ek) +

∑K
l=1(nl − al + 1)%lπ(a− el)Lk(a− el)

h(a)−
∑K
l=1 al%l

. (7)

This result applies to Example 5 with the partition Σ = ({1, 3}, {2}) when classes 1 and 3 have the same
traffic intensity. The set of suitable vectors of traffic intensities is depicted as the darkly shaded region in
Figure 5b.

In this theorem, we have assumed that the cardinality rank function h was given. Given a real system
like those of Sections 2.2 and 2.3 which is known to be poly-symmetric with regard to some partition
Σ = (Ik : k = 1, . . . ,K), one could ask if it is also possible to build h with a complexity O(n1 · · ·nK). This is
straightforward for a computer cluster. Concerning the tree data networks, we can actually apply a method
similar to that of the proof of Theorem 1. Specifically, we first define recursively a concave function f on N
by f(0) = 0, f(a) = CL if there is L ∈ T so that |L|Σ = a, and otherwise

f(a) = min{f(b) + f(c) : b, c ∈ N s.t. b, c 6= a and a = b+ c},

from which we can construct h by letting

h(a) = min{f(b) : b ∈ N and a ≤ b}, ∀a ∈ N .

We will now see two examples of real systems where this result applies.

3.3 Application to tree data networks

We consider the simple example of a tree data network where each user has an individual access line and all
users share an aggregation link which has a capacity C in bit/s. The user access lines can have K different
capacities r1, . . . , rK in bit/s. This corresponds to the model introduced in [1] to predict some performance
metrics in Internet service provider access networks, where the individual access lines represent subscriber
lines which are connected to the aggregation link by the digital subscriber line access multiplexer (DSLAM).

Access lines
with capacity r1

Access lines
with capacity r2

Aggregation link
with capacity C

Figure 6: User routes

Example 6. Figure 6 gives a toy example with K = 2 possible access rates r1 and r2. There are three users
with access rate r1 and two users with access rate r2. All users are constrained by the aggregation link with
capacity C.
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For each k = 1, . . . ,K we denote by Ik the set of users with access rate rk. These form a partition of
the set I =

⊔K
k=1 Ik of users. Theorem 1 ensures that the capacity set of this data network is a polymatroid

with rank function µ given by

µ(A) = min

(
K∑
k=1

|A ∩ Ik|rk, C

)
, ∀A ⊂ I. (8)

It is poly-symmetric with respect to partition Σ = (Ik : k = 1, . . . ,K). The corresponding cardinality rank
function h is given by

h(a) = min

(
K∑
k=1

akrk, C

)
, ∀a ∈ N .

We further assume that for each k = 1, . . . ,K, all users with access line rk have the same traffic intensity
%k < rk. Then the network is stable whenever

∑K
k=1 nk%k < C, and it meets the conditions of Theorem 3.

A metric of interest is the mean throughput per user. For each i ∈ I, we denote by Pi and Ei the
conditional probability measure and expectation given that user i is active, corresponding to the stationary
distribution πi(x) ∝ 1xi>0π(x). For each k = 1, . . . ,K and each i ∈ Ik, the mean throughput perceived by
user i is then given by

Ei[φi(X)] =
E[φi(X)]

P{Xi > 0}
=

%k
P{Xi > 0}

,

where the second equality holds by the conservation equation %k = E[φi(X)] for all i ∈ Ik. Using the
notations of Section 3.2, the mean throughput of the users with access rate rk is given by

γk =
%k

1−
∑

a∈N :ak<nk

(
nk−1
ak

) ∏
l 6=k

(
nl
al

)
π(a)

.

where π(a) for each a ∈ N can be computed with a complexity O(n1 · · ·nK) by (6). Other performance
metrics such as the mean congestion rate per user can be computed similarly.

3.4 Application to computer clusters

Let d1, d2 ≥ 1. We consider a computer cluster with m = d1d2 servers and n = d1 + d2 classes. All servers
have the same unit capacity and all jobs have a unit mean size. The set I of classes is partitioned into two
subsets I1 and I2. I1 contains d2 classes that can each be served by d1 servers and I2 contains d1 classes
that can each be served by d2 servers. For any i = 1, . . . , d2, the i-th class of I1 can be served by the servers
(i − 1)d1 + j for j = 1, . . . , d1. For any i = 1, . . . , d1, the i-th class of I2 can be served by the servers
i+ (j − 1)d1 for j = 1, . . . , d2. Figure 7 gives a toy example with d1 = 2 and d2 = 3.

1 2 3 4 5 6

1 2 3
4 5

Figure 7: Computer cluster with d1 = 2 and d2 = 3

Any class of I1 shares exactly one server with any class of I2, and this server is dedicated to these two
classes. The rank function of this cluster is thus given by

µ(A) = |A ∩ I1|d1 + |A ∩ I2|d2 − |A ∩ I1| × |A ∩ I2|, ∀A ⊂ I.
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The polymatroid capacity set defined by this rank function is poly-symmetric with respect to partition
Σ = (I1, I2) and the corresponding cardinality rank function is given by

h(a) = a1d1 + a2d2 − a1a2, ∀a ∈ N .

