Skip to main content
Log in

Optimal timer-based caching policies for general arrival processes

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

In this paper, we analyze the hit performance of cache systems that receive file requests with general arrival distributions and different popularities. We consider timer-based policies, with differentiated timers over which we optimize. The optimal policy is shown to be related to the monotonicity of the hazard rate function of the interarrival distribution. In particular, for decreasing hazard rates, timer policies outperform the static policy of caching the most popular contents. We provide explicit solutions for the optimal policy in the case of Pareto-distributed inter-request times and a Zipf distribution of file popularities, including a compact fluid characterization in the limit of a large number of files. We compare it through simulation with classical policies, such as Least Recently Used and discuss its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The third case does not occur because \(\eta _n(T)\searrow 0\) as \(T\rightarrow \infty \) for this distribution.

  2. The main difference with [17] is that here timers are computed following the optimal TTL policy from Theorem 3.

References

  1. Aalto, S., Ayesta, U., Righter, R.: On the Gittins index in the M/G/1 queue. Queueing Syst. 63(1), 437–458 (2009)

    Article  Google Scholar 

  2. Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B.: A survey of information-centric networking. IEEE Commun. Mag. 50(7), 26–36 (2012)

    Article  Google Scholar 

  3. Baccelli, F., Bremaud, P.: Elements of Queueing Theory. Springer-Verlag, Berlin (2013)

    Google Scholar 

  4. Bahat, O., Makowski, A.M.: Measuring consistency in TTL-based caches. Perform. Eval. 62(1), 439–455 (2005)

    Article  Google Scholar 

  5. Barrera, J., Fontbona, J.: The limiting move-to-front search-cost in law of large numbers asymptotic regimes. Ann. Appl. Probab. 20(2), 722–752 (2010)

    Article  Google Scholar 

  6. Berger, D.S., Gland, P., Singla, S., Ciucu, F.: Exact analysis of TTL cache networks. Perform. Eval. 79, 2–23 (2014)

    Article  Google Scholar 

  7. Berger, D.S., Henningsen, S., Ciucu, F., Schmitt, J.B.: Maximizing cache hit ratios by variance reduction. ACM SIGMETRICS Perform. Eval. Rev. 43(2), 57–59 (2015)

    Article  Google Scholar 

  8. Bianchi, G., Detti, A., Caponi, A., Blefari Melazzi, N.: Check before storing: what is the performance price of content integrity verification in LRU caching? ACM SIGCOMM Comput. Commun. Rev. 43(3), 59–67 (2013)

    Article  Google Scholar 

  9. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  10. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and Zipf-like distributions: evidence and implications. In: Proceedings of IEEE/Infocom, pp. 126–134 (1999)

  11. Che, H., Tung, Y., Wang, Z.: Hierarchical web caching systems: modeling, design and experimental results. IEEE J. Sel. Areas Commun. 20(7), 1305–1314 (2002)

    Article  Google Scholar 

  12. Dan, A., Towsley, D.: An approximate analysis of the LRU and FIFO buffer replacement schemes. In: Proceedings of ACM/SIGMETRICS, pp. 143–152 (1990)

  13. Dehghan, M., Massoulié, L., Towsley, D., Menasche, D., Tay, Y.C.: A utility optimization approach to network cache design. In: Proceedings of IEEE/Infocom, pp. 1–9 (2016)

  14. Ferragut, A., Rodriguez, I., Paganini, F.: Optimizing TTL caches under heavy tailed demands. In: Proceedings of ACM/SIGMETRICS, pp. 101–112 (2016)

  15. Fill, J.A.: Limits and rates of convergence for the distribution of search cost under the move-to-front rule. Theor. Comput. Sci. 164(1), 185–206 (1996)

    Article  Google Scholar 

  16. Fofack, N.C., Nain, P., Neglia, G., Towsley, D.: Analysis of TTL-based cache networks. In: Proceedings of Intl. Conf on Performance Evaluation Methodologies and Tools (VALUETOOLS), pp. 1–10 (2012)

