Skip to main content
Log in

Customer equilibrium in a single-server system with virtual and system queues

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Consider a non-preemptive M/M/1 system with two first-come first-served queues, virtual (VQ) and system (SQ). An arriving customer who finds the server busy decides which queue to join. Customers in the SQ have non-preemptive priority over those in the VQ, but waiting in the SQ is more costly. We study two information models of the system. In the unobservable model, customers are notified only whether the server is busy, and in the observable model they are also informed about the number of customers currently waiting in the SQ. We characterize the Nash equilibrium of joining strategies in the two models and demonstrate a surprising similarity of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adiri, I., Yechiali, U.: Optimal priority-purchasing and pricing decisions in nonmonopoly and monopoly queues. Oper. Res. 22, 1051–1066 (1974)

    Article  Google Scholar 

  2. Aguir, M.S., Karaesmen, F., Akşin, O.Z., Chauvet, F.: The impact of retrials on call center performance. OR Spectr. 26, 353–376 (2004)

    Article  Google Scholar 

  3. Altman, E., Jiménez, T., Núñez-Queija, R., Yechiali, U.: Optimal routing among \(\cdot \)/M/1 queues with partial information. Stoch. Models 20, 149–171 (2004)

    Article  Google Scholar 

  4. Armony, M., Maglaras, C.: On customer contact centers with a call-back option: customer decisions, routing rules, and system design. Oper. Res. 52, 271–292 (2004)

    Article  Google Scholar 

  5. Armony, M., Maglaras, C.: Contact centers with a call-back option and real-time delay information. Oper. Res. 52, 527–545 (2004)

    Article  Google Scholar 

  6. Burgain, P., Feron, E., Clarke, J.-P.: Collaborative virtual queue: benefit analysis of a collaborative decision making concept applied to congested airport departure operations. Air Traffic Control Q. 17, 195–222 (2009)

    Article  Google Scholar 

  7. Camulli, E.: Answer my call: technology helps utilities get customers off hold. Electr. Light Power 2, 56 (2007)

    Google Scholar 

  8. Chakravarthy, R.S., Krishnamoorthy, A., Joshua, V.C.: Analysis of a multi-server retrial queue with search of customers from the orbit. Perform. Eval. 63, 776–798 (2006)

    Article  Google Scholar 

  9. Cope III, R.F., Cope, R.F., Davis, H.E.: Disney’s virtual queues: a strategic opportunity to co-brand services? J. Bus. Econ. Res. 6, 13–20 (2008)

    Google Scholar 

  10. Dickson, D., Ford, R.C., Laval, B.: Managing real and virtual waits in hospitality and service organizations. Cornell Hotel Restaur. Adm. Q. 46, 52–68 (2005)

    Article  Google Scholar 

  11. Economou, A., Kanta, S.: Equilibrium customer strategies and social-profit maximization in the single-server constant retail queue. Nav. Res. Logist. 58, 107–122 (2011)

    Article  Google Scholar 

  12. Edelson, N.M., Hildebrand, K.: Congestion tolls for Poisson queuing processes. Econometrica 43, 81–92 (1975)

    Article  Google Scholar 

  13. Guijarro, L., Pla, V., Tuffin, B.: Entry game under opportunistic access in cognitive radio networks: a priority queue model. In: Wireless Days (WD), pp. 1–6 (2013)

  14. Hassin, R.: On the advantage of being the first server. Manag. Sci. 42, 618–623 (1996)

    Article  Google Scholar 

  15. Hassin, R.: Rational Queueing. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  16. Hassin, R., Haviv, M.: Equilibrium threshold strategies: the case of queues with priorities. Oper. Res. 45, 966–973 (1997)

    Article  Google Scholar 

  17. Hassin, R., Haviv, M.: To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems. Kluwer, Dordrecht (2003)

    Book  Google Scholar 

  18. Haviv, M.: Queues-A Course in Queueing Theory, vol. 191. Springer, Berlin (2013)

    Google Scholar 

  19. Haviv, M.L.: Ravner: Strategic bidding in an accumulating priority queue: equilibrium analysis. Ann. Oper. Res. 244, 505–523 (2016)

    Article  Google Scholar 

  20. Iravani, F., Balcioǵlu, B.: On priority queues with impatient customers. Queueing Syst. 58, 239–260 (2008)

    Article  Google Scholar 

  21. Kopzon, A., Nazarathy, Y., Weiss, G.: A push pull queueing with infinite supply of work. Queueing Syst. Theory Appl. 66, 75–111 (2009)

    Article  Google Scholar 

  22. Kostami, V., Ward, R.A.: Managing service systems with an offline waiting option and customer abandonment. Manuf. Serv. Oper. Manag. 11, 644–656 (2009)

    Article  Google Scholar 

  23. de Lange, R., Samoilovich, I., van der Rhee, B.: Virtual queuing at airport security lanes. Eur. J. Oper. Res. 225, 153–165 (2013)