For each k = 1, 2, assume that all classes in Ik have the same traffic intensity %k. Further assume that
the vector of traffic intensities % = (%1, %2) stabilizes the system, that is

a1%1 + a2%2 < a1d1 + a2d2 − a1a2, ∀a ∈ N .

We can then apply Theorem 3 with partition Σ to compute the mean number of jobs of each class with a
complexity O(n1n2). We deduce the mean delay δi of class-i jobs for each i ∈ I by Little’s law:

δi =
Lk
nkλi

, ∀k = 1, 2, ∀i ∈ Ik.

4 Stochastic Bounds

4.1 Monotonicity result

While the property of poly-symmetry is not often satisfied in practice, except in specific cases like the
examples of Sections 3.3 and 3.4, it can be used to derive stochastic bounds on most systems, as shown
below. The following result will allow us to control the impact of the capacity set on performance.

Given 0 < ε < 1 and a polymatroid C in Rn+ with rank function µ, we denote by (1 + ε)C the polymatroid
in Rn+ with rank function (1 + ε)µ and by (1− ε)C the polymatroid in Rn+ with rank function (1− ε)µ.

Theorem 4. Let 0 < ε < 1. Consider two polymatroids Ĉ and C in Rn+ such that Ĉ is a subset of (1 + ε)C
and a superset of (1 − ε)C. Let ρ be an element in the interior of (1 − ε)C and denote respectively by π,
π+ and π− the steady state distributions of the processor-sharing systems with capacity sets Ĉ, (1 + ε)C and
(1− ε)C under traffic intensity ρ. Then

π−(0)

π+(0)
π+(x) ≤ π(x) ≤ π+(0)

π−(0)
π−(x), ∀x ∈ Nn.

Specifically, for each i ∈ I, we have

π−(0)

π+(0)
Li,+ ≤ Li ≤

π+(0)

π−(0)
Li,−,

where Li, Li,+ and Li,− are the mean number of job at queue i under distributions π, π+ and π− respectively.

Proof. Denote by µ̂ and µ the rank functions of Ĉ and C respectively. Let Φ, Φ+ and Φ− denote the balance
functions of the resource allocations defined by balanced fairness in the capacity sets Ĉ, (1 + ε)C and (1− ε)C
respectively. We first prove by induction on |x| that

Φ+(x) ≤ Φ(x) ≤ Φ−(x), ∀x ∈ Nn.

The property holds for x = 0. Let x ∈ Nn \ {0} and assume the inequality is valid for any y ∈ Nn such that
|y| < |x|. Then we have by (3):

Φ(x) =

∑
i∈I(x) Φ(x− ei)
µ̂(I(x))

≤
∑
i∈I(x) Φ−(x− ei)

µ̂(I(x))
≤
∑
i∈I(x) Φ−(x− ei)
(1− ε)µ(I(x))

= Φ−(x)

where the first inequality holds by the induction assumption and the second holds by the inclusion of (1−ε)C
into Ĉ. We prove the other side of the inequality by using the inclusion of Ĉ into (1 + ε)C. This completes
the proof by induction.
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It follows that
1

π(0)
=
∑
x∈Nn

Φ(x)ρx ≥
∑
x∈Nn

Φ+(x)ρx =
1

π+(0)
.

Thus for each x ∈ Nn, we obtain

π(x) = π(0)Φ(x)ρx ≤ π(0)Φ−(x)ρx ≤ π+(0)Φ−(x)ρx =
π+(0)

π−(0)
π−(x).

The proof for the other part of the inequality is similar. The second inequality about the mean number of
jobs follows by summation.

The following sections illustrate how we can apply this result to the models of tree data networks and
computer clusters.

4.2 Application to tree data networks

We first use this result to relax some assumptions of Section 3.3. The flows of each user go through an
individual access line which is dedicated to this user and an aggregation link shared by all users. We still
consider K groups I1, . . . , IK of users which form a partition of the set I. For each k = 1, . . . ,K, the access
rates of the users in Ik may be different but we assume that they are all between (1−ε)rk and (1+ε)rk for some
ε > 0. Similarly, the capacity of the aggregation link is between (1− ε)C and (1 + ε)C. The corresponding
polymatroid capacity set Ĉ is not poly-symmetric with respect to partition Σ = (Ik : k = 1, . . . ,K) any more
but its rank function µ̂ satisfies:

