Skip to main content
Log in

Dynamic rate Erlang-A queues

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

The multi-server queue with non-homogeneous Poisson arrivals and customer abandonment is a fundamental dynamic rate queueing model for large-scale service systems such as call centers and hospitals. Scaling the arrival rates and number of servers arises naturally when a manager updates a staffing schedule in response to a forecast of increased customer demand. Mathematically, this type of scaling ultimately gives us the fluid and diffusion limits as found in Mandelbaum et al. (Queueing Syst 30(1):149–201, 1998) for Markovian service networks. These asymptotics were inspired by the Halfin and Whitt (Oper Res 29(3):567–588, 1981) scaling for multi-server queues. In this paper, we provide a review and an in-depth analysis of the Erlang-A queueing model. We prove new results about cumulant moments of the Erlang-A queue, the transient behavior of the Erlang-A limit cycle, new fluid limits for the delay time of a virtual customer, and optimal static staffing policies for healthcare systems. We combine tools from queueing theory, ordinary differential equations, complex analysis, cumulant moments, orthogonal polynomials, and dynamic optimization to obtain new insights about this fundamental queueing model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choudhury, G.L., Whitt, W.: Heavy-traffic asymptotic expansions for the asymptotic decay rates in the BMAP/G/1 queue. Stoch. Models 10(2), 453–498 (1994)

    Article  Google Scholar 

  2. Clark, G.M.: Use of Polya distributions in approximate solutions to nonstationary M/M/s queues. Commun. ACM 24(4), 206–217 (1981)

    Article  Google Scholar 

  3. Daw, A., Pender, J.: Queues driven by Hawkes processes. Stoch. Syst. (2018) (to appear)

  4. Duffield, N.G., Massey, W.A., Whitt, W.: A nonstationary offered-load model for packet networks. Telecommun. Syst. 16(3–4), 271–296 (2001)

    Article  Google Scholar 

  5. Eick, S.G., Massey, W.A., Whitt, W.: \({M_t}\)/G/\({\infty }\) queues with sinusoidal arrival rates. Manag. Sci. 39(2), 241–252 (1993)

    Article  Google Scholar 

  6. Eick, S.G., Massey, W.A., Whitt, W.: The physics of the \(M_t\)/G/\({\infty }\) queue. Oper. Res. 41(4), 731–742 (1993)

    Article  Google Scholar 

  7. Engblom, S., Pender, J.: Approximations for the moments of nonstationary and state dependent birth-death queues. arXiv preprint arXiv:14066164 (2014)

  8. Erlang, A.K.: Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges. Trans. Dan. Acad. Tech. Sci. 2, 138–155 (1948)

    Google Scholar 

  9. Feldman, Z., Mandelbaum, A., Massey, W.A., Whitt, W.: Staffing of time-varying queues to achieve time-stable performance. Manag. Sci. 54(2), 324–338 (2008)

    Article  Google Scholar 

  10. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22(2), 89–103 (1971)

    Article  Google Scholar 

  11. Halfin, S., Whitt, W.: Heavy-traffic limits for queues with many exponential servers. Oper. Res. 29(3), 567–588 (1981)

    Article  Google Scholar 

  12. Hampshire, R.C.: Dynamic queueing models for the operations management of communication services. Ph.D. thesis, Princeton University (2007)

  13. Hampshire, R.C., Massey, W.A.: Dynamic optimization with applications to dynamic rate queues. In: Risk and Optimization in an Uncertain World, INFORMS, pp. 208–247 (2010)

  14. Hampshire, R.C., Harchol-Balter, M., Massey, W.A.: Fluid and diffusion limits for transient sojourn times of processor sharing queues with time varying rates. Queueing Syst. 53(1), 19–30 (2006). https://doi.org/10.1007/s11134-006-7584-x

    Article  Google Scholar 

  15. He, B., Liu, Y., Whitt, W.: Staffing a service system with non-poisson non-stationary arrivals. Probab. Eng. Inf. Sci. 30(4), 593–621 (2016)

    Article  Google Scholar 

  16. Horne, R.L., Mandelbaum, A., Massey, W.A.: Performance analysis of dynamic-rate many-server queues. Working notes (2011)

  17. Ingolfsson, A., Akhmetshina, E., Budge, S., Li, Y., Wu, X.: A survey and experimental comparison of service-level-approximation methods for nonstationary M(t)/M/s(t) queueing systems with exhaustive discipline. INFORMS J. Comput. 19(2), 201–214 (2007)

    Article  Google Scholar 

  18. Jennings, O., Massey, W., McCalla, C.: Optimal profit for leased lines services. In: Proceedings of the 15th International Teletraffic Congress-ITC, vol. 15, pp. 803–814 (1997)

