
Large-scale parallel server system with multi-component jobs

Seva Shneer
Heriot-Watt University

EH14 4AS Edinburgh, UK
V.Shneer@hw.ac.uk

Alexander L. Stolyar
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
stolyar@illinois.edu

December 21, 2020

Abstract

A broad class of parallel server systems is considered, for which we prove the steady-state asymptotic
independence of server workloads, as the number of servers goes to infinity, while the system load remains
sub-critical. Arriving jobs consist of multiple components. There are multiple job classes, and each class
may be of one of two types, which determines the rule according to which the job components add
workloads to the servers. The model is broad enough to include as special cases some popular queueing
models with redundancy, such as cancel-on-start and cancel-on-completion redundancy.

Our analysis uses mean-field process representation and the corresponding mean-field limits. In
essence, our approach relies almost exclusively on three fundamental properties of the model: (a) mono-
tonicity, (b) work conservation, (c) the property that, on average, “new arriving workload prefers to go
to servers with lower workloads.”

Key words and phrases: Large-scale service systems; steady-state; asymptotic independence; multi-component
jobs; redundancy; replication; cancel on start; cancel on completion; load distribution and balancing

AMS 2000 Subject Classification: 90B15, 60K25

1 Introduction

In this paper we consider a broad class of parallel server systems, for which we prove the steady-state
asymptotic independence of server workloads, as the number of servers goes to infinity, while the system
load remains sub-critical. Our model is such that arriving jobs consist of multiple components. There are
multiple job classes, and each class may be of one of two types. A job type determines the rule according
to which the job components add workloads to the servers. The model is broad enough to include as special
cases some popular queueing models with redundancy, such as cancel-on-start and cancel-on-completion
redundancy.

More specifically, we consider a service system consisting of n identical servers, processing work at unit rate.
Jobs of multiple classes j arrive according to independent Poisson processes of rate λjn. A job of each class j
consists of kj ≥ 1 components, while the kj-dimensional exchangeable distribution Fj determines the random
component sizes, or workloads, (ξ1, . . . , ξkj). (I.i.d. component sizes is a special case of exchangeability.)
Each class-j job uniformly at random selects a subset of dj servers, dj ≥ kj . Each job class may be of one of
the two types, either water-filling or least-load. A job type determines the way in which the arriving job adds
workload to the servers. For the least-load type the component (random) workloads (ξ1, . . . , ξkj) are added
to the kj least-loaded servers out of the dj selected by the job. For the water-filling type we describe the
workload placement algorithm via the following illustration. Suppose, dj = 4, kj = 2, the component sizes
realization is (10, 5), and the workloads of the selected 4 servers are 5, 12, 7, 16. Then, adding 10 units of the

1

ar
X

iv
:2

00
6.

11
25

6v
2

 [
m

at
h.

PR
]

 1
7

D
ec

 2
02

0

first component workload in the water-filling fashion brings the selected servers’ workloads to 11, 12, 11, 16.
Before we place the next – second – component’s workload, we exclude one of the selected servers that
currently have the smallest workload – it will be one of the servers with workload 11 in this illustration.
Then, placing the second component’s workload 5 in the water-filling fashion on the remaining 3 selected
servers, brings the servers’ workloads to 11, 14, 14, 16. In general, after each component is placed, the set of
selected servers is reduced by excluding one of the servers with the smallest workload.

We assume that the system is sub-critically loaded,
∑
j λjsj < 1, where sj is the total expected workload

brought by a class j job. It is not hard to see that the system is stable for each n. Our main results,
Theorem 1 and Corollary 2, prove the steady-state asymptotic independence property: for any fixed
integer m ≥ 1, as n → ∞, the steady-state workloads of a fixed set of m servers (say, servers 1, . . . ,m),
become asymptotically independent. This property, in addition to be important in itself, in many cases
allows one to obtain asymptotically exact system performance metrics, such as steady-state job delay mean
or distribution.

Our model is related to – but not limited to – queueing models with cancel-on-start and cancel-on-completion
redundancy [1–3, 7, 8, 12, 15]. In the redundancy models each job places its “replicas” on a selected subset
of servers. The replicas may be served by their servers simultaneously. When a certain number of the job
replicas start [resp., complete] their service, all other replicas are “canceled” and removed from the system.
Hence the term cancel-on-start [resp., cancel-on-completion]. We postpone until the next section the detailed
discussion of our model, including its relations to the models with redundancy. At this point we note that our
least-load job type covers the cancel-on-start redundancy, and our water-filling job type covers the cancel-
on-completion redundancy in the special case of i.i.d. exponentially distributed replica sizes. Moreover, our
model allows multiple job classes, of different types. We also note that, for example, the model in [7] and
some of the models in [10] are special cases of ours; the steady-state asymptotic independence was used
in those papers as a conjecture; our Corollary 2 proves this conjecture (for those models in particular),
thus formally substantiating the asymptotic steady-state performance metrics derived for those models in [7]
and [10].

Methodologically, this paper belongs to the line of work establishing the steady-state asymptotic indepen-
dence in different contexts, e.g. [5,13,14,16]. Our approach is based on analyzing the mean-field (fluid) scaled
process and its limit. One part of our analysis, namely establishing asymptotic independence of server work-
loads over a finite time interval, closely follows the previous work, namely [5, 9]. But, the main part of
the analysis, namely the transition from the finite-interval asymptotic independence to the steady-state
asymptotic independence, is different from that in [5]. (Paper [9] does not have a steady-state asymptotic
independence result.) Specifically, we rely on the dynamics – transient behavior – of the mean-field scaled
process and its limit; in this sense, our approach is close to that in [13,14]. (The approach of [5] relies in an
essential way on the direct steady-state estimates of the marginal workload distributions, obtained in [4].) At
a high level, one may say that our approach relies almost exclusively on three fundamental properties of the
model: (a) monotonicity, (b) work conservation, (c) the property that, on average, “new arriving workload
prefers to go to servers with lower workload.” Consequently, we believe this approach for establishing the
steady-state asymptotic independence may apply more broadly, to other models as well, as long as they
possess these three fundamental properties.

The rest of the paper is organized as follows. A more detailed discussion of our model and results is given in
Section 2, which is followed by a brief review of previous work in Section 3. Section 4 gives basic notation
used throughout the paper. Section 5 presents our formal model and the main results, Theorem 1 and
Corollary 2. In Section 6 we define some generalizations of our model and give their basic properties; these
generalizations, while may be of independent interest, are primarily for the purposes of the analysis of our
original model. Section 7 contains more auxiliary facts used in the analysis. Section 8 gives results on
the finite-interval asymptotic independence of the server workloads. In Section 9 we define limits of the
mean-field (fluid) scaled processes; we call these limits fluid sample paths (FSP). In Section 10 we study
properties of the FSPs, starting specifically from “empty” initial state. In Section 11 we define and study the
FSP fixed point, which is the point to which the FSP trajectory, starting from the empty state, converges.
Finally, Section 12 contains the proof of the main result (Theorem 1), which employs the results developed

2

in Sections 6-11.

2 Discussion of the model and main results

The least-load job type is motivated by two scenarios. First, if we consider a system such that the current
server workloads can be observed on a subset of dj selected servers, and a the job consists of kj components,
it directly makes sense to place those components for service on the least-loaded kj of those dj servers.
(See e.g. LL(d) policy in [5