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Abstract

In this paper, we derive an expression for computing average window

size of a single TCP CUBIC connection under random losses. Throughput

expression for TCP CUBIC has been computed earlier under determinis-

tic periodic packet losses. We validate this expression theoretically. We

then use insights from the deterministic loss based model to derive an

expression for computing average window size of a single TCP CUBIC

connection under random losses. For this computation, we first consider

the sequence of TCP CUBIC window evolution processes indexed by the

drop rate, p and show that with a suitable scaling this sequence converges

to a limiting Markov chain as p tends to 0. The stationary distribution of

the limiting Markov chain is then used to derive the average window size

for small packet error rates. We validate our model and approximations

via simulations.

1 Introduction

The TCP-IP protocol suite forms the backbone of the current Internet and
TCP is a crucial component of it. TCP provides reliable, in-order data transfer
and flow and congestion control. In this paper, we focus on TCP congestion
control. TCP congestion control has been successful in preventing congestion
collapse over the Internet. However in [1], [2] we see that the traditional TCP
congestion control algorithms can be very inefficient over wireless links and
over high-speed large delay networks. A number of high-speed TCP congestion
control algorithms have been proposed to address the issue of inefficiency, some
notable examples being H-TCP, BIC, CUBIC, Compound and FAST [3]. In
this paper, we consider TCP CUBIC congestion control as it is widely used.
TCP CUBIC is the default congestion control algorithm on Linux since 2006.
In [4], the authors report that of the 30000 web-servers that they considered,
more than 25% used TCP CUBIC.

We first give a brief overview of the literature on traditional Additive Increase
Multiplicative Decrease (AIMD), TCP which has been extensively studied using
a wide variety of tools. In [5, 6], the authors use fluid models to analyze TCP
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performance. In [5], the author compares the performance of TCP Reno with
TCP Vegas using a differential equation based model for TCP window evolution,
whereas in [6], the authors solve for throughput of a large number of TCP Reno,
New Reno and SACK flows going through AQM routers. In [7, 8], the authors
look at optimization based techniques for performance analysis of TCP. In [7],
the authors show that rate-distribution of TCP-like sources in a general network
is given as a solution to a global optimization problem. In [8] the authors
formulate the rate allocation problem as a congestion control game and show
that the Nash equilibrium of the game is a solution to a global optimization
problem. In [9], the authors consider providing QoS to TCP and real time flows
through use of rate control for the real time flows and RED at the bottleneck
queues. In [10], the authors provide expressions for TCP Reno throughput
using a simple periodic-loss model. In [11], the authors use Markovian models
to derive an expression for TCP Reno throughput under random losses.

In [12], [13], we see experimental evaluation of high speed TCP variants. The
reference [12] compares the performance of CUBIC, HSTCP and TCP SACK
in a 10 Gbps optical network. In [13], the authors perform an experimental
evaluation of CUBIC TCP in a small buffer regime. The reference [14] is a
comprehensive simulation based analysis of high speed TCP variants, where they
compare the protocols for intra-protocol and inter-protocol fairness. There are
many references on simulation/experimental analysis of TCP CUBIC, however
there are fewer analytical results. In [15] and [16], the authors use Markov chain
based models for TCP CUBIC throughput computations. In [17], the authors
analyze performance of TCP CUBIC in a cloud networking environment using
mean-field.

In this paper, we derive throughput expression for a single TCP CUBIC
flow with random losses. Throughput expressions for TCP CUBIC have been
evaluated under a deterministic loss model in [18]. Also average window size for
TCP CUBIC with random losses has been numerically computed using Markov
chains in [15] and [16]. In [19], we see that the expressions for throughput in [18]
are not accurate when compared against the Markov chain based results in [15].
However, the Markov chain based results do not yield a closed form expression
and we need to solve for the stationary distribution of a Markov chain for each
value of drop rate, p. For small p, this could be computationally expensive as the
state space of the Markov chain could be very large. We address this drawback
of the Markov chain model in this paper. In this paper, we get an approximation
for TCP CUBIC under random losses as a function of p and round trip time
(RTT). We first validate the expression for TCP CUBIC throughput (given
in [18]) under deterministic periodic losses. We then consider the sequence of
the TCP CUBIC window evolution processes indexed by the drop rate, p and
show that with a suitable scaling this sequence converges to a limiting Markov
chain as p tends to 0. The appropriate scaling is obtained from the deterministic
periodic loss model. The stationary distribution of the limiting Markov chain
gives us the desired approximation. Our approach is based on a similar result
used for TCP Reno throughput computation in [20]. However our proofs are
significantly different.

2



The organization of the paper is as follows. In Section 2, we describe our
system model. In Section 3, we validate the deterministic loss model expression.
In Section 4, we show that for p > 0 and with Wmax = ∞, the window size
process at RTT epochs, the window size process at loss epochs and the time be-
tween the loss epochs have unique stationary distributions and that their means
under stationarity are also finite. In Section 5, we derive an approximation for
mean window size under random losses. In Section 6, we compare our model
predictions against ns2 simulations. Section 7 concludes our paper.

2 System model for TCP CUBIC

The window size evolution of TCP CUBIC is based on the time since last con-
gestion epoch. The window size, (say W0) at the last epoch is considered as an
equilibrium window size. The TCP CUBIC window update is conservative near
W0 and is aggressive otherwise. The aggressive behaviour gives TCP CUBIC
higher throughput compared to traditional TCP in high speed networks. The
TCP CUBIC window size at time t, assuming 0 to be a loss epoch and no further
losses in (0, t] is given by

Wcubic(t) = C
(

t− 3

√

βW0

C

)3

+W0, (1)

where W0 is the initial window size and C and β are TCP CUBIC parameters.
The TCP CUBIC update can be slower as compared to TCP Reno. To ensure
a worst case behaviour like TCP Reno, the aggregate window update is given
by W (t) = max{Wcubic(t),Wreno(t)} where Wreno(t) is given by

Wreno(t) = W0(1− β) + 3
β

2− β

t

RTT
. (2)

In our analysis henceforth, we ignore the Reno-mode operation focussing only
on the CUBIC-mode. However, we account for the Reno-mode operation in
the final average window size expression. We consider a single TCP CUBIC
connection going through a link with constant RTT (round trip time) as shown
in Figure 1. The packets of the connection may be subject to channel losses. We
assume that a packet can be lost independently of other packets with probability
p. This is a common assumption also made in [15], [16]. Our objective is to
compute an expression for TCP CUBIC throughput in this setup, which we
develop in Section 4. In Section 3, we discuss a deterministic loss model for
TCP CUBIC and use the results developed therein in Section 4 to compute
TCP CUBIC average window size.

3 Fluid models for TCP CUBIC

We now consider a simple fluid model for TCP CUBIC. For the fluid model,
we disregard the discrete nature of the TCP window size and also assume that
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Figure 1: Single TCP with fixed RTT

the window update is continuous instead of happening at discrete intervals of
time. The model that we consider here is a widely used deterministic-loss model
(see [18], [21] and [10]) used to compute the ‘response function’ of TCP. The
TCP response function is an expression for TCP throughput in terms of system
parameters such as drop rates p and RTT, R.

We consider a single TCP CUBIC flow with constant RTT, R. Each packet
can be dropped independently of the others with probability p. Under this
assumption, the mean number of packets sent between losses is 1

p .
We now consider the TCP window evolution under a deterministic-loss model

with loss rate 1
p . Let us denote the window size for the deterministic-loss model

at time t by Ŵ (t). Suppose Ŵ (0) = x. Let τp(x) denote the time taken by the

Ŵ (t) process to send 1
p packets with initial window size x, i.e., τp(x) satisfies

1

R

∫ τp(x)

0

Ŵ (t)dt =
1

p
. (3)

At t = τp(x), Ŵ (t) undergoes a window reduction so that Ŵ (τp(x)
+) = (1 −

β)Ŵ (τp(x)), where β is the multiplicative drop factor. Next, the window size

Ŵ (t) evolves as given by (1) but now with initial window size, Ŵ (τp(x)). Again

at time t = τp(x) + τp(Ŵ (τp(x))), Ŵ (t) process undergoes another loss. This
process continues.