    Article  Google Scholar 

  24. Lovejoy, T.C., Aravkin, S., Schneider-Mizell, C.: Kalman queue: an adaptive approach to virtual queuing. UMAP J. 25, 337–352 (2004)

    Google Scholar 

  25. Mandelbaum, A., Yechiali, U.: Optimal entering rules for a customer with wait option at an M/G/1 queue. Manag. Sci. 29, 174–187 (1983)

    Article  Google Scholar 

  26. Naor, P.: The regulation of queue size by levying tolls. Econometrica 37, 15–24 (1969)

    Article  Google Scholar 

  27. Littlechild, S.C.: Optimal arrival rate in a simple queueing system. Int. J. Prod. Res. 12, 391–397 (1974)

    Article  Google Scholar 

  28. Wüchner, P., Sztrik, J., de Meer, H.: Finite-source M/M/\(S\) retrial queue with search for balking and impatient customers from the orbit. Comput. Netw. 53, 1264–1273 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refael Hassin.

Additional information

This research was supported by the Israel Science Foundation (Grant Nos. 1015/11 and 355/15).

Appendix: Notation and proofs

Appendix: Notation and proofs

Notation and definitions

SQ

System queue

VQ

Virtual queue

\(C_\mathrm{s}, C_\mathrm{v}\)

Waiting costs in the SQ and VQ

\(\varphi \)

The cost ratio, \(\varphi = \frac{C_\mathrm{v}}{C_\mathrm{s}}\)

\(\lambda \)

Mean arrival rate of customers to the system

\(\mu \)

Mean service rate

\(r_\mathrm{s}\)

Probability of joining the SQ in the unobservable case

\(S(r_\mathrm{s})\)

Expected net benefit for a customer following the strategy \(r_\mathrm{s}\)

\(L_\mathrm{s}(t), L_\mathrm{v}(t)\)

The number of customers in the SQ and the VQ at time t

E(L), \(E(W_\mathrm{s})\), \(E(W_\mathrm{v})\)

Expected waiting time in the system, SQ and VQ, respectively

\(\hat{E}[W|l_\mathrm{s}]\)

The expected waiting time in the VQ in time units per customer

\(E(L_\mathrm{s})\), \(E(L_\mathrm{v})\)

Expected number of customers in the SQ and VQ

\(\rho , \rho _\mathrm{s}, \rho _\mathrm{v}\)

Occupation rates in the entire system, the SQ and the VQ

P

Stationary probabilities

\(l_\mathrm{s}\)

Number of customers in the SQ

\(s(l_\mathrm{s})\)

Threshold strategy of joining the SQ

T

Threshold strategy, \(T=n+r\) \((r \in [0,1], n \in \mathbb {N})\)

f

Number of unoccupied places in the SQ

b(f)

Mean busy period when there are \(n+1-f\) customers in the SQ

\(b'(f)\)

Normalized b(f)

Proof of Proposition 4.1

From the transition rate diagram,

$$\begin{aligned} (\lambda + \mu )P_{n+1,0}= \lambda r P_{n0}, \end{aligned}$$

and therefore

$$\begin{aligned} P_{n+1,0} =\frac{\rho r}{\rho +1}P_{n0} . \end{aligned}$$
(23)

A cut around nodes \(0',00,10,\ldots ,j0\) gives

$$\begin{aligned} \lambda P_{j0} = \mu P_{01} + \mu P_{j+1,0} , \quad j=0,1,\ldots ,n , \end{aligned}$$

or, after reindexing,

$$\begin{aligned} P_{j0}=\rho P_{j-1,0}-P_{01}. \end{aligned}$$

We now substitute \(P_{01}\) from the upper horizontal cut equation

$$\begin{aligned} \lambda (1-r) P_{n0} + \lambda P_{n+1,0}= \mu P_{01} \, \end{aligned}$$

and \(P_{n+1,0}\) from (23) and obtain

$$\begin{aligned} P_{j0}=\rho P_{j-1,0}-\frac{1+ \rho -r}{1+\rho } \rho P_{n0} , \quad j=1,\ldots ,n+1 . \end{aligned}$$

A recursive application of this equation gives

$$\begin{aligned} P_{j0} = \rho ^j P_{00} - \frac{1+\rho - r}{1+\rho } P_{n0} \sum \limits _{k=1}^{j} \rho ^k ,\quad j=1,\ldots ,n+1 . \end{aligned}$$
(24)

Specifically, for \(j=n\),

$$\begin{aligned} P_{n0} = \rho ^n P_{00} - \frac{1+\rho - r}{1+\rho } P_{n0} \sum \limits _{k=1}^{n} \rho ^k , \end{aligned}$$

giving

$$\begin{aligned} P_{n0} = \frac{(1+\rho )\rho ^n}{(1+ \rho ) \sum \nolimits _{k=0}^{n}\rho ^k -r \sum \nolimits _{k=1}^{n}\rho ^k} P_{00} . \end{aligned}$$
(25)

Substituting \(P_{n0}\) in (23) gives (4).