  17. Fofack, N.C., Nain, P., Neglia, G., Towsley, D.: Performance evaluation of hierarchical TTL-based cache networks. Comput. Netw. 65, 212–231 (2014)

    Article  Google Scholar 

  18. Fricker, C., Robert, P., Roberts, J.: A versatile and accurate approximation for LRU cache performance. In: Proceedings of the 24th International Teletraffic Congress, pp. 57–64 (2012)

  19. Gast, N., Houdt, B.V.: Transient and steady-state regime of a family of list-based cache replacement algorithms. In: Proceedings of ACM/SIGMETRICS, pp. 123–136 (2015)

  20. Gelenbe, E.: A unified approach to the evaluation of a class of replacement algorithms. IEEE Trans. Comput. 100(6), 611–618 (1973)

    Article  Google Scholar 

  21. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014)

  22. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.: Networking named content. In: Proceedings of the ACM/Conext, pp. 1–12 (2009)

  23. Jelenković, P., Radovanović, A.: Asymptotic insensitivity of least-recently-used caching to statistical dependency. In: Proceedings of IEEE/Infocom, pp. 438–447 (2003)

  24. Jelenković, P.R.: Asymptotic approximation of the move-to-front search cost distribution and least-recently used caching fault probabilities. Ann. Appl. Probab. 9(2), 430–464 (1999)

    Article  Google Scholar 

  25. Jelenković, P.R., Radovanović, A.: Least-recently-used caching with dependent requests. Theor. Comput. Sci. 326(1), 293–327 (2004)

    Article  Google Scholar 

  26. Jelenković, P.R., Radovanović, A.: The persistent-access-caching algorithm. Random Struct. Algorithms 33(2), 219–251 (2008)

    Google Scholar 

  27. Jelenković, P.R., Radovanović, A., Squillante, M.S.: Critical sizing of LRU caches with dependent requests. J. Appl. Probab. 43(4), 1013–1027 (2006)

    Article  Google Scholar 

  28. Jung, J., Berger, A.W., Balakrishnan, H.: Modeling TTL-based internet caches. In: Proceedings of IEEE/Infocom, pp. 417–426 (2003)

  29. King, W.: Analysis of paging algorithms. In: Proceedings of IFIP Congress, pp. 485–490 (1971)

  30. Martina, V., Garetto, M., Leonardi, E.: A unified approach to the performance analysis of caching systems. In: Proceedings of IEEE/Infocom, pp. 2040–2048 (2014)

  31. Osipova, N., Ayesta, U., Avrachenkov, K.: Optimal policy for multi-class scheduling in a single server queue. In: Proceedings of 21st International Teletraffic Congress (ITC), pp. 1–8 (2009)

  32. Rosensweig, E.J., Kurose, J., Towsley, D.: Approximate models for general cache networks. In: Proceedings of IEEE/Infocom, pp. 1–9 (2010)

Download references

Acknowledgements

The authors would like to thank D. Sadoc-Menasche and R. Srikant for their inputs during useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Ferragut.

Additional information

The authors were partially supported by AFOSR US under Grant FA_9550_15_1_0183.

Proofs

Proofs

We provide here the analysis of the asymptotic behavior of the optimal policy in the heavy-tailed case.