Suppose there exists a x∗
p such that Ŵ (τp(x

∗
p)) = x∗

p, i.e., the fixed point
equation

Ŵ (τp(x)) = x, (4)

has a unique solution. Then, if we start from x∗
p, the process Ŵ (t) will have

a periodic behaviour with period τp(x
∗
p) and Ŵ (t) ∈ [(1 − β)x∗

p, x
∗
p]. The long

time average for the process Ŵ (t) is then given by

1

τp(x∗
p)

∫ τp(x
∗
p)

0

Ŵ (t)dt, (5)
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with Ŵ (0) = x∗
p. Using the above model, the average window size for TCP

CUBIC is given by

E[W (p)] = 4

√

C(4 − β)

4β

(R

p

)3
. (6)

The throughput of the TCP connection is given by E[W (p)]
R . In Proposition 1, we

provide a theoretical justification validating the use of the above expression for
mean window size. We prove that starting from any initial window size, under
the deterministic loss model with fluid window sizes, the window evolution for
TCP CUBIC is eventually periodic with (6) giving the correct time average
window size. In Proposition 1, we ignore the slow start phase and ignore that
there may be an upper bound on the maximum window size. These assumptions
are also made by [18], [21] and [10].

Proposition 1. For the deterministic loss model, for any given p ∈ (0, 1), there
exists a unique x (denoted by x∗

p) such that Ŵ (τ̂p(x)) = x. For any x ≥ 1 such

that Ŵ (0) = x, Ŵ (t) to x∗
p at drop epochs.

Proof. Existence of x∗
p

Assuming the initial window size to be x, we have

Ŵ (τ̂p(x)) = C
(

τ̂p(x)− 3

√

βx

C

)3
+ x.

Solving for the fixed point, x∗
p of Ŵ (τ̂p(x)) gives us τ̂p(x

∗
p) =

3

√

βx∗
p

C . Since 1
p

packets are sent in τ̂p(x), we have

1

R

∫ τ̂p(x
∗
p)

0

Ŵ (u)du =
1

p
.

The fixed point, x∗
p for Ŵ (τ̂p(x)) is then given by

x∗
p = 4

√

C

β

( 4

(4− β

R

p

)
3
4 . (7)

Thus for every p ∈ (0, 1), there exists a unique x∗
p given by (7) such that

Ŵ (τ̂p(x
∗
p)) = x∗

p.

Convergence to x∗
p

Let us denote the deterministic process, Ŵ (u) at time u > 0 with Ŵ (0) = x by
Ŵ (u, x) so as to also include the initial window size in the process description
explicitly. We will show convergence of the map x → Ŵ (τp(x)) to the fixed

point in two steps. We define J(x) = 3

√

βx
C to be the time taken by Ŵ (t) to

hit x given that initial window size, Ŵ (0) before drop was x and there are no
losses in (0, u], with u > J(x).
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Step 1:

We first show that if x < x∗
p, then x < Ŵ (τp(x), x). Since x < x∗

p, J(x) < J(x∗
p).

For t < J(x), we have (t − J(x))2 < (t − J(x∗
p))

2 which implies dŴ (t,x)
dt <

dŴ (t,x∗
p)

dt . Also x = Ŵ (0, x) < Ŵ (0, x∗
p) = x∗

p. Therefore for t < J(x), Ŵ (t, x) <

Ŵ (t, x∗
p). Hence, we have

∫ J(x)

0

Ŵ (u, x)du <

∫ J(x)

0

Ŵ (u, x∗
p)du <

∫ J(x∗
p)

0

Ŵ (u, x∗
p) =

R

p
.

The second inequality comes due to Ŵ (u, x) > 0 for all u, x. Therefore we get

∫ J(x)

0

Ŵ (u, x)du <

∫ τp(x)

0

Ŵ (u, x)du =
R

p

and x = Ŵ (J(x), x) < Ŵ (τp(x), x). This shows that, if x < x∗
p, the window

size at loss epochs increases.

Step 2:

We now show that if x > x∗
p, then x∗

p < Ŵ (τp(x), x) < x. The proof for

Ŵ (τp(x), x) < x follows as in the previous proof and hence we do not show it
here.

Now, we prove that if x > x∗
p then x∗

p < Ŵ (τp(x), x). Suppose T1(x) denotes

the time when Ŵ (T1(x), x) = x∗
p. From (1), we get T1(x) = J(x) + 3

√

x∗−x
C .

Therefore,

∫ T1(x)

0

Ŵ (u, x)du =
C

4

(

(
x∗ − x

C
)

4
3 − J(x)4

)

+
(

J(x) +
3

√

x∗ − x

C

)

x.

Substituting x = αx∗
p (α > 1) and then using (7) for x∗

p simplifies the above
expression to

∫ T1(x)

0

Ŵ (u, x)du =
R

p

( (1− α)
4
3

(4− β)β
β
3

+ α
4
3 +

4α(1− α)
1
3

(4 − β)β
β
3

)

.

Now substitute γ = (α− 1), γ > 0 and use (4− β)β
1
3 <= 3 for β ∈ (0, 1) to get

∫ T1(x)

0

Ŵ (u, x)du <
R

p

(

(1 + γ)
4
3 − γ

4
3 − 4

3
γ

1
3

)

.

Using Lemma (1) below, we get k ∈ (1, 2), (1+x)k −xk−kxk−1 < 1. Therefore
we have

∫ T1(x)

0

Ŵ (u, x)du <
R

p
=

∫ τp(x)

0

Ŵ (u, x)

6



and x∗
p = Ŵ (T1(x), x) < Ŵ (τp(x), x).

Thus we have show that for any x > x∗
p, the window size at drop epochs

(just after loss) monotonically decreases to x∗
p. Also, for any x < x∗

p, since x <

Ŵ (τp(x)), the window size at drop epochs (just after loss) either monotonically
increases to x∗

p or exceeds x∗
p at some iteration and eventually decreases to x∗

p.

Once Ŵ reaches x∗
p at a drop epoch, Ŵ at all drop epochs henceforth will be

x∗
p and the evolution of Ŵ (t) becomes periodic.

Lemma 1. If k ∈ (1, 2), we have

(1 + x)k − xk < 1 + kxk−1,

for x > 0.

Proof. Consider the function f(y) = (1 + y)k − yk. The second derivative of f ,

f (2)(y) = k(k − 1)(1 + y)k−2 − k(k − 1)yk−2,

is strictly less than 0 for all y > 0. Therefore f is a strict concave function over
(0,∞).

The tangent to the curve f(y) at y = 0 is given by g(y) = 1+ ky. Now since
the function, f is strictly concave in (0,∞), we have

(1 + y)k − yk < 1 + ky,

for y > 0. Substituting x = 1
y , we get

(1 + x)k − 1 < xk + kxk−1,

for y > 0. Rearranging terms in the above inequality gives us the desired
result.

In Figure 2, we illustrate multiple iterations of the equation Ŵ (τp(.)) for

input x ∈ (0, 100). We denote the kth iteration of Ŵ (τp(.)) by W k
p (.). We see

that as the number of iterations, k increases, W k
p (.) goes close to the fixed point

irrespective of the starting point.
From equation (7) in Proposition 1, the time between consecutive losses

converges to

τ̂p(x
∗
p) =

3

√

βx∗
p

C
=
( 4βR

(4− β)Cp

)
1
4

. (8)

Thus for the TCP CUBIC deterministic loss model, from equation (7), the

window size at drop epochs converges to C1p
− 3

4 and from equation (8), the

time between consecutive losses converges to C2p
− 1

4 for some constants C1 and
C2. These are key insights which we will use in Section 4, where we derive an
expression for average window size under random losses.
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Figure 2: Convergence to the fixed point of Ŵ (τp(x)) = x.

4 Model with Infinite Maximum Window Size

We consider a single TCP connection with constant RTT, i.e., negligible queu-
ing. We assume that the packets are dropped independently with probability p.
We have analyzed this system using Markov chains in [15]. In [15], we derive
expressions for average window size numerically when the window size Wn is
bounded by some Wmax < ∞. We now derive an approximate expression for
average window size for low packet error rates assuming Wmax = ∞.