  19. Jennings, O.B., Mandelbaum, A., Massey, W.A., Whitt, W.: Server staffing to meet time-varying demand. Manag. Sci. 42(10), 1383–1394 (1996)

    Article  Google Scholar 

  20. Khinchin, A.Y., Andrews, D., Quenouille, M.H.: Mathematical Methods in the Theory of Queuing. Courier Corporation, North Chelmsford (2013)

    Google Scholar 

  21. Ko, Y.M., Gautam, N.: Critically loaded time-varying multiserver queues: computational challenges and approximations. INFORMS J. Comput. 25(2), 285–301 (2013)

    Article  Google Scholar 

  22. Ko, Y.M., Pender, J.: Diffusion limits for the (\(MAP_t/Ph_t/\infty )^N\) queueing network. Oper. Res. Lett. 45(3), 248–253 (2017)

    Article  Google Scholar 

  23. Ko, Y.M., Pender, J.: Strong approximations for time-varying infinite-server queues with non-renewal arrival and service processes. Stoch. Models (2018). https://doi.org/10.1080/15326349.2018.1425886

  24. Li, A., Whitt, W., Zhao, J.: Staffing to stabilize blocking in loss models with time-varying arrival rates. Probab. Eng. Inf. Sci. 30(2), 185–211 (2016)

    Article  Google Scholar 

  25. Liu, Y., Whitt, W.: Stabilizing customer abandonment in many-server queues with time-varying arrivals. Oper. Res. 60(6), 1551–1564 (2012)

    Article  Google Scholar 

  26. Liu, Y., Whitt, W.: Stabilizing performance in many-server queues with time-varying arrivals and customer feedback. Technical report, working paper (2014)

  27. Liu, Y., Whitt, W.: Stabilizing performance in networks of queues with time-varying arrival rates. Probab. Eng. Inf. Sci. 28(4), 419–449 (2014)

    Article  Google Scholar 

  28. Liu, Y., Whitt, W.: Stabilizing performance in a service system with time-varying arrivals and customer feedback. Eur. J. Oper. Res. 256(2), 473–486 (2017)

    Article  Google Scholar 

  29. Mandelbaum, A., Massey, W.A., Reiman, M.I.: Strong approximations for Markovian service networks. Queueing Syst. 30(1), 149–201 (1998)

    Article  Google Scholar 

  30. Mandelbaum, A., Massey, W.A., Reiman, M.I., Stolyar, A., Rider, B.: Queue lengths and waiting times for multiserver queues with abandonment and retrials. Telecommun. Syst. 21(2), 149–171 (2002)

    Article  Google Scholar 

  31. Marcinkiewicz, J.: Sur une propriete de la loi de Gauss. Math. Z. 44, 612–618 (1939)

    Article  Google Scholar 

  32. Massey, W.A.: Asymptotic analysis of the time dependent M/M/1 queue. Math. Oper. Res. 10(2), 305–327 (1985)

    Article  Google Scholar 

  33. Massey, W.A., Pender, J.: Poster: skewness variance approximation for dynamic rate multiserver queues with abandonment. ACM SIGMETRICS Perform. Eval. Rev. 39(2), 74–74 (2011)

    Article  Google Scholar 

  34. Massey, W.A., Pender, J.: Gaussian skewness approximation for dynamic rate multi-server queues with abandonment. Queueing Syst. 75(2–4), 243–277 (2013)

    Article  Google Scholar 

  35. Massey, W.A., Whitt, W.: Networks of infinite-server queues with nonstationary poisson input. Queueing Syst. 13(1), 183–250 (1993)

    Article  Google Scholar 

  36. Massey, W.: A., Whitt, W.: Uniform acceleration expansions for Markov chains with time-varying rates. Ann. Appl. Probab. 8(4), 1130–1155 (1998)

    Article  Google Scholar 

  37. McCalla, C., Whitt, W.: A time-dependent queueing-network model to describe the life-cycle dynamics of private-line telecommunication services. Telecommun. Syst. 19(1), 9–38 (2002)

    Article  Google Scholar 

  38. Niyirora, J., Pender, J.: Optimal staffing in nonstationary service centers with constraints. Nav. Res. Logist. NRL 63(8), 615–630 (2016)

    Article  Google Scholar 

  39. Palm, C.: Intensity variations in telephone traffic. Ericsson Tech. 44, 1–189 (1988). (English translation by North-Holland, Amsterdam)

    Google Scholar 

  40. Pender, J.: Gram Charlier expansion for time varying multiserver queues with abandonment. SIAM J. Appl. Math. 74(4), 1238–1265 (2014)