1.1 Asymptotic caching fraction

We begin by establishing bounds on the number of objects M cached by the optimal policy, as defined in (20). From this definition, we first note that

$$\begin{aligned} p \frac{(\alpha - 1)}{\alpha } S_N(\beta )&< M^{-\beta }, \end{aligned}$$
(37)
$$\begin{aligned} p \frac{(\alpha - 1)}{\alpha } S_N(\beta )&\geqslant (M+1)^{-\beta } \quad \text { if } M<N. \end{aligned}$$
(38)

From here we can establish the following:

Lemma 3

$$\begin{aligned} 1 - \frac{C}{M}&< \frac{S_M(-\beta (\alpha -1))}{M^{1 + \beta (\alpha -1)}}, \end{aligned}$$
(39)
$$\begin{aligned} 1 - \frac{C}{M}&\geqslant \frac{S_M(-\beta (\alpha -1))}{M(M+1)^{\beta (\alpha -1)}} \quad \text { if } M<N. \end{aligned}$$
(40)

Proof

Substituting the optimal \(u^*\) as a function of price in the constraint (18),

$$\begin{aligned} M - C&= \sum _{n=1}^M (1-u_m^*)\\&= \sum _{n=1}^M\left( \frac{p(\alpha - 1)}{\alpha \lambda _n} \right) ^{\alpha - 1} \\&= \left( \frac{p(\alpha - 1)}{\alpha }S_N(\beta ) \right) ^{\alpha - 1} \sum _{n=1}^M n^{\beta (\alpha -1)}.\\&= \left( \frac{p(\alpha - 1)}{\alpha }S_N(\beta ) \right) ^{\alpha - 1} S_M(-\beta (\alpha -1)).\\ \end{aligned}$$

Applying the bound (37), we arrive at

$$\begin{aligned} M - C < M^{-\beta (\alpha -1)}S_M(-\beta (\alpha -1)), \end{aligned}$$

which dividing by M yields (39). Establishing (40) for the case \(M<N\) is analogous. \(\square \)

Proof of Proposition 1

Recall that, by definition (22), \(x_0: = \limsup _{N\rightarrow \infty } \frac{M_N}{N} \in [c,1]\).

Suppose first that \(x_0<1\). In this case, for large enough N we will have \(M_N < N\), so both bounds in Lemma 3 apply, yielding

$$\begin{aligned} \frac{S_{M_N}(-\beta (\alpha -1))}{M_N(M_N+1)^{\beta (\alpha -1)}} \leqslant 1 - \frac{cN}{M_N} < \frac{S_{M_N}(-\beta (\alpha -1))}{M_N^{1 + \beta (\alpha -1)}}. \end{aligned}$$

Now, since \(M_N\rightarrow \infty \), applying the equivalence (16) for \(\gamma = -\beta (\alpha -1)\) we see that both bounds converge to the same limit \(\frac{1}{1+\beta (\alpha -1)}\). This implies that \(\frac{M_N}{N}\) has a limit \(x_0\) [sharpening the condition (22)], satisfying in particular

$$\begin{aligned} 1 - \frac{c}{x_0} = \frac{1}{1+\beta (\alpha -1)} \quad \Rightarrow \quad x_0 = c \frac{1+\beta (\alpha -1)}{\beta (\alpha -1)}. \end{aligned}$$

A necessary condition for this result to be within our assumed case is that

$$\begin{aligned} c < \frac{\beta (\alpha -1)}{1+\beta (\alpha -1)}=c_{\alpha ,\beta }. \end{aligned}$$
(41)

Suppose instead that \(x_0=1\). We first derive a necessary condition for this case to occur. Choosing a subsequence \(N'\) that satisfies \(\frac{M_{N'}}{N'} \rightarrow 1\), and applying the bound (39), we have

$$\begin{aligned} 1 - c \leqslant \lim _N \frac{S_{M_N}(-\beta (\alpha -1))}{{M_N}^{1 + \beta (\alpha -1)}} = \frac{1}{1+\beta (\alpha -1)}, \end{aligned}$$

from which we conclude that

$$\begin{aligned} c \geqslant \frac{\beta (\alpha -1)}{1+\beta (\alpha -1)}= c_{\alpha ,\beta }, \end{aligned}$$
(42)

the opposite situation to the one considered in (41). We claim, furthermore, that here as well the \(\limsup \) is an actual limit. Indeed, if \(x_1\) is the limit of any other subsequence \(\frac{M_{N''}}{N''}<1\), we can repeat the argument in the previous case leading to

$$\begin{aligned} x_1 = c \frac{\beta (\alpha -1)+1}{\beta (\alpha -1)} \geqslant 1, \end{aligned}$$

using (42); therefore \(x_1=1\), the only limit point. Note furthermore that this situation of convergence to unity strictly from below can only occur if \(c= c_{\alpha ,\beta }\), the border case.