(1− ε)µ(A) ≤ µ̂(A) ≤ (1 + ε)µ(A), ∀A ⊂ I,

where µ is the rank function defined by (8). Denoting by C the polymatroid defined by µ, it follows that Ĉ is
a superset of (1− ε)C and a subset of (1 + ε)C. We can thus apply Theorem 4. In the special case where for

each k = 1, . . . ,K, all users of Ik have the same traffic intensity %k < (1− ε)rk, with
∑K
k=1 nk%k < (1− ε)C,

we can use Theorem 3 to compute the bounds.
Specifically, let π+ and π− denote the steady state distributions of the processor-sharing systems with

capacity sets (1 + ε)C and (1 − ε)C respectively under traffic intensity ρ. For each k = 1, . . . ,K and each
i ∈ Ik, the mean throughput γi of user i satisfies

π−(0)

π+(0)
γk,− ≤ γi ≤

π+(0)

π−(0)
γk,+,

where γk,+ and γk,− are the mean throughputs under distributions π+ and π− respectively. We have

γk,± =
%k

1−
∑

a∈N :ak<nk

(
nk−1
ak

) ∏
l 6=k

(
nl
al

)
π±(a)

, ∀k = 1, . . . ,K,

and by (6)

π±(a) =

∑K
k=1(nk − ak + 1)%kπ±(a− ek)

(1± ε)h(a)−
∑K
k=1 ak%k

, ∀a ∈ N \ {0}.

4.3 Application to computer cluster with random assignment

Random assignment. Consider a cluster as described in Section 2.3, where we denote by S = {1, . . . ,m}
the set of servers and by I the set of class indices. Let K ≥ 1 and consider for simplicity a partition
Σ = (I1, . . . , IK) of I into K parts of size n, so that the total number of job classes in the cluster is now
given by Kn. We can easily generalize the result to K parts of different sizes. We use the same notation as
in Sections 3.1 and 3.2: for each A ⊂ I, a = |A|Σ denotes the K-dimensional vector whose k-th component
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is ak = |A ∩ Ik|, the size of the k-th part of A in partition Σ, for each k = 1, . . . ,K; the set of these vectors
is denoted by N = {0, 1, . . . , n}K .

We now introduce a random assignment of the servers to the job classes, which is described by an
assignment graph with random edges. Each realization of this random assignment defines a polymatroid
capacity set as in Section 2.1. Hence, once this initial assignment is settled, we can apply balanced fairness
over the associated capacity set as described in Section 2.4. Note that our assignment is static in the sense
that the assignment graph does not change with time. For a given realization, we can thus observe the
evolution of the cluster under stochastic arrivals and compute the resulting performance metrics as we did
in Section 2.5.

The servers are randomly assigned to the job classes as follows. Let d = (dk : k = 1, . . . ,K) be a vector
of positive integers. For any k = 1, . . . ,K and i ∈ Ik, the set Si of servers that can process class-i jobs is
chosen uniformly and independently at random among the subsets of S = {1, . . . ,m} of cardinality dk. As in
Section 2.3, the random assignment is described by the family (Si : i ∈ I) which defines a random bipartite
graph

G =

(
I, S,

⋃
i∈I

({i} × Si)

)
with deterministic sets of vertices I and S and a random set of edges. Each realization (Si : i ∈ I) of the
random assignment defines a polymatroid capacity set with a rank function given by (2). This allows us to
define a random rank function associated with the random assignment by

M(A) =
∑
s∈S

µs1s∈⋃i∈A Si , ∀A ⊂ I.

Now let µ denote the corresponding mean rank function:

µ(A) = E[M(A)], ∀A ⊂ I.

The following lemma proves that the polymatroid defined by µ is poly-symmetric with respect to Σ.

Lemma 2. For each A ⊂ I, we have µ(A) = ξmpa with ξ = 1
m

∑
s∈S µs, a = |A|Σ and

pa = 1−
K∏
k=1

(
1− dk

m

)ak
.

Proof. Let a ∈ N and consider any set A ⊂ I with |A|Σ = a. We just need to observe that

µ(A) =
∑
s∈S

µsP

{
s ∈

⋃
i∈A

Si

}
.

For each k = 1, . . . ,K such that ak > 0, the probability that a server can not serve a specific class of A∩ Ik
is
(
m−1
dk

)
/
(
m
dk

)
= 1− dk

m . Since the assignments of the classes are independent, it follows that the probability
that this server can serve at least one class in A is given by pa.

Let ρ = (ρi : i ∈ I) be a vector of traffic intensities. If G is a realization of the random assignment
graph G such that ρ is in the interior of the polymatroid capacity set defined by G, then the corresponding
processor-sharing system is stable under balanced fairness and we can study its steady-state behavior. We
thus denote by X = (Xi : i ∈ I) the random vector distributed according to the stationary distribution of
the system state when ρ is in the interior of G, and for completeness we let X = 0 otherwise. For each
realization G of the random assignment such that ρ is in the interior of the corresponding capacity set, we
let

Li(G) = E [Xi|G = G] , ∀i ∈ I,
which is simply the mean number of jobs of each class in the corresponding processor-sharing system under
balanced fairness, as defined in Section 2.5. For each realization G which is not stabilized by ρ, we let
Li(G) = +∞.
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Asymptotic poly-symmetry. We consider a sequence of computer clusters with random assignment as
defined in the previous section. Let K ≥ 1 and b > 0.