    Article  Google Scholar 

  41. Pender, J.: Laguerre polynomial expansions for time varying multiserver queues with abandonment. Technical report (2014)

  42. Pender, J.: A Poisson-Charlier approximation for nonstationary queues. Oper. Res. Lett. 42(4), 293–298 (2014)

    Article  Google Scholar 

  43. Pender, J.: Nonstationary loss queues via cumulant moment approximations. Prob. Eng. Inf. Sci. 29(01), 27–49 (2015)

    Article  Google Scholar 

  44. Pender, J.: The truncated normal distribution: applications to queues with impatient customers. Oper. Res. Lett. 43(1), 40–45 (2015)

    Article  Google Scholar 

  45. Pender, J.: Risk measures and their application to staffing nonstationary service systems. Eur. J. Oper. Res. 254(1), 113–126 (2016)

    Article  Google Scholar 

  46. Pender, J.: Sampling the functional Kolmogorov forward equations for nonstationary queueing networks. INFORMS J. Comput. 29(1), 1–17 (2016)

    Article  Google Scholar 

  47. Pender, J., Ko, Y.M.: Approximations for the queue length distributions of time-varying many-server queues. INFORMS J. Comput. 29(4), 688–704 (2017)

    Article  Google Scholar 

  48. Pender, J., Massey, W.A.: Approximating and stabilizing dynamic rate Jackson networks with abandonment. Probab. Eng. Inf. Sci. 31(1), 1–42 (2017)

    Article  Google Scholar 

  49. Pender, J., Phung-Duc, T.: A law of large numbers for M/M/c/Delayoff-Setup queues with nonstationary arrivals. In: International Conference on Analytical and Stochastic Modeling Techniques and Applications, pp. 253–268. Springer (2016)

  50. Pender, J., Rand, R.H., Wesson, E.: Queues with choice via delay differential equations. Int. J. Bifurc. Chaos 27(04), 1730,016 (2017)

    Article  Google Scholar 

  51. Pender, J., Rand, R.H., Wesson, E.: Strong approximations for queues with customer choice and constant delays (2017)

  52. Pender, J., Rand, R.H., Wesson, E.: An analysis of queues with delayed information and time-varying arrival rates. Nonlinear Dyn. 91(4), 2411–2427 (2018)

    Article  Google Scholar 

  53. Pender, J.J.: Dynamic rate queues: estimation, stabilization, and control. Ph.D. thesis, Princeton University (2013)

  54. Puhalskii, A.A.: On the \(M_t/M_t/K_t+ M_t\) queue in heavy traffic. Math. Methods Oper. Res. 78(1), 119–148 (2013)

    Article  Google Scholar 

  55. Qin, Z., Pender, J.: Dynamic control for nonstationary queueing networks. Working paper (2017)

  56. Rothkopf, M.H., Oren, S.S.: A closure approximation for the nonstationary M/M/s queue. Manag. Sci. 25(6), 522–534 (1979)

    Article  Google Scholar 

  57. Schwarz, J.A., Selinka, G., Stolletz, R.: Performance analysis of time-dependent queueing systems: survey and classification. Omega 63, 170–189 (2016)

    Article  Google Scholar 

  58. Stein, C.: Approximate computation of expectations. Lect. Notes Monogr. Ser. 7, i-164 (1986)

    Google Scholar 

  59. Taaffe, M.R., Clark, G.M.: Approximating nonstationary two-priority non-preemptive queueing systems. Nav. Res. Logist. NRL 35(1), 125–145 (1988)

    Article  Google Scholar 

  60. Taaffe, M.R., Ong, K.L.: Approximating nonstationary \(Ph_t/M_t\)/s/c queueing systems. Ann. Oper. Res. 8(1), 103–116 (1987)

    Article  Google Scholar 

  61. Whitt, W.: Approximating a point process by a renewal process, I: two basic methods. Oper. Res. 30(1), 125–147 (1982)

    Article  Google Scholar 

  62. Whitt, W., Zhao, J.: Many-server loss models with non-Poisson time-varying arrivals. Nav. Res. Logist. NRL (2017). https://doi.org/10.1002/nav.21741

Download references

Acknowledgements

William A. Massey was partially supported by National Science Foundation Grant CMMI-1436334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamol Pender.

Additional information

This work is dedicated to Ward Whitt, on the occasion of his 75th birthday. We are eternally grateful for his friendship, mentorship, guidance, kindness, and infinite knowledge about stochastic processes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massey, W.A., Pender, J. Dynamic rate Erlang-A queues. Queueing Syst 89, 127–164 (2018). https://doi.org/10.1007/s11134-018-9581-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-018-9581-2

Keywords

Mathematics Subject Classification

Navigation