Let Wn(p) denote the window size at the end of the nth RTT. Let W ′
n(p)

denote the window size at the last drop epoch before n (excluding time epoch
n) and let Tn(p) be the time elapsed between the last drop epoch before n and
time n. As in the deterministic loss model case, we ignore the Reno mode of
operation and consider (1) for window evolution. The process {W ′

n(p), Tn(p)}
forms a Markov chain. We show that for p ∈ (0, 1), the processes {Wn(p)} and
{W ′

n(p)} have unique stationary distributions.

Proposition 2. . For any fixed p ∈ (0, 1) the Markov chain {W ′
n(p), Tn(p)} has

a single aperiodic, positive recurrent class with remaining states being transient.
Hence it has a unique stationary distribution.

Proof. From any state in the state space of the Markov chain {W ′
n(p), Tn(p)},

a sequence of packet losses will cause the Markov chain to hit the state (1, 0).
Therefore, the state (1, 0) in the state space of the Markov chain {W ′

n(p), Tn(p)}
is reachable from any state in the state space with non-zero probability. The
states that can be reached by (1, 0) form a communicating class. The remaining
states in the state space are transient, since from any of these states there is a
non-zero probability of hitting (1, 0) and hence a non-zero probability of never
returning back.
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We now show that the communicating class containing (1, 0) is positive re-
current. For convenience, we drop the p from our notation. For a state (z, d)
in the communicating class, we define the Lyapunov function, L(z, d) = z + d4.

The conditional one step drift of the Lyapunov function is given by

E[L(W ′
n+1, Tn+1)− L(W ′

n, Tn)|(W ′
n, Tn) = (z, d)]

= (z + (d+ 1)4)q(z, d) + (C(Rd− 3

√

βz

C
)3 + z)(1− q(z, d))− z − d4

= −d4 + (d+ 1)4q(z, d) + C(Rd− 3

√

βz

C
)3(1− q(z, d)),

(9)

where q(z, d) = (1 − p)C(Rd− 3
√

βz
C

)3+z is the probability of no loss in the nth

RTT.
Let us denote the one-step drift in the Lyapunov function defined in (9) by

f(z, d). The quantity C(Rd− 3

√

βz
C )3+z ≥ (1−β)z. Therefore we have q(z, d) ≤

(1 − p)(1−β)z and −C(Rd − 3

√

βz
C )3 ≤ βz. Also, d + 1 ≤ 2d, ∀d ∈ {1, 2, · · · }.

Thus for the one-step drift, we have

f(z, d) = −d4 + C(Rd− 3

√

βz

C
)3 + ((d+ 1)4 − C(Rd− 3

√

βz

C
)3)q(z, d)

≤ −d4 + C(Rd)3 + (16d4 + βz)(1− p)(1−β)z.

(10)

For some ǫ > 0, we can choose z∗ such that βz(1 − p)(1−β)z < ǫ and 16(1 −
p)(1−β)z ≤ 1

2 , ∀z > z∗. Thus we have, ∀d > 0, z > z∗

f(z, d) ≤ −1

2
d4 + CR3d3 + ǫ.

We can choose d∗, such that − 1
2d

4 + CR3d3 < −2ǫ, for all d > d∗. Therefore
∀d > d∗ and z > z∗, f(z, d) < −ǫ.

Consider the first equation in (10). The term q(z, d) = (1−p)C(Rd− 3
√

βz
C

)3+z

falls exponentially in z, for any fixed d and falls super-exponentially in d, for
any fixed z. Hence, for any fixed z, as d → ∞, the term ((d + 1)4 − C(Rd −
3

√

βz
C )3)q(z, d) → 0. As d4 is asymptotically larger than any polynomial of

degree < 4, for any fixed z ≤ z∗, we can choose t(z) such that f(z, d) < −ǫ,
∀d > t(z). Similarly, for a fixed d, as z → ∞, the term ((d + 1)4 − C(Rd −
3

√

βz
C )3)q(z, d) → 0. For a fixed d, for z large, 3

√

βz
C > Rd. Therefore, for any

fixed d ≤ d∗, we can choose w′(d) such that f(z, d) < −ǫ, ∀z > w′(d).
Thus the one-step drift, f(z, d) < −ǫ outside of a finite set for some ǫ > 0.

Thus by mean drift criteria for positive recurrence, the communicating class
containing (1, 0) is positive recurrent. Also, this class is aperiodic as the state
(1, 0) has a non-zero probability of hitting itself in one step (a self-loop with
probability p).
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We have shown above that the Markov chain, {W ′
n(p) , Tn(p)} has a unique

stationary distribution. Let Vk(p) denote the window size at the kth loss epoch
(just after loss) and let G

p
Vk(p)

denote the time between the kth and (k + 1)st

loss epoch. The following corollary is a consequence of Proposition 2.

Corollary 1. For any p ∈ (0, 1), the processes {Wn(p)}, {Vk(p)} and {Gp
Vk(p)

}
have unique stationary distributions.

Proof. For the process {W ′
n, Tn}, consider the inter-visit times to state (1, 0).

These epochs are regeneration epochs for the process {W ′
n, Tn} as well as for the

processes {Wn(p)}, {Vk(p)} and {Gp
Vk(p)

}. From Proposition 2, (1, 0) is positive

recurrent. Therefore, the mean regeneration cycle length, E[τ1,0(p)], (for the
{W ′

n, Tn} process) is finite. Since E[τ1,0(p)] is also the mean regeneration cycle
length for the {Wn(p)} process, the {Wn(p)} process has a unique stationary dis-
tribution. The regeneration cycle length for the processes {Vk(p)} and {Gp

Vk(p)
}

(denoted by τV (p)) is given by the number of loss epochs between two consec-
utive visits to state (1, 0). Since in each regeneration cycle, τV (p) ≤ τ1,0(p), we
get E[τV (p)] < ∞. Hence, the processes {Vk(p)} and {Gp

Vk(p)
} also have unique

stationary distributions.

In Proposition 3, we show that, for p ∈ (0, 1) TCP window size under sta-
tionarity has finite mean.

Proposition 3. For fixed p ∈ (0, 1) the mean window size is finite, i.e., E[W (p)]
< ∞ under stationarity.

Proof. Let us denote by Vk(p), the window size at the kth congestion epoch,
just after loss. For any RTT epoch, n, occurring between the (k − 1)st and kth

loss epoch, Wn(p) ≤ Vk(p)
(1−β) . Consider the process {Ŵn(p)}, with, Ŵn(p) =

Vk(p)
1−β

for RTT epoch n, occurring between the (k − 1)st and kth loss epoch. Then,

E[

τ1,0(p)
∑

k=1

Wk(p)|W0 = 1, T0 = 0] ≤ E[

τ1,0(p)
∑

k=1

Ŵk(p)|W0 = 1, T0 = 0].

Let {Tk(p)} be i.i.d. with distribution, P(Tk(p) = m) = (1 − p)mp, for m =
1, 2, · · · , and independent of {Wn(p)} process. Then,

E[

τ1,0(p)
∑

k=1

Ŵk(p)|W0 = 1, T0 = 0] ≤ 1

1− β
E[

τV (p)
∑

k=0

Tk(p)Vk(p)|W0 = 1, T0 = 0]

=
1

1− β
E[τV (p)]E[T1(p)V (p)]

=
1

1− β
E[τV (p)]E[T1(p)]E[V (p)].

The mean window size under stationarity is given by

E[W (p)] =
E[
∑τ1,0(p)

k=1 Wk(p)|W0 = 1, T0 = 0]

E[τ1,0(p)]
.
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Since the state (1, 0) (for the {W ′
n, Tn} process) is positive recurrent, E[τ1,0(p)] <

∞. Thus to show E[W (p)] < ∞, it is sufficient to show that E[V (p)] < ∞ under
stationarity.

Since {Vn} is a countable state space Markov chain, using the result for
finiteness of stationary moments in [22] we have, {Vn} has finite mean if

sup
i∈A

E[V1|V0 = i] < ∞, (11)

and there is a δ > 0 such that

E[V1|V0 = i] ≤ (1− δ)i, (12)

for all i ∈ Ac, where A is a finite set.
Instead of showing that (11) and (12) holds for {Vn} process, we will show

that these equations hold for a process {Vn} such that Vn is stochastically larger
than Vn for each n, when V0 = V0 . This would establish finiteness of expectation
of the {Vn} and {Wn} stochastic processes.