For each n ≥ 1, the n-th random cluster of the sequence contains m(n) = dbne servers and Kn job classes.
We denote the set of servers by S(n) = {1, . . . ,m(n)} and the set of job classes by I(n) = {1, . . . ,Kn}. The

service rate of server s is µ
(n)
s for each s ∈ S(n). For simplicity, we consider a partition Σ(n) = (I

(n)
k : k =

1, . . . ,K) of I(n) into K parts of size n. We can generalize the result to K parts of different sizes as long as

the size of each part is linear in n. For each k = 1, . . . ,K and i ∈ I(n)
k , the set S

(n)
i of servers that can process

class-i jobs is chosen uniformly and independently at random among the subsets of S(n) of cardinality d
(n)
k .

Let G(n) denote the random graph defined by this random assignment, M(n) the corresponding random rank
function and µ(n) its expectation.

By Lemma 2, for any n ≥ 1 and a ∈ N (n) = {0, . . . , n}K , we have

µ(n)(A) = E
[
M(n)(A)

]
= ξ(n)m(n)p(n)

a with p(n)
a = 1−

K∏
k=1

(
1−

d
(n)
k

m

)ak
for all set A ⊂ I(n) with |A|Σ(n) = a, where ξ(n) = 1

m(n)

∑
s∈S(n) µ

(n)
s is the mean server capacity. Theorem 5

below shows that, under the following two assumptions on the server capacities and the degrees of parallelism,
the probability that the random rank function is uniformly close to its mean is 1− o

(
1
n

)
. The proof is given

in Appendix B.

Assumption 1. For each n ≥ 1, S(n) is partitioned into a constant number of groups. Each group contains
Ω(n) servers which have the same capacity.

Assumption 2. For each k = 1, . . . ,K, the sequence
(
d

(n)
k : n ≥ 1

)
satisfies d

(n)
k = ω(log n).

Theorem 5. Let 0 < ε < 1. Under Assumptions 1 and 2, there exists a sequence (gn : n ≥ 1) such that
gn = ω(log n) and for any n ≥ 1,

P
{
∃A ⊂ I(n) s.t. M(n)(A) ≤ (1− ε)µ(n)(A)

}
≤ e−gn

and
P
{
∃A ⊂ I(n) s.t. M(n)(A) ≥ (1 + ε)µ(n)(A)

}
≤ e−gn .

Corollary 1 follows from Theorem 5. For any n ≥ 1, let C(n) denote the polymatroid defined by the rank
function µ(n). C(n) is poly-symmetric with respect to the partition Σ(n).

Corollary 1. Let 0 < ε < 1. Under Assumptions 1 and 2, the random capacity set resulting from the
random assignment is a subset of (1 + ε)C(n) and a superset of (1− ε)C(n) with probability 1− o

(
1
n

)
.

Performance metrics. For each n ≥ 1, we consider a vector %(n) ∈ RK+ of traffic intensities per part which

stabilizes the processor-sharing system with n queues and capacity set (1 − ε)C(n) under balanced fairness,
that is,

K∑
k=1

ak%
(n)
k < (1− ε)h(n)(a), ∀a ∈ N (n),

where h(n) is the cardinality rank function of the mean capacity set with respect to partition Σ(n):

h(n)(a) = ξ(n)m(n)p(n)
a , ∀a ∈ N (n).

Let X(n) denote the state in the n-th randomized computer cluster when we allocate the resources according
to balanced fairness. Given a realization G(n) which is stabilized by %(n), the mean numbers of jobs per class
are given by

Li

(
G(n)

)
= E

[
X

(n)
i

∣∣G(n) = G(n)
]
, ∀i ∈ I(n).
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Figure 8: Bounds obtained with m = 10, 000, n = 1, 000, d1 = 20, d2 = 40

For each realization G(n) which is not stabilized by %(n), we let Li
(
G(n)

)
= +∞. This allows us to define

the random variables
L

(n)
i = Li

(
G(n)

)
, ∀i ∈ I.

Combining Theorems 4 and 5 yields the following result.

Theorem 6. Let 0 < ε < 1. For any n ≥ 1, denote by π
(n)
+ and π

(n)
− the stationary distributions of the

processor-sharing systems with n queues and capacity sets (1 + ε)C(n) and (1 − ε)C(n) respectively, when

the traffic intensity of the classes in I
(n)
k is %

(n)
k , for any k = 1, . . . ,K. Let L

(n)
k,+ and L

(n)
k,− denote the

corresponding mean number of jobs per queue in part k, for each k = 1, . . . ,K.
Under Assumptions 1 and 2, we have

P

{
π

(n)
− (0)

π
(n)
+ (0)

L
(n)
k,+

n
≤ L

(n)
i ≤

π
(n)
+ (0)

π
(n)
− (0)

L
(n)
k,−
n

, ∀k = 1, . . . ,K, ∀i ∈ Ik

}
= 1− o

(
1

n

)
.