If, instead, we have strict inequality in (42), then it must be that for \(N\geqslant N_0\) we have \(M_N=N\), i.e., all files are stored. \(\square \)

1.2 Asymptotic optimal policy

We provide here the proof of Theorem 3, by separating the discussion in the two cases considered above.

1.2.1 Case \(c<c_{\alpha ,\beta }\)

This is the case where \(x_0 = \frac{c}{c_{\alpha ,\beta }} = \lim \frac{M_N}{N} < 1\).

Suppose \(x<x_0\); then \(\lfloor x N\rfloor < M_N\) for large N. Invoking (24) and the bounds (37) and (38), we write, for \(n\leqslant M_N\),

$$\begin{aligned} 1- \left( \frac{n}{M_N}\right) ^{\beta (\alpha -1)} < u_n^{*,N} \leqslant 1- \left( \frac{n}{M_N+1}\right) ^{\beta (\alpha -1)}. \end{aligned}$$
(43)

Noting that

$$\begin{aligned} \frac{\lfloor x N\rfloor }{M_N} = \frac{\lfloor x N\rfloor }{N}\frac{N}{M_N} \mathop {\longrightarrow }_{N} \frac{x}{x_0}, \end{aligned}$$

we obtain

$$\begin{aligned} u^{*,N}(x) \mathop {\longrightarrow }_{N} 1 - \left( \frac{x}{x_0}\right) ^{\beta (\alpha -1)}, \quad x < x_0. \end{aligned}$$

If, instead, \(x > x_0\), then \(\lfloor x N\rfloor > M_N\) for large N and \(u^{*,N}(x)=0\). Both cases can therefore be summarized in the expression (27) which is a special case of (25). It is readily verified by integration that the constraint (26) is verified.

1.2.2 Case \(c> c_{\alpha ,\beta }\)

In this case, we have that for large N, \(M_N=N\), i.e., we cache all files with positive probability given by

$$\begin{aligned} u_n^{*,N} = 1- \left( \frac{p_N S_N(\beta ) (\alpha - 1)}{\alpha } n^\beta \right) ^{\alpha - 1}. \end{aligned}$$

Substitution into the constraint \(\sum _n (1-u_n) = N -cN\) leads to

$$\begin{aligned} \left( \frac{p_N S_N(\beta ) (\alpha - 1)}{\alpha } \right) ^{\alpha - 1} \sum _{n=1}^N n^{\beta (\alpha -1)} = N (1-c), \end{aligned}$$

from which we can solve for

$$\begin{aligned} \left( \frac{p_N S_N(\beta ) (\alpha - 1)}{\alpha } \right) ^{\alpha - 1} =\frac{N(1-c)}{S_N(-\beta (\alpha -1))}, \end{aligned}$$
(44)

leading to the expression

$$\begin{aligned} u_n^{*,N} = 1- \frac{N(1-c)}{S_N(-\beta (\alpha -1))}n^{\beta (\alpha -1)}. \end{aligned}$$
(45)

Taking now \(n=\lfloor x N \rfloor \) we have

$$\begin{aligned}&u^N(x) \sim 1- \frac{(1-c)N^{1+\beta (\alpha -1)}}{S_N(-\beta (\alpha -1))} x^{\beta (\alpha -1)} \\&\quad \mathop {\longrightarrow }_{N} 1- {(1-c)(1+\beta (\alpha -1))}x^{\beta (\alpha -1)} . \end{aligned}$$

This is now the expression (28), again of the form (25) and once more satisfying (26).