Construction of {Vn} process

Given the initial window size, V0, the window size, V1 at the first congestion
epoch (just after loss) depends on the time at which the first congestion hap-
pens. The time between two congestion epochs τ (i) is a random variable which
depends on the initial window size. The probability mass function for τ (i) given
that the initial window size is i is,

P (τ (i) = m) = (1− p)i(1− p)i1 · · · (1− (1− p)im−1),

where m > 0 and im = (1 − β)C
(

Rm − 3

√

βi
C(1−β)

)3

+ i denotes the window

size at the end of the mth RTT when the window process does not undergo any
losses for m RTTs.

We now define the process {Vn}. Suppose V0 = i, then V1 is given by

V1 = (1− β)C
(

τ(i)m − 3

√

βi

C(1− β)

)3

+ i,

where the probability distribution function of {τ(i)} is given by

P(τ(i) = m) = qm−1
i (1 − qi),

with qi = (1 − p)i. Thus, the probability of packet being dropped is smaller
for the {Vn} process. The random variable τ(i) is stochastically larger than
τ(i), i.e., P (τ(i) > x) ≥ P (τ (i) > x) for all x ∈ {0, 1, 2, 3, · · · }. As the inter-
congestion epoch is stochastically larger for {Vn} process, we have E[V1|V0 =
i] ≤ E[V1|V0 = i]. Thus it is sufficient to prove (11) and (12) for {Vn}.

For the Vn process, we have

E[V1|V0 = i] = (1− β)CE[τ(i)3R3 − 3τ(i)2R2Ki + 3τ(i)RK2
i −K3

i ] + i, (13)

11



where Ki = 3

√

βi
C(1−β) . The random variable τ(i) is geometric with parameter

qi and its moments are given by the following equations.

E[τ(i)] =
1

1− qi
,

E[τ(i)2] =
1 + qi

(1− qi)2
,

and

E[τ(i)3] =
1

1− qi
+

6qi
(1 − qi)3

.

The above moments are substituted in (13) to obtain

E[V1|V0 = i] = (1− β)

(

CR3

(

1

1− qi
+

6qi
(1− qi)3

)

− 3CR2
( βi

C(1− β)

)
1
3 1 + qi

(1− qi)2

+ 3CR
( βi

C(1− β)

)
2
3 1

1− qi

)

− βi+ i

≤ (1− β)

(

CR3

(

1

1− qi
+

6qi
(1− qi)3

)

+ 3CR
( βi

C(1− β)

)
2
3 1

1− qi

)

− βi+ i.

As i → ∞, qi → 0 if p < 1. Hence we can choose an i∗ such that ∀i > i∗,

βi
2 ≥ CR3( 1

1−qi
+ 6qi

(1−qi)3
) and βi

2 ≥ 3CR
(

βi
C(1−β)

)
2
3 1
1−qi

. Thus we have, for all

i > i∗,

E[V1|V0 = i] ≤ (1 − β)

(

βi

2
+

βi

2

)

− βi + i

= (1 − β2)i

Thus we have shown that (12) holds for all i > i∗ for the {Vn} process. Also,
since the random variable τ(i) has finite moments, from (13) we see that (11)
holds for A = {i : i ≤ i∗} for the {Vn} process. This shows that under station-
arity, E[V(p)] < ∞ which proves the finiteness of E[W (p)].

5 Asymptotic Approximations

We now derive an expression for average window size with random losses. In
Section 5.1, we derive approximations for {Vk(p)} which will be used in Section
5.2 to obtain results for {Wn(p)} and throughput.

12



5.1 Asymptotic Approximations for {Vk(p)}
Consider p

1
4G

p
⌊ x

p
3
4

⌋, which denotes the product of p
1
4 with the time for first

packet loss when the initial window size is ⌊ x

p
3
4

⌋1. The choice of the parameters

p
1
4 and p

3
4 is motivated from the deterministic-loss model in Section 3 wherein

the time between losses is inversely proportional to p
1
4 and the time average

window size is inversely proportional to p
3
4 . In Proposition 4, we show that the

term p
1
4G

p
⌊

x

p
3
4

⌋ converges to a random variable Gx as p → 0 for all x ≥ 1.

Proposition 4. For x > 0, as p → 0, p
1
4G

p
⌊ x

p
3
4

⌋ converges in distribution to a

random variable Gx, with

P(Gx ≥ y) = exp
(

−xy − CR3y4

4
+ 3

√

βxC2

(1− β)
y3R2 −

(βxC1/2

1− β

)
2
3
3Ry2

2

)

. (14)

Also for any finite M , if x, y ≤ M the above convergence is uniform in x and
y, i.e.,

lim
p→0

sup
p

3
4 ≤x≤M,y≤M

∣

∣

∣
P

(

p
1
4G

p
⌊ x

p
3
4

⌋ ≥ y
)

− P(Gx ≥ y)
∣

∣

∣
= 0. (15)

Proof. We have

P

(

G
p
⌊

x

p
3
4

⌋ > ⌊ y

p
1
4

⌋
)

≤ P

(

p
1
4G

p
⌊ x

p
3
4

⌋ ≥ y
)

≤ P

(

G
p
⌊ x

p
3
4

⌋ ≥ ⌊ y

p
1
4

⌋
)

,

with P
(

G
p
⌊ x

p
3
4

⌋ > ⌊ y

p
1
4

⌋
)

= (1− p)
x0+x1+···+x⌊

y

p
3
4

⌋

, where x0 = ⌊ x

p
3
4

⌋ is the initial

window size (immediately after a loss) and xi is the window size at the end of

the ith RTT. Using (1), we get xi = ⌊C(iR−K)3+ x0

(1−β)⌋ with K = 3

√

βx0

(1−β)C .

Let m = ⌊ y

p
1
4

⌋. The term C(iR−K)3 + x0

(1−β) ∈ [xi, xi + 1]. Therefore,

P
(

G
p
⌊ x

p
3
4

⌋ > ⌊ y

p
1
4

⌋
)

∈
[

(1− p)x0+C(R−K)3+
x0

1−β
+···+C(mR−K)3+

x0
1−β

+(m+1),

(1− p)x0+(C(R−K)3+
x0

1−β
)+···+(C(mR−K)3+

x0
1−β

)−(m+1)
]

.

(16)

The terms on the RHS (right hand side) of equation (16) can be simplified as
follows,

(R−K)3 + (2R−K)3 + · · ·+ (mR −K)3

=R3
m
∑

i=1

i3 − 3R2K

m
∑

i=1

i2 + 3RK2
m
∑

i=1

i−mK3.

1⌊·⌋ denotes the floor() operation.
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Therefore,

x0 + (C(R −K)3 +
x0

1− β
) + · · ·+ (C(mR−K)3 +

x0

1− β
)

= x0 +
mx0

1− β
+ C(R3

m
∑

i=1

i3 − 3R2K

m
∑

i=1

i2 + 3RK2
m
∑

i=1

i−mK3).
(17)

After we expand the series,
∑m

i=1 i,
∑m

i=1 i
2 and

∑m
i=1 i

3, we see that the RHS
of equation (17) has terms of the form Knmj with n+ j ≤ 4. Now,

lim
p→0

Knmj = lim
p→0

(

3

√

βx0

(1− β)C

)n
( y

p
1
4

)j

= lim
p→0

( βx

(1− β)C

)
n
3

p−
n+j
4 yj ,

(18)

and
lim
p→0

(x0 +
mx0

1− β
) = lim

p→0

x

p
3
4

+
xy

p(1− β)
.

Therefore, for n+ j < 4, limp→0(1− p)K
nmj

= 1. Also for the term (1− p)m+1

in equation (16), we note that limp→0(1− p)m+1 = 1. Therefore for the limit of
equation (16) as p → 0, we need to only consider terms of the form Knmj with

n+ j = 4 and the term xy
1−β . For these terms, we use limp→0(1−p)

1
p = exp(−1)

to get,

P
(

G
p
⌊ x

p
3
4

⌋ > ⌊ y

p
1
4

⌋
)

→ exp
(

−xy− CR3y4

4
+ 3

√

βxC2

(1− β)
y3R2−

(βxC1/2

1− β

)
2
3
3Ry2

2

)

.