For each n ≥ 1, Theorem 3 gives formulas to compute π
(n)
± and L

(n)
k,± for each k = 1, . . . ,K with a

complexity O
(
nK
)
. Using Little’s law, we can deduce bounds on the mean delay per class.

Numerical application. We omit writing the exponents for brevity. Consider a randomized cluster with
m = 10, 000 servers with unit capacity. The set of classes is partitioned into two parts I1 and I2 with
n = 1, 000 classes each. The classes of I1 have a degree d1 = 20 and the ones of I2 have a degree d2 = 40.
All jobs have a mean size 1 and the arrival rates are proportional to the degrees. The traffic intensity of any
class in I2 is thus twice that of any class in I1. Let % ∈ R2

+ so that

%1 =
d1

d1 + d2

h(n, n)

n
and %2 =

d2

d1 + d2

h(n, n)

n
,

where h is the cardinality rank function of the mean capacity set with respect to partition Σ = (I1, I2):

h(a) = m

{
1−

(
1− d1

m

)a1
(

1− d2

m

)a2
}
, ∀a ∈ {0, 1, . . . , n}2.

We can prove that the vector of traffic intensities ρ ∈ R2n
+ with ρi = %1 for all i ∈ I1 and ρi = %2 for all

i ∈ I2 is on the boundary of the mean capacity set.
Let 0 < ε < 1. For each α ∈ (0, 1 − ε), α% stabilizes the processor-sharing systems with capacity sets

(1 + ε)C and (1− ε)C. The bounds on the mean delay that follow from Theorem 6 by applying Little’s law
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are given by
1 + ε

α

π−(0)

π+(0)

Lk,+
n%k

and
1− ε
α

π+(0)

π−(0)

Lk,−
n%k

,

where π±(0) and Lk,± are computed with the recursion expressions of Theorem 3 as follows. For each
a ∈ {0, 1, . . . , n}2,

π±(a) =
(n− a1 + 1)%1π±(a− e1) + (n− a2 + 1)%2π±(a− e2)

1±ε
α h(a)− a1%1 − a2%2

.

For any k = 1, 2 and a ∈ N , we have Lk,±(a) = 0 if ak = 0, and otherwise

π±(a)Lk,±(a) =
1

1±ε
α h(a)− a1%1 − a2%2

{
ak%kπ±(a) + (n− ak + 1)%kπ±(a− ek)

+

2∑
l=1

(n− al + 1)%lπ±(a− el)Lk,±(a− el)

}
.

Figure 8 gives the bounds obtained as a function of α ∈ (0, 1 − ε), for different values of ε. For simplicity,
we draw the mean service rate per job, which is simply the inverse of the mean delay since all jobs have a
unit mean size.

5 Conclusion

In this paper, we consider processor-sharing systems and introduce a poly-symmetry criterion on the structure
of their capacity set which ensures that the performance metrics can be computed with a complexity which is
polynomial in the number of queues if the traffic intensities per queue are adjusted accordingly. We showed
that these formulas can also be used to bound the performance of a system when its capacity set is nearly
poly-symmetric. We applied these results to tree data networks and computer clusters.

In future works, we would like to generalize the notion of poly-symmetry to relax some symmetry assump-
tions imposed in this paper while keeping a reasonable time complexity for the calculation of the performance
metrics. We also believe there is further scope of enhancing the stochastic bounds by expanding their scope
as well as obtaining tighter bounds in some specific scaling regimes.

Appendix

A Proof of Theorem 3

A.1 Recursion (6)

Let a ∈ N \ {0}. By (4), we have

π(a) =
∑
A⊂I
|A|Σ=a

π(A) =
∑
A⊂I
|A|Σ=a

∑
i∈A ρiπ(A \ {i})
µ(A)−

∑
i∈A ρi

.

The regularity assumptions ensure that µ(A)−
∑
i∈A ρi = h(a)−

∑K
k=1 ak%k for any A ⊂ I with |A|Σ = a.

Thus we obtain(
h(a)−

K∑
k=1

ak%k

)
π(a) =

∑
A⊂I
|A|Σ=a

∑
i∈A

ρiπ(A \ {i}) =

K∑
k=1

%k
∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

π(A \ {i}).
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For any k = 1, . . . ,K and any i ∈ Ik, we do the substitution∑
A⊂I,i∈A
|A|Σ=a

π(A \ {i}) =
∑

B⊂I\{i}
|B|Σ=a−ek

π(B),

and thus we obtain for any k = 1, . . . ,K,∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

π(A \ {i}) =
∑
B⊂I

|B|Σ=a−ek

∑
i∈Ik\(B∩Ik)

π(B) = (nk − ak + 1)π(a− ek). (9)

This proves (6).