1.3 Asymptotic optimal cost

We provide here a proof of Theorem 4, again distinguishing the two relevant cases. We will establish directly the relationships in (30). A standard calculation (omitted) verifies that they coincide with the integral in (29) for the two cases (27) or (28) of the optimal policy.

1.3.1 Case \(c<c_{\alpha ,\beta }\), \(x_0 < 1\).

Going back to (43), we derive in this case the inequalities

$$\begin{aligned} \left( \frac{n}{M_N+1}\right) ^{\beta \alpha } \leqslant \left( 1-u_n^{*,N}\right) ^\frac{\alpha }{\alpha -1} < \left( \frac{n}{M_N}\right) ^{\beta \alpha }. \end{aligned}$$

Substituting this into the optimal objective (17), denoted \(H^*_N\), leads to upper and lower bounds. Focusing for brevity on the lower bound, we have

$$\begin{aligned} H^*_N&= \frac{1}{S_N(\beta )} \sum _{n=1}^{M_N} \frac{1}{n^\beta }\left[ 1-\left( 1-u_n^{*,N}\right) ^\frac{\alpha }{\alpha -1}\right] \\&> \frac{1}{S_N(\beta )} \sum _{n=1}^{M_N} \frac{1}{n^\beta }\left[ 1-\left( \frac{n}{M_N}\right) ^{\alpha \beta }\right] \\&=\frac{N^{-\beta }}{S_N(\beta )} \sum _{n=1}^{M_N} \left( \frac{N}{n}\right) ^\beta \left[ 1-\left( \frac{n}{N}\frac{N}{M_N}\right) ^{\alpha \beta }\right] \\&=\frac{N^{1-\beta }}{S_N(\beta )}\left\{ \sum _{n=1}^{M_N} \left[ \frac{N}{n}\right] ^\beta \frac{1}{N} - \left[ \frac{N}{M_N}\right] ^{\alpha \beta } \sum _{n=1}^{M_N} \left[ \frac{n}{N}\right] ^{(\alpha -1)\beta } \frac{1}{N}\right\} . \end{aligned}$$

Consider now the (convergent) integrals

$$\begin{aligned} \int _0^{x_0} x^{-\beta }\hbox {d}x&= \frac{x_0^{1-\beta }}{1-\beta }, \text { and } \\ \int _0^{x_0} x^{(\alpha -1)\beta }\hbox {d}x&= \frac{x_0^{(\alpha -1)\beta + 1 }}{(\alpha -1)\beta + 1 }, \end{aligned}$$

and their respective Riemann sums corresponding to the uniform partition n/N, with \(n=1,\ldots , \lfloor x_0 N \rfloor \); they correspond exactly to the sums in the expression above except for the upper limit, but since \(M_N\sim x_0 N\) the limits still coincide with the respective integrals. Thus, one can invoke (16) to find the limit of the above lower bound. A similar procedure with the upper bound shows it is tight, yielding the limiting objective

$$\begin{aligned} H^*&= (1-\beta )\left\{ \frac{x_0^{1-\beta }}{1-\beta } - \frac{1}{x_0^{\alpha \beta }} \frac{x_0^{(\alpha -1)\beta + 1 }}{(\alpha -1)\beta + 1 }\right\} \nonumber \\&= x_0^{1-\beta } \left[ 1 - \frac{1-\beta }{(\alpha -1)\beta + 1}\right] \nonumber \\&= x_0^{1-\beta } \frac{\alpha \beta }{\alpha \beta + 1 -\beta }, \end{aligned}$$
(46)

where we recall that \(x_0 = \frac{c}{c_{\alpha ,\beta }}\), the latter given by (41).