(19)
Using similar steps as above, we can show that

P
(

G
p
⌊ x

p
3
4

⌋ ≥ ⌊ y

p
1
4

⌋
)

→ exp
(

−xy− CR3y4

4
+ 3

√

βxC2

(1− β)
y3R2−

(βxC1/2

1− β

)
2
3
3Ry2

2

)

.

This proves convergence of p
1
4G

p
⌊ x

p
3
4

⌋ in distribution to Gx.

We now show uniform convergence of P
(

p
1
4G

p
⌊ x

p
3
4

⌋ ≥ y
)

to P(Gx ≥ y). We

assume that x, y are bounded by M . Taking logarithms on both sides of (16),
we get

logP
(

G
p
⌊ x

p
3
4

⌋ > ⌊ y

p
1
4

⌋
)

∈
[(

x0 + (C(R −K)3 +
x0

1− β
) + · · ·+ (C(mR −K)3 +

x0

1− β
)

+ (m+ 1)
)

log(1− p),
(

x0 + (C(R −K)3 +
x0

1− β
) + · · ·+

(C(mR−K)3 +
x0

1− β
)− (m+ 1)

)

log(1− p)
]

.

(20)
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The equation (20) has elements of the form Knmj log(1−p) with n+ j ≤ 4, the
term (x0+

x0m
1−β ) log(1−p) and (m+1) log(1−p). The elements with n+j = 4 are

the only terms that contribute to the limit, i.e., (19). From (18), the remaining

elements in (20) are of the form c(n, j)x
n
3 yjp−

n+j
4 log(1 − p) with n + j < 4

and 0 ≤ n ≤ 4 with c(n, j) being some finite coefficient. If n+ j < 4, p−
n+j
4 is

of the form pǫ(n,j) with ǫ(n, j) > −1. These terms can be grouped together as

f(x, y, p), where f has elements of the form x
n
3 yjp−

n+j
4 log(1−p) with n+j < 4

and 0 ≤ n ≤ 4, the element p
−3

4 x log(1−p) and the element (1+p
−3

4 y) log(1−p).
Let T = max{1,M}, hence x

n
3 yj ≤ T

n
3
+j , for x, y ≤ M . Therefore we have,

∣

∣

∣
log
(

P

(

G
p
⌊ x

p
3
4

⌋ > ⌊ y

p
1
4

⌋
)

− logP(Gx ≥ y)
∣

∣

∣
≤ |f(x, y, p)|

≤ c1T
4pǫ log(1− p),

where the term T 4 in the inequality comes from the element with the largest
power for x and y in the RHS of (20) which is of the form cy4x0, ǫ = min

n,j:n+j<4

ǫ(n, j, k) > −1 and c1 is a constant independent of p, x, y. Therefore, we have

lim
p→0

sup
p

3
4 ≤x≤M,y≤M

∣

∣

∣
logP

(

G
p
⌊ x

p
3
4

⌋ > ⌊ y

p
1
4

⌋
)

− logP(Gx ≥ y)
∣

∣

∣
= 0.

We can similarly prove

lim
p→0

sup
p

3
4 ≤x≤M,y≤M

∣

∣

∣
logP

(

G
p
⌊ x

p
3
4

⌋ ≥ ⌊ y

p
1
4

⌋
)

− logP(Gx ≥ y)
∣

∣

∣
= 0.

The result (15) in Proposition 4 follows from the uniform continuity of the exp()
function on (−∞, 0).

We now derive a limiting result for the {Vk(p)} process embedded at the
loss epochs of the TCP CUBIC window evolution process. The process {Vk(p)}
is a Markov chain embedded within the window size process {Wn(p)}. Let

K(x) = 3

√

βx
(1−β)C . If V0(p) = ⌊ x

p
3
4

⌋, then V1(p) is

V1(p) = (1− β)
(

C(Gp
⌊ x

p
3
4

⌋R−K(⌊ x

p
3
4

⌋))3 + 1

1− β
⌊ x

p
3
4

⌋
)

, (21)

where Gp
x denotes time (in multiples of R) between consecutive losses where the

window size immediately after the first of these losses was x.
We now define a Markov chain which serves as the limit for the process

{Vn(p)} with appropriate scaling. Define a Markov chain {V n} as follows. Let
V 0 be a random variable with an arbitrary initial distribution on R

+. Define
V n for n ≥ 1 as

V n = (1− β)
(

C(GV n−1
R−K(V n−1))

3 +
V n−1

1− β

)

, (22)
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where {GV n−1
} are random variables with distribution given by (14) chosen

independently of {V k : k < n − 1}. The following proposition shows that the
process {V n} defined by (22) are the appropriate limiting distribution for the
{Vn(p)} process as p → 0.

Proposition 5. Suppose V 0 = x and V0(p) = ⌊ x

p
3
4

⌋ for some x > 0 for all

p > 0. Then we have

lim
p→0

sup
x>p

3
4

∣

∣

∣
Px(p

3
4 V1(p) ≤ a1, p

3
4V2(p) ≤ a2, · · · , p

3
4Vn(p) ≤ an)

− Px(V 1 ≤ a1, V 2 ≤ a2 · · ·V n ≤ an)
∣

∣

∣
= 0,

(23)

where ai ∈ R
+, for i = 1, 2, · · · , n and Px denotes the law of the processes when

V 0 = x and V0(p) = ⌊ x

p
3
4

⌋.

Proof. We prove (23) for n = 1, 2, the proof for n > 2 follows by induction.
For n = 1,

lim
p→0

Px(p
3
4V1(p) ≤ a1) = lim

p→0
P
(

p
3
4 (1− β)C

(

RG
p
⌊ x

p
3
4

⌋ −K
(

⌊ x

p
3
4

⌋
))3

+ x ≤ a1
)

= lim
p→0

P
(

p
1
4G

p
⌊ x

p
3
4

⌋ ≤
(

a1−x
C(1−β)

)
1
3 +K(x)

R

)

= P
(

Gx ≤
(

a1−x
C(1−β)

)
1
3 +K(x)

R

)

= Px(V 1 ≤ a1).

From equation (15) in Proposition 4, the convergence is uniform in x over any

bounded interval. Also, from (21) and (22), for x > a1

1−β , we have Px(p
3
4V1(p) ≤

a1) = Px(V 1 ≤ a1) = 0. Therefore,

lim
p→0

sup
x≥p

3
4

∣

∣

∣
Px

(

p
3
4 V1(p) ≤ a1

)

− Px

(

V 1 ≤ a1

)∣

∣

∣
= 0.

This proves (23) for n = 1.
We now prove the result for n = 2. Consider

Px(p
3
4 V1(p) ≤ a1, p

3
4 V2(p) ≤ a2)

=

a1
∫

0

P
(

C(1 − β)
(

Rp
1
4G

p
⌊ y

p
3
4

⌋ −K(y)
)3

+ y ≤ a2
)

Px(p
3
4V1(p) ∈ dy).

From equation (15) in Proposition 4, the term P(C(1−β)(Rp
1
4G

p
⌊ y

p
3
4

⌋−K(y))3+

y ≤ a2) converges to P(C(1− β)(Rp
1
4Gx −K(y))3 + y ≤ a2) uniformly in y for
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y < a1. Therefore, for any given ǫ > 0 there exists a p∗ such that for p < p∗,
∣

∣

∣
Px(p

3
4V1(p) ≤ a1, p

3
4V2(p) ≤ a2)

−
a1
∫

0

P
(

C(1 − β)
(

Rp
1
4Gy −K(y)

)3
+ y ≤ a2

)

Px(p
3
4V1(p) ∈ dy)

∣

∣

∣
≤ ǫ.