A.2 Recursion (7)

Let k = 1, . . . ,K and a ∈ N \ {0}. By definition of Lk(a), we have

Lk(a) = E

[∑
i∈Ik

Xi

∣∣∣∣|I(X)|Σ = a

]
=
∑
i∈Ik

E [Xi||I(X)|Σ = a] .

It follows that

π(a)Lk(a) =
∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

π(A)Li(A), (10)

and by (5), we obtain

π(a)Lk(a) =
∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

ρiπ(A \ {i}) + ρiπ(A) +
∑
j∈A\{i} ρjπ(A \ {j})Li(A \ {j})

µ(A)−
∑
j∈A ρj

.

Using the regularity assumptions, this can be rewritten as(
h(a)−

K∑
l=1

al%l

)
π(a)Lk(a) = %k

∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

π(A \ {i}) + %k
∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

π(A)

+
∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

∑
j∈A
j 6=i

ρjπ(A \ {j})Li(A \ {j}).

The first term is given by (9). The second term is simply

%k
∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

π(A) = %k
∑
A⊂I
|A|Σ=a

∑
i∈A∩Ik

π(A) = ak%kπ(a).

Finally, for any i ∈ Ik, we have

∑
A⊂I,i∈A
|A|Σ=a

∑
j∈A
j 6=i

ρjπ(A \ {j})Li(A \ {j}) =

K∑
l=1

%l
∑
j∈Il
j 6=i

∑
A⊂I,i,j∈A
|A|Σ=a

π(A \ {j})Li(A \ {j}).
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Doing the same substitution as in (9), we have for any l = 1, . . . ,K,∑
j∈Il
j 6=i

∑
A⊂I,i,j∈A
|A|Σ=a

π(A \ {j})Li(A \ {j}) =
∑

B⊂I,i∈B
|B|Σ=a−el

∑
j∈Il\(B∩Il)

π(B)Li(B),

= (nl − al + 1)
∑

B⊂I,i∈B
|B|Σ=a−el

π(B)Li(B).

Hence the third term of the sum is equal to∑
i∈Ik

K∑
l=1

(nl − al + 1)%l
∑

B⊂I,i∈B
|B|Σ=a−el

π(B)Li(B) =

K∑
l=1

(nl − al + 1)%l
∑
i∈Ik

∑
B⊂I,i∈B
|B|Σ=a−el

π(B)Li(B),

=

K∑
l=1

(nl − al + 1)%lπ(a− el)Lk(a− el),

where the second equality holds by (10). When we substitute the three terms by their expressions, we obtain
(7).

B Proof of Theorem 5

We give the proof only for the case K = 2 for ease of notation; the other cases follow analogously. For now,

we assume that for all n ≥ 1, all servers have the same capacity µ
(n)
s = ξ(n) for any s ∈ S(n).

Let 0 < ε < 1. We will show that there exists a sequence (gn : n ≥ 1) such that gn = ω(log n) and for
any n ≥ 1,

P
{
∃A ⊂ I(n) s.t. M(n)(A) ≤ (1− ε)µ(n)(A)

}
≤ e−gn .

Let us first give the main ideas of the proof. As in [18], it is divided in three steps. We first provide a
bound for P

{
M(n)(A) ≤ (1− ε)µ(n)(A)

}
for each A ⊂ I(n) for n large enough. Then, for each a ∈ N (n) =

{0, 1, . . . , n}2, we use the union bound to obtain a uniform bound over all sets A ⊂ I(n) with |A|Σ(n) = a.
Finally, another use of the union bound over all a ∈ N (n) gives us the result.

B.1 Partial bound

Let n ≥ 1, a ∈ N (n) and A ⊂ I(n) so that |A|Σ(n) = a. Recall that µ(n)(A) = E[M(n)(A)] with

M(n)(A) = ξ(n)
∑
s∈S(n)

1
s∈⋃i∈A S

(n)
i
.

The variables 1
s∈⋃i∈A S

(n)
i

for s ∈ S(n) are Bernoulli distributed with parameter

p(n)
a = 1−

K∏
k=1

(
1−

d
(n)
k

m(n)

)ak
.

Dubbashi et al. proved in Theorem 10 of [9] that these random variables are negatively associated in the sense
of Definition 3 of [9]. Their Theorem 14 then showed that the Chernoff-Hoeffding bounds (see for instance
[15, 19]), which hold for independent random variables, can also be applied to these random variables. Hence
we have

P
{

M(n)(A) ≤ (1− ε)µ(n)(A)
}
≤ e− ε

2

2 m
(n)p(n)

a , (11)

P
{

M(n)(A) ≤ (1− ε)µ(n)(A)
}
≤ e−m

(n)H[(1−ε)p(n)
a ||p(n)

a ], (12)

20



where for any p, q ∈ (0, 1), H[p||q] is the KL divergence between two Bernoulli random variables with
parameters p and q respectively, given by

H[p||q] = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
.