1.3.2 Case \(c>c_{\alpha ,\beta }\)

Quoting from (45),

$$\begin{aligned} 1 - u_n^{*,N} = \frac{N(1-c)}{S_N(-\beta (\alpha -1))}n^{\beta (\alpha -1)}, \end{aligned}$$

from which we have

$$\begin{aligned} 1 - (1- u_n^{*,N})^\frac{\alpha }{\alpha -1} = 1 - \left[ \frac{N(1-c)}{S_N(-\beta (\alpha -1))}\right] ^\frac{\alpha }{\alpha -1} n^{\alpha \beta }. \end{aligned}$$

Multiplying by \(S_N(\beta )^{-1} m^{-\beta }\) and adding in \(n=1,\ldots , N\) yields the optimal objective

$$\begin{aligned} H^*_N&= 1 - \frac{1}{S_N(\beta )} \left[ \frac{N(1-c)}{S_N(-\beta (\alpha -1))}\right] ^\frac{\alpha }{\alpha -1} S_N(-(\alpha -1)\beta ) \\&= 1 - \frac{1}{S_N(\beta )} \left[ N(1-c)\right] ^\frac{\alpha }{\alpha -1}[S_N(-(\alpha -1)\beta )]^{-\frac{1}{\alpha -1}}. \end{aligned}$$

We can now invoke (16) for each of the terms to write

$$\begin{aligned} H^*_N&\sim 1 - \frac{1-\beta }{N^{1-\beta }} \left[ N(1-c)\right] ^\frac{\alpha }{\alpha -1} \left[ \frac{1+\beta (\alpha -1)}{N^{1+\beta (\alpha -1)}}\right] ^\frac{1}{\alpha -1}. \end{aligned}$$

Terms in N cancel out, and we reach the limit

$$\begin{aligned} H^* = 1 - (1-\beta )(1-c)^\frac{\alpha }{\alpha -1}(1+\beta (\alpha -1))^\frac{1}{\alpha -1}. \end{aligned}$$
(47)

In both cases, the optimal cost is consistent with the fluid version of the objective,

$$\begin{aligned} V(u)= (1-\beta ) \int _0^1 x^{-\beta } \left[ 1 - (1 - u(x))^\frac{\alpha }{\alpha - 1}\right] \hbox {d}x, \end{aligned}$$
(48)

evaluated at the limiting policies u(x) given in (27) or (28).

1.4 Asymptotic prices

It is also interesting to find the behavior of the Lagrange multipliers (prices) for large N. We find that prices are of the order of \(N^{-1}\), with constant depending on each case.

In the case of \(c<c_{\alpha ,\beta }\), referring to (37)–(38), and using \(M_N \sim x_0 N\), we get

$$\begin{aligned} p_N&\sim M_N^{-\beta } \frac{\alpha }{\alpha -1}\frac{1}{S_N(\beta )} \sim x_0^{-\beta } \frac{\alpha }{\alpha -1}N^{-\beta } \frac{1-\beta }{N^{1-\beta }} = \frac{1}{N}x_0^{-\beta } \frac{\alpha (1-\beta )}{\alpha -1}. \end{aligned}$$

For \(c>c_{\alpha ,\beta }\), referring to (44), we have

$$\begin{aligned} \left( p_N\frac{(\alpha - 1)}{\alpha } \frac{N^{1-\beta }}{1-\beta }\right) ^{\alpha - 1} \sim \frac{N(1-c)(1+\beta (\alpha -1))}{N^{1+\beta (\alpha -1)}}; \end{aligned}$$

leading to

$$\begin{aligned} p_N \sim \frac{1}{N} \frac{\alpha (1-\beta )}{\alpha -1} \left[ (1-c)(1+\beta (\alpha -1))\right] ^\frac{1}{\alpha -1}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferragut, A., Rodriguez, I. & Paganini, F. Optimal timer-based caching policies for general arrival processes. Queueing Syst 88, 207–241 (2018). https://doi.org/10.1007/s11134-017-9540-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-017-9540-3

Keywords

Mathematics Subject Classification

Navigation