From Eqs. (25) and (24), we obtain

$$\begin{aligned} P_{j0} = \rho ^j P_{00} - \frac{1+ \rho - r}{1 + \rho } \frac{(1+\rho )\rho ^n}{(1+ \rho ) \sum \nolimits _{k=0}^{n}\rho ^k -r \sum \nolimits _{k=1}^{n}\rho ^k} \sum \limits _{k=1}^{j} \rho ^k P_{00}, \end{aligned}$$

which gives (3).

Proof of Proposition 4.2

Equation (8) follows from the horizontal cut between the rows \(i,i-1\):

$$\begin{aligned} \lambda (1-r) P_{ni} + \lambda P_{n+1,i}= \mu P_{0,i+1} , \quad i=0,1,2,\ldots . \end{aligned}$$
(26)

A cut that contains the nodes \(0i,1i,\ldots ,ji\) gives

$$\begin{aligned} \lambda P_{ji} + \mu P_{0i} = \mu P_{j+1,i} + \mu P_{0,i+1}\quad \begin{array}{lr} i=1,2,\ldots , \\ j=0,1,2,\ldots , n-1 . \end{array} \end{aligned}$$
(27)

By Eq. (26) and reindexing, we have

$$\begin{aligned} P_{ji} = P_{0i}-(1-r)\rho P_{ni} -\rho P_{n+1,i}+ \rho P_{j-1,i}\quad \begin{array}{lr} i=1,2,\ldots , \\ j=1, 2, . . . ,n. \end{array} \end{aligned}$$

A recursive application of this relation leads to Eq. (7).

We now find an expression for \(P_{ni}\) and \(P_{n+1,i}\). Equation (7) for \(P_{ni}\) yields

$$\begin{aligned} \left[ \sum \limits _{k=0}^{n}\rho ^k -r\sum \limits _{k=1}^{n}\rho ^k\right] P_{ni} = \sum \limits _{k=0}^{n}\rho ^k P_{0i} - \sum \limits _{k=1}^{n}\rho ^k P_{n+1,i}, \end{aligned}$$
(28)

and the cut around the node \((n+1)i\) is

$$\begin{aligned} (1+\rho )P_{n+1,i} = \rho P_{n+1,i-1} + \rho rP_{ni} . \end{aligned}$$
(29)

By Eqs. (8), (28) and (29) we have

$$\begin{aligned} P_{ni} = \frac{ (1+\rho )(1-r) \sum \nolimits _{k=1}^{n+1}\rho ^k}{\sum \nolimits _{k=1}^{n+1}\rho ^k + \sum \nolimits _{k=0}^{n}\rho ^k - r\sum \nolimits _{k=1}^{n}\rho ^k} P_{n,i-1} + \frac{\sum \nolimits _{k=1}^{n+2}\rho ^k}{\sum \nolimits _{k=1}^{n+1}\rho ^k + \sum \nolimits _{k=0}^{n}\rho ^k - r\sum \nolimits _{k=1}^{n}\rho ^k} P_{n+1,i-1} . \end{aligned}$$
(30)

With this result and Eq. (29), we also get

$$\begin{aligned} P_{n+1,i}&= \left[ 1+\frac{\rho r\sum \nolimits _{k=1}^{n+2}\rho ^k}{\sum \nolimits _{k=1}^{n+1}\rho ^k + \sum \nolimits _{k=0}^{n}\rho ^k - r\sum \nolimits _{k=1}^{n}\rho ^k} \right] \frac{\rho }{\rho + 1} P_{n+1,i-1} \nonumber \\&\quad +\frac{(1+\rho )(1-r) r \sum \nolimits _{k=2}^{n+2}\rho ^k}{\sum \nolimits _{k=1}^{n+1}\rho ^k + \sum \nolimits _{k=0}^{n}\rho ^k - r\sum \nolimits _{k=1}^{n}\rho ^k} P_{n,i-1} . \end{aligned}$$
(31)

In terms of XYZ, as defined in Eqs. (9)–(11), we have

$$\begin{aligned} P_{ni} = YP_{n,i-1} + XP_{n+1,i-1} , \quad P_{n+1,i} = ZP_{n+1,i-1} + \frac{\rho r}{1+\rho } YP_{n,i-1}, \end{aligned}$$

therefore

$$\begin{aligned} P_{ni}= & {} Y^iP_{n0} + X\sum \limits _{k=0}^{i-1}Y^kP_{n+1,i-1-k} ,\\ P_{n+1,i}= & {} Z^iP_{n+1,0} + \frac{\rho r}{1+\rho } Y\sum \limits _{k=0}^{i-1}Z^kP_{n,i-1-k}, \end{aligned}$$

and we get (5) and (6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engel, R., Hassin, R. Customer equilibrium in a single-server system with virtual and system queues. Queueing Syst 87, 161–180 (2017). https://doi.org/10.1007/s11134-017-9538-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-017-9538-x

Keywords

Mathematics Subject Classification

Navigation