We also use the following lemmas which will be proved later in Appendix C:

Lemma 3. Let 0 < δ < 1
2 . Consider a sequence (gn : n ≥ 1) such that gn = o

(
d

(n)
1

)
and gn = o

(
d

(n)
2

)
.

For large enough n, we have

p(n)
a ≥ δ (a1 + a2)gn

n
, ∀a = (a1, a2) ∈

{
0, 1, . . . ,

⌊
n

gn

⌋}2

.

Lemma 4. There exists a positive constant δ such that

H
[
(1− ε)p(n)

a ||p(n)
a

]
≥ −δ + ε

a1d
(n)
1 + a2d

(n)
2

m(n)
, ∀n ≥ 1, ∀a ∈ N (n).

Consider the sequence (gn : n ≥ 1) given by

gn =
(

min
(
d

(n)
1 , d

(n)
2

)
log n

)1/2

, ∀n ≥ 1.

Observe that gn = ω(log n), gn = o
(
d

(n)
1

)
and gn = o

(
d

(n)
2

)
. Now let n ≥ 1 and a ∈ N (n). We distinguish

two cases depending on the value of a.

B.1.1 Case 1: 0 ≤ a1 ≤ n
gn

and 0 ≤ a2 ≤ n
gn

By Lemma 3, there is a positive constant δ1 such that, for large enough n,

p(n)
a ≥ δ1

(a1 + a2)gn
n

.

Using (11), we deduce that

P
{

M(n)(A) ≤ (1− ε)µ(n)(A)
}
≤ e− ε

2

2 δ1b(a1+a2)gn

for any A ⊂ I(n) such that |A|Σ(n) = a. The union bound yields

P
{
∃A ⊂ I(n) s.t. |A|Σ(n) = a and M(n)(A) ≤ (1− ε)µ(n)(A)

}
≤ e− ε

2

2 δ1b(a1+a2)gn

(
n

a1

)(
n

a2

)
,

≤ e− ε
2

2 δ1b(a1+a2)gnna1na2 ,

≤ ea1gn
(
− ε22 δ1b+

logn
gn

)
e
a2gn

(
− ε22 δ1b+

logn
gn

)
.

Since gn = ω(log n), we obtain for large enough n

P
{
∃A ⊂ I(n) s.t. |A|Σ(n) = a and M(n)(A) ≤ (1− ε)µ(n)(A)

}
≤ e−δ2(a1+a2)gn

with δ2 = ε2

4 δ1b > 0.
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B.1.2 Case 2: a1 >
n
gn

or a2 >
n
gn

Combining Lemma 4 with (12), we deduce that there is a positive constant δ3 such that

P
{

M(n)(A) ≤ (1− ε)µ(n)(A)
}
≤ eδ3m

(n)−ε
(
a1d

(n)
1 +a2d

(n)
2

)

for any A ⊂ I(n) such that |A|Σ(n) = a. Since m(n) = dbne and gn = o
(
d

(n)
1

)
, we have δ3m

(n) ≤ ε
2
nd

(n)
1

gn

when n is large enough. If a1 >
n
gn

, we also have that ε
2
nd

(n)
1

gn
≤ ε

2a1d
(n)
1 so that

δ3m
(n) − ε

(
a1d

(n)
1 + a2d

(n)
2

)
≤ − ε

2
a1d

(n)
1 − εa2d

(n)
2 ≤ − ε

2

(
a1d

(n)
1 + a2d

(n)
2

)
for large enough n. The same argument holds by inverting a1 and a2 when a2 >

n
gn

, so we conclude that
there is a positive constant δ4 such that for large enough n, we have

P
{

M(n)(A) ≤ (1− ε)µ(n)(A)
}
≤ e−δ4

(
a1d

(n)
1 +a2d

(n)
2

)

for any A ⊂ I(n) such that |A|Σ(n) = a. The union bound yields

P
{
∃A ⊂ I(n) s.t. |A|Σ(n) = a and M(n)(A) ≤ (1− ε)µ(n)(A)

}
≤ e−δ4

(
a1d

(n)
1 +a2d

(n)
2

)(
n

a1

)(
n

a2

)
,

≤ e−δ4
(
a1d

(n)
1 +a2d

(n)
2

)
na1na2 ,

≤ ea1d
(n)
1

(
−δ4+logn/d

(n)
1

)
e
a2d

(n)
2

(
−δ4+logn/d

(n)
2

)
.

Since d
(n)
1 = ω(log n) and d

(n)
2 = ω(log n), for large enough n, we have

P
{
∃A ⊂ I(n) s.t. |A|Σ(n) = a and M(n)(A) ≤ (1− ε)µ(n)(A)

}
≤ e−δ5a1d

(n)
1 e−δ5a2d

(n)
2 = e

−δ5
(
a1d

(n)
1 +a2d

(n)
2

)

for some positive constant δ5 < δ4.

B.2 Conclusion

Combining cases B.1.1 and B.1.2, we deduce that there exists a positive constant δ6 such that

P
{
∃A ⊂ I(n) s.t. |A|Σ(n) = a and M(n)(A) ≤ (1− ε)µ(n)(A)

}
≤ e−δ6gn , ∀a ∈ N (n)

when n is large enough. Using the union bound again, we obtain

P
{
∃A ⊂ I(n) s.t. M(n)(A) ≤ (1− ε)µ(n)(A)

}
≤ n2e−δ6gn = e2 logne−δ6gn = e−gn(δ6− 2 logn

gn
).

Since gn = ω(log n), we conclude that for a constant δ7 < δ6, we have for large enough n

P
{
∃A ⊂ I(n) s.t. M(n)(A) ≤ (1− ε)µ(n)(A)

}
≤ e−δ7gn .

Finally, when servers are in groups as in Assumption 1, we can break down M(n) into a sum of random
rank functions, one for each groups. The result follows by showing the concentration in each group as above,
and then using the union bound again.
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C Proof of the lemmas for Theorem 5

Lemma 3. Let 0 < δ < 1
2 . Consider a sequence (gn : n ≥ 1) such that gn = o

(
d

(n)
1

)
and gn = o

(
d

(n)
2

)
.

For large enough n, we have

p(n)
a ≥ δ (a1 + a2)gn

n
, ∀a = (a1, a2) ∈

{
0, 1, . . . ,

⌊
n

gn

⌋}2

.

Proof. Consider the sequence (fn : n ≥ 1) of functions defined on R2
+ by

fn(t1, t2) = 1−

(
1− d

(n)
1

bn

)t1 (
1− d

(n)
2

bn

)t2
, ∀(t1, t2) ∈ R2

+.

We have

fn

(
2n

gn
, 0

)
= 1−

(1− d
(n)
1

bn

) n
gn

2

−−−−→
n→∞

1 and fn

(
0,

2n

gn

)
= 1−

(1− d
(n)
2

bn

) n
gn

2

−−−−→
n→∞

1.

Thus, there is nδ ≥ 1 so that fn

(
2n
gn
, 0
)
≥ 2δ and fn

(
0, 2n

gn

)
≥ 2δ for all n ≥ nδ.

Then, for any n ≥ nδ and any t1, t2 ≤ n
gn

, we have

fn(t1, t2) = fn

(
t1

t1 + t2
(t1 + t2, 0) +

(
1− t1

t1 + t2

)
(0, t1 + t2)

)
,

≥ t1
t1 + t2

fn(t1 + t2, 0) +
t2

t1 + t2
fn(0, t1 + t2),

≥ t1
t1 + t2

t1 + t2
2n
gn

fn

(
2n

gn
, 0

)
+

t2
t1 + t2

t1 + t2
2n
gn

fn

(
0,

2n

gn

)
,

≥ 2δ
t1gn
2n

+ 2δ
t2gn
2n

,

= δ
(t1 + t2)gn

n
,

where the first two inequalities hold by concavity of fn.

Lemma 4. There exists a positive constant δ such that

H
[
(1− ε)p(n)

a ||p(n)
a

]
≥ −δ + ε

a1d
(n)
1 + a2d

(n)
2

m(n)
, ∀n ≥ 1, ∀a ∈ N (n).

Proof. By definition of H,

H
[
(1− ε)p(n)

a ||p(n)
a

]
= (1− ε)p(n)

a log(1− ε)

+
(

1− (1− ε)p(n)
a

)
log
(

1− (1− ε)p(n)
a

)
−
(

1− (1− ε)p(n)
a

)
log
(

1− p(n)
a

)
.

The first and the second terms are greater than (1 − ε) log(1 − ε) and log(ε) respectively. With δ = (1 −
ε) log

(
1

1−ε

)
+ log

(
1
ε

)
> 0, we obtain

H
[
(1− ε)p(n)

a ||p(n)
a

]
≥ −δ −

(
1− (1− ε)p(n)

a

)
log
(

1− p(n)
a

)
≥ −δ − ε log

(
1− p(n)

a

)
.
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Finally, observe that

log
(

1− p(n)
a

)
= a1 log

(
1− d

(n)
1

m(n)

)
+ a2 log

(
1− d

(n)
2

m(n)

)
≤ −a1d

(n)
1 + a2d

(n)
2

m(n)
,

where in the inequality we used the fact that log

(
1− d

(n)
k

m(n)

)
≤ − d

(n)
k

m(n) for k = 1, 2. Hence, we obtain the

expected result.
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