Now,

a1
∫

0

P
(

C(1 − β)
(

Rp
1
4Gy −K(y)

)3
+ y ≤ a2

)

Px(p
3
4V1(p) ∈ dy)

=

∞
∫

0

P
(

C(1− β)
(

Rp
1
4Gy −K(y)

)3
+ y ≤ a2

)

1{y≤a1}Px(p
3
4V1(p) ∈ dy)

= Ex[g(p
3
4V1(p))],

where the function g(y) = P
(

C(1− β)
(

Rp
1
4Gy −K(y)

)3
+ y ≤ a2

)

1{y≤a1}. For
any continuous functions f on R

+ with compact support, using Proposition 7
from Appendix A, we have

lim
p→0

sup
x≥p

3
4

∣

∣

∣
Ex

[

f(p
3
4V1(p))

]

− Ex

[

f(V 1)
]

∣

∣

∣
= 0, (24)

The function g is continuous with compact support. Therefore using (24) we
get,

lim
p→0

sup
x≥p

3
4

∣

∣

∣
Px

(

p
3
4V1(p) ≤ a1, p

3
4V2(p) ≤ a2

)

− Px

(

V 1 ≤ a1, V 2 ≤ a2
)

∣

∣

∣
= 0.

The proof of (23) for n > 2 can be done using induction as follows.

Px(p
3
4V1(p) ≤ a1, p

3
4V2(p) ≤ a2, · · · , p

3
4 Vn+1(p) ≤ an+1)

=

a1
∫

0

Py(p
3
4V1(p) ≤ a2, · · · , p

3
4Vn(p) ≤ an+1)Px(p

1
2−k V1(p) ∈ dy).

Assuming the result holds for n, we have

∣

∣

∣
Px(p

3
4 V1(p) ≤ a1, p

3
4V2(p) ≤ a2, · · · , p

3
4 Vn+1(p) ≤ an+1)− Ex[gn(p

3
4 V1(p))]

∣

∣

∣

≤ ǫ,

where the function gn(y) = Py(V 1 ≤ a2, · · · , V n ≤ an+1)1{y≤a1}. The func-
tion gn(·) is continuous by the induction hypothesis. Using Proposition 7 from
Appendix A, gives us the desired result.
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Since the finite dimensional distributions of {p 3
4 Vn(p)} converge to {V n},

we have

Corollary 2. If limp→0 p
3
4V0(p) converges in distribution to V 0, then the

Markov chain {p 3
4 Vn(p)} converges in distribution to the Markov chain {V n}.

Proof. Let π̂p and π̂ be the initial distributions for the processes {p 3
4Vn(p)} and

{V n} respectively. Also, let π̂p converge weakly to π̂. We have

∣

∣

∣
Pπ̂p

(p
3
4 V1(p) ≤ a1)− Pπ̂(V 1 ≤ a1)

∣

∣

∣

=
∣

∣

∣

∫

x

Px(p
3
4 V1(p) ≤ a1)π̂p(dx) − Px(V 1 ≤ a1)π̂(dx)

∣

∣

∣

≤
∫

x

∣

∣

∣
Px(p

3
4 V1(p) ≤ a1)− Px(V 1 ≤ a1)

∣

∣

∣
π̂p(dx)

+
∣

∣

∣

∫

x

Px(V 1 ≤ a1)π̂p(dx) −
∫

x

Px(V 1 ≤ a1)π̂(dx)
∣

∣

∣
.

From Proposition 5, for any ǫ > 0, we can choose a p∗, such that for all p < p∗,
∣

∣

∣
Px(p

3
4V1(p) ≤ a1)− Px(V 1 ≤ a1)

∣

∣

∣
≤ ǫ, for all x ≥ p

3
4 . Also, since Px(V 1 ≤ a1)

is a continuous, bounded function in x, we have

lim
p→0

∣

∣

∣

∫

x

Px(V 1 ≤ a1)π̂p(dx)−
∫

x

Px(V 1 ≤ a1)π̂(dx)
∣

∣

∣
= 0.

This proves the result in Corollary 2 for n = 1. The proof for n ≥ 2 follows
easily from induction.

We now prove that the limiting Markov chain {V n} has a unique invariant
distribution. For proving that, the given proof requires that (some of) the
moments of Gx be uniformly bounded in x, which follows from the following
lemma.

Lemma 2. There exists ζ > 0 such that for all t ∈ (−ζ, ζ), we have

sup
x>0

E[etGx ] < ∞.

Proof. Consider H(y) = supx>0 P(Gx ≥ y). The function H(y) upper bounds
P(Gx ≥ y) for all x > 0. From (14),

H(y) = exp
(

− inf
x>0

(

xy +
CR3y4

4
− 3

√

βxC2

(1− β)
y3R2 +

(βxC1/2

1− β

)
2
3
3Ry2

2

))

. (25)

Let

f(x, y) = xy +
CR3y4

4
− 3

√

βxC2

(1− β)
y3R2 +

(βxC1/2

1− β

)
2
3
3Ry2

2
.
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Substituting x = t3 we get,

f(t, y) = t3y +
CR3y4

4
− 3

√

βC2

(1− β)
y3R2t+

(βC1/2

1− β

)
2
3
3Ry2

2
t2.

Now,

∂f(t, y)

∂t
= 3t2y + 3

(βC1/2

1− β

)
2
3Ry2t− 3

√

βC2

(1 − β)
y3R2, (26)

and
∂2f(t, y)

∂t2
= 6ty + 3

(βC1/2

1− β

)
2
3Ry2. (27)

Consider f(t, y) at some fixed y > 0. From (26) and (27), the function f(t, y)
has two stationary points, one of which is a local minimum and the other a
local maximum. Let us denote the local minimum by tmin(y) and the local
maximum by tmax(y). We have tmin(y) > 0 and tmax(y) < 0. Also as t → −∞,
f(t, y) → −∞ and as t → ∞, f(t, y) → ∞. Thus over t > 0, the function f(t, y)
has a unique global minimum. Hence, there exists a unique x > 0 (corresponding
to the local minimum of f(t, y), tmin(y)) which attains the infimum in equation
(25). Let x∗(y) denote the x which attains the infimum in equation (25). The
minimum x∗(y) is given by

x∗(y) =
R3y3

8

[

−
(βC0.5

1− β

)
2
3

+

√

(βC0.5

1− β

)
4
3

+
4

3

( βC2

1− β

)
1
3
]3

. (28)

Substituting (28) in (25) gives us,

H(y) = e−γ(C,β)R3y4

,

where γ(C, β) is a constant dependent on C and β. In Figure 3, we illustrate
H(y) and P(Gx ≥ y) for x = 0, 0.1, 1 (with C = 0.4, β = 0.3 and RTT,
R = 1). For the version of TCP CUBIC we consider [23], we have C = 0.4 and
β = 0.3. For these values, γ(C, β) = 0.0510 > 0. (In fact, numerically evaluating
γ(C, β) we find that for C = 0.4, for all β ∈ (0, 1), γ(C, β) > 0.) The function
H(y) is a complementary cumulative distribution function and is going down
super-exponentially in y. Therefore, the moment generating function (MGF)
corresponding to H(y) is bounded in a neighborhood of 0. Since H(y) bounds
P(Gx ≥ y) for all x, we have

sup
x>0

E[etGx ] < ∞, (29)

for t in some neighborhood of 0.

Proposition 6. The Markov chain {V n} is Harris recurrent and has a unique
invariant distribution.
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Figure 3: TCP CUBIC: Upper bound for P(Gx ≥ y).

Proof. We first prove that the Markov chain {V n} is Harris irreducible w.r.t.
the Lebesgue measure on R

+. To prove this, consider a point x in the state space
of {V n}. Let L(x,A) denote the probability of {V n} hitting set A in a finite
time starting with V 0 = x. From equation (22), P(x, (x(1 − β),∞)) = 1. The
distribution of Gx is absolutely continuous with respect to the Lebesgue measure
on R

+. Therefore, for any set A with non-zero Lebesgue measure, such that
A ⊆ ((1−β)x,∞), P(x,A) > 0. Hence, L(x,A) > 0. Also, P (x, (x(1−β), x)) >
0. Therefore, for any set B ⊆ (0, (1 − β)x) with non-zero Lebesgue measure,
there exists n such that P

n(x,B) > 0. Therefore for any set, C with non-
zero Lebesgue measure, L(x,C) > 0. Thus the Markov chain {V n} is Harris
irreducible w.r.t. the Lebesgue measure.

To show the positive recurrence of the Markov chain, we use a result from [24,
p. 116]. In our setup, it is sufficient to prove the following results. There exists
a x∗ such that

1. E[V n+1 − V n|V n+1 = x] ≤ −ǫ, for all x > x∗ for some ǫ > 0 .

2. E[V n+1|V n = x] < ∞, for all x ≤ x∗.

From equation (22),

E[V n+1 − V n|V n = x] = E

[

(1− β)C(GxR −K(x))3
]

≤ (1 − β)C(E[G
3

x]R
3 + E[Gx]RK(x)2 −K(x)3)

≤ (1 − β)C(sup
x>0

(E[G
3

x])R
3 + sup

x>0
(E[Gx])RK(x)2

−K(x)3).

(30)
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Using Taylor’s series expansion, we have

t4G
4

x

4!
≤ etGx + e−tGx . (31)

From Lemma 2, supx>0 E[e
tGx ] < ∞ for t ∈ (−t0, t0) for some t0 > 0. Therefore,

using (31), sup
x>0

(E[G
4

x]) is finite. We have G
3

x ≤ G
4

x+1 and Gx ≤ G
4

x+1. Hence,

the terms sup
x
(E[G

3

x]) and sup
x
(E[Gx]) are finite. Therefore, the RHS of the last

inequality in (30) has terms x and x
2
3 . Since the x term dominates x

2
3 for large

x and has a negative coefficient, we can find an x∗ and an ǫ > 0 such that for
all x > x∗,

E[V n+1 − V n|V n+1 = x] ≤ −ǫ. (32)

Also for x < x∗, we have

E[V n+1|V n = x] = E
[

(1− β)
(

C(GxR−K(x)3
)]

+ x

≤ (1− β)C
(

E[G
3

x]R
3 + E[Gx]RK(x)2

)

+ x∗

≤ (1− β)C
(

sup
x
(E[G

3

x])R
3 + sup

x
(E[Gx])RK(x∗)2

)

+ x∗

< ∞.

(33)

The last inequality comes from Lemma 2. From equations (32) and (33), we
see that the Markov chain {V n} is Harris recurrent and has a unique invariant
distribution.

5.2 Asymptotic Approximations for Throughput

Let us denote the average time between losses, under stationarity, by E[Gp
V (∞)].

The average number of packets sent between two consecutive losses is p−1.
Therefore, by Palm calculus [25], the average window size, E[W (p)], under
stationarity, is

E[W (p)] =
1

pE[Gp
V∞

]
.

From Proposition 3, E[W (p)] is finite.
Let GV ∞

denote the random variable with same distribution as the station-

ary distribution of GV n
(existence of which is proved by Proposition 6). Then,

from Proposition 4, we expect E[p
1
4G

p
V∞

] to be close to E[GV ∞
] for small p and

hence

E[W (p)] ≈ p−
3
4

E[GV ∞
]
,

for small p.
We can evaluate E[GV ∞

] using Monte-Carlo simulations. In Figure 4, we

illustrate simulations for evaluating
∑n

i=1

GV i

n with initial conditions V 0 =, 0.0,
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Figure 4: Monte-Carlo simulations for E[GV ∞
] ≈∑n

i=1

GV i

n

0.1, 2.0 for TCP CUBIC with parameters, C = 0.4, β = 0.3 (used in [18]) and
with RTT, R = 1 seconds. We see that in these cases, after n > 250, there is
little change in n−1

∑n
i=1 GV i

. For the TCP CUBIC parameters as given above

with RTT, R = 1, and using n = 10000, we get E[GV ∞
] ≈ 0.7690. Therefore for

small p, we can approximate the average window size, E[W (p)] for TCP CUBIC

with R = 1 as 1.3004p−
3
4 .

From (8), the time average window size E[W (p)] for the fluid model is directly

proportional to R
3
4 . We evaluate E[W (p)] (approximately using Monte Carlo

simulations) for TCP CUBIC with different RTT and find that E[W (p)] for

our Markov chain approximation is also directly proportional to R
3
4 . Thus, we

can approximate the average window size for TCP CUBIC flow with RTT R

as E[W (p)] = 1.3004
(

R
p

)
3
4

. To account for the TCP Reno mode of operation

which we ignored in our approximation, we make the following approximation,

E[W (p)] = max
{

1.3004
(R

p

)
3
4 ,

1.31√
p

}

, (34)

where the second term on the RHS approximates the TCP Reno average win-
dow size as given in [10]. For the same parameters, the deterministic periodic

loss model gives us E[W (p)] = max
{

1.0538
(

R
p

)
3
4 , 1.31√

p

}

. In the next section,

we compare our model against the deterministic periodic loss model using ns2
simulations.

22



6 Simulation Results

In Tables 1 and 2, we compare the above approximation against the fluid ap-
proximate model in [18], our earlier Markov model in [15] and ns2 simulations.
Table 1 compares the average window size, whereas Table 2 compares the good-
put. The link speeds are set to 10 Gbps so that the queuing is negligible. The
packet sizes are 1050 bytes which is the default value in ns2. The maximum
window size is set to 40000. We see that, unlike TCP Reno, the average window
size for TCP CUBIC depends on the RTT of the flow and increases with RTT.
This behaviour makes TCP CUBIC fairer to flows with larger RTT as com-
pared to TCP Reno and also leads to TCP CUBIC being more efficient over
large-delay networks.

For the deterministic loss model, we use E[W (p)] = max{1.0538
(

R
p

)
3
4 , 1.31√

p }
so as to account for the Reno-mode of operation. If the RTT is small (< 0.1
sec), TCP CUBIC operates more like Reno. In such cases, the deterministic
loss model has accuracy similar to the Markovian models. However, when RTT
is large (> 0.1 sec) the Markovian models are better (sometimes much better
especially for R = 1 sec) than the deterministic periodic loss model. The Markov
model in [15] explicitly considers the TCP-Reno mode behaviour, while here we
just use a simple approximation to account for the TCP-Reno mode behaviour.
However, in spite of this we see that the Markov model in [15] performs only
marginally better than the current Markovian approximation that we use in
this paper. When compared against ns2 simulations, the Markov model in [15]
typically has errors < 4%, whereas for the current approximation given in this
paper, the errors are < 5% for most cases.

Using the approach described in Section 4, we can compute expressions for
average window size for different TCP CUBIC parameters to study effect of
these parameters on TCP performance. In Table 3, we compare the results for
β = 0.2 which is used by an older version of TCP CUBIC and is also widely
used [4]. For this parameter setting, we get

E[W (p)] = max
{

1.54
(R

p

)
3
4

,
1.31√

p

}

. (35)

In this case, the median errors for the deterministic loss model in [18], for the
Markov chain model in [15] and the current approximation are 11%, 4.5% and
6.2% respectively.

6.1 Extension to Multiple TCP connections

The expression (34) was obtained assuming the RTT to be constant, i.e., we
assumed that the queuing was negligible. However when multiple TCP con-
nections go through a link, the queuing may not be non-negligible. We can
approximate the average window size for TCP CUBIC in this case by replacing
R with E[R] in (34).
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Table 1: Average Window size via different approximations.
per RTT E[W ] E[W ] E[W ] E[W ]
p R Simulations Det. Fluid Markov chain Approx. Markov

(sec) (ns2) [18] [15] max
{

1.3004
(

R
p

)
3
4

, 1.31√
p

}

1× 10−2 1 39.97 33.33 37.44 41.19
1× 10−2 0.2 14.3 13.10 13.53 13.10
1× 10−2 0.1 12.62 13.10 12.50 13.10
1× 10−2 0.02 12.08 13.10 12.41 13.10
1× 10−2 0.01 11.53 13.10 12.41 13.10
5× 10−3 1 69.46 56.05 63.78 69.27
5× 10−3 0.2 21.82 18.53 21.02 20.81
5× 10−3 0.1 18.29 18.53 18.09 18.53
5× 10−3 0.02 17.21 18.53 17.73 18.53
5× 10−3 0.01 16.58 18.53 17.73 18.53
1× 10−3 1 229.96 187.40 218.32 231.63
1× 10−3 0.2 67.83 56.05 67.92 69.58
1× 10−3 0.1 44.68 41.43 44.55 41.43
1× 10−3 0.02 39.40 41.43 39.94 41.43
1× 10−3 0.01 38.71 41.43 39.94 41.43
5× 10−4 1 384.43 315.17 370.12 388.56
5× 10−4 0.2 113.05 94.26 114.52 117.02
5× 10−4 0.1 69.12 58.58 70.05 69.24
5× 10−4 0.02 55.89 58.58 56.66 58.58
5× 10−4 0.01 55.38 58.58 56.66 58.58
8× 10−5 1 1507.19 1245.81 1487.19 1539.87
8× 10−5 0.2 430.49 372.58 454.41 462.57
8× 10−5 0.1 260.91 221.54 271.15 273.69
8× 10−5 0.02 143.99 146.46 143.42 146.46
8× 10−5 0.01 140.83 146.46 142.71 146.46
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Table 2: Goodput obtained via different approximations.
per RTT λ λ λ λ

p R Simulations Det. Fluid Markov chain Approx. Markov

(sec) (ns2) [18] [15] E[W (p)]
R

1× 10−2 1 39.55 32.99 37.06 40.78
1× 10−2 0.2 70.54 64.85 66.99 64.85
1× 10−2 0.1 124.5 129.69 123.7 129.69
1× 10−2 0.02 595.41 648.45 614.29 648.45
1× 10−2 0.01 1135.12 1296.9 1228.58 1296.9
5× 10−3 1 69.09 55.77 63.46 68.93
5× 10−3 0.2 108.43 92.19 104.56 103.53
5× 10−3 0.1 181.75 184.37 180.04 184.37
5× 10−3 0.02 854.30 921.87 881.97 921.87
5× 10−3 0.01 1645.59 1843.74 1763.94 1843.74
1× 10−3 1 226.72 187.21 218.10 231.40
1× 10−3 0.2 338.76 279.95 339.25 347.46
1× 10−3 0.1 446.28 413.89 445.09 413.89
1× 10−3 0.02 1966.64 2069.43 1994.96 2069.43
1× 10−3 0.01 3862.36 4138.87 3989.91 4138.86
5× 10−4 1 384.16 315.01 369.94 389.37
5× 10−4 0.2 564.90 471.05 572.30 584.81
5× 10−4 0.1 690.72 585.51 700.16 692.04
5× 10−4 0.02 2791.22 2927.54 2831.66 2927.54
5× 10−4 0.01 5528.73 5855.07 5663.38 5855.07
8× 10−5 1 1506.79 1245.71 1487.07 1539.75
8× 10−5 0.2 2151.97 1862.77 2271.86 2312.64
8× 10−5 0.1 2608.56 2215.23 2711.30 2736.66
8× 10−5 0.02 7195.12 7322.54 7170.32 7322.54
8× 10−5 0.01 14067.18 14645.07 14270.00 14645.07

Table 3: Comparison of different approximations for β = 0.2.
per RTT E[W ] E[W ] E[W ] E[W ]
p R Simulations Det. Fluid Markov chain Approx. Markov

(ns2) [18] [15] max
{

1.54
(

R
p

)
3
4

, 1.31√
p

}

1× 10−2 1 45.41 37.13 42.67 48.69
1× 10−2 0.2 15.52 13.10 14.53 14.56
1× 10−2 0.1 13.09 13.10 12.61 13.10
1× 10−2 0.02 12.09 13.10 12.5 13.10
1× 10−2 0.01 11.59 13.10 12.5 13.10
5× 10−3 1 78.43 62.44 72.69 81.89
5× 10−3 0.2 24.56 18.67 23.46 24.49
5× 10−3 0.1 19.06 18.53 18.31 18.53
5× 10−3 0.02 17.28 18.53 17.71 18.53
5× 10−3 0.01 16.69 18.53 17.71 18.53
3× 10−3 1 116.52 91.59 107.53 120.12
3× 10−3 0.2 35.13 27.39 34.22 35.92
3× 10−3 0.1 25.47 23.92 24.36 23.92
3× 10−3 0.02 22.46 23.92 22.88 23.92
3× 10−3 0.01 21.74 23.92 22.88 23.92
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Figure 5: Scatter plot for TCP CUBIC throughput (15 flows, bottleneck link
speed: 100Mbps)

For illustration, we consider an example with 15 flows sharing a single bot-
tleneck link of speed 100 Mbps. The packet error rates for five of these flows
is 0.01, it is 0.001 for another group of five flows and for the rest it is set to
0.0001. The propagation delays for the five connections in each group are set
to 0.05, 0.1, 0.2, 0.25, and 0.5 sec respectively. The average RTT of these flows
is computed using the M/G/1 approximation from [26], where the bottleneck
queue is assumed to be an M/G/1 queue. In Figure 5, we plot a scatterplot
comparing the throughput obtained using the M/G/1 approximation with ns2
simulations. The packet sizes were set to 1050 bytes. The model approximations
and simulations differ by < 5% for most cases and the maximum difference is
17%.

7 Conclusion

We have derived throughput expression for a single TCP CUBIC connection
with fixed RTT under random losses. To this end, we first considered through-
put expression developed for deterministic loss model for TCP CUBIC. We then
considered the sequence of TCP window size processes indexed by p, the drop
rate. We show that with appropriate scaling, this sequence converges to a limit-
ing Markov chain. The scaling is obtained using insights from the deterministic
loss model. The stationary distribution of the limiting Markov chain is then
used to compute the desired throughput expression. We validate our model and
assumptions by comparison with ns2 simulations. The ns2 simulations show a
better match with our theoretical model as compared to the deterministic loss
model.
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A Appendix

Proposition 7. Let {Xp(x), x ∈ R
+}, be a process, for 0 < p < 1, which

converges to a limiting process X(x) uniformly in the sense,

lim
p→0

sup
x,y≤M

∣

∣

∣
P(Xp(x) ≤ y)− P(X(x) ≤ y)

∣

∣

∣
= 0, (36)

for any finite M , and for each x, let the limiting distribution, P(X(x) ≤ y) be
continuous. Then,

lim
p→0

sup
x≤M

∣

∣

∣
Ef(Xp(x)) − Ef(X(x))

∣

∣

∣
= 0, (37)

for any f : R+ → R continuous with compact support.

Proof. Consider a continuous function f with compact support, [0,K]. Such a
function is uniformly continuous. Therefore, given any ǫ, there exists m points
u0 = 0 < u1 < · · · < um = K, such that

sup
ui<y<ui+1

|f(y)− f(ui)| < ǫ, (38)

for all i = 1, 2, · · · ,m. We have

E[f(Xp(x)] =

K
∫

0

f(u)P(Xp(x) ∈ du). (39)

From (38),

∣

∣

∣
E[f(Xp(x)] −

m−1
∑

i=1

f(ui)P(Xp(x) ∈ (ui, ui+1])
∣

∣

∣
≤ ǫ.

Similarly,

∣

∣

∣E[f(X(x)]−
m−1
∑

i=1

f(ui)P(X(x) ∈ (ui, ui+1])
∣

∣

∣ ≤ ǫ.

Therefore,

∣

∣

∣
Ef(Xp(x)− Ef(X(x))

∣

∣

∣
≤

m
∑

i=1

f(ui)
∣

∣

∣
P(Xp(x) ∈ (ui, ui+1])

− P(X(x) ∈ (ui, ui+1])
∣

∣

∣
+ 2ǫ

≤
m
∑

i=1

‖ f ‖∞
∣

∣

∣
P(Xp(x) ∈ (ui, ui+1])

− P(X(x) ∈ (ui, ui+1])
∣

∣

∣
+2ǫ,
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where ‖ f ‖∞= sup{f(x) : x ∈ [0,K]}. Since f is continuous over a compact
support, it is bounded and hence ‖ f ‖∞< ∞. Therefore

lim
p→0

sup
x

∣

∣

∣
Ef(Xp(x)− Ef(X(x))

∣

∣

∣

≤ lim
p→0

‖ f ‖∞
m
∑

i=1

sup
x

∣

∣

∣
P(Xp(x) ∈ (ui, ui+1])− P(X(x) ∈ (ui, ui+1])

∣

∣

∣
+ 2ǫ

= 2ǫ.

The second relation follows from the hypothesis (36). Since ǫ is arbitrary we
get the desired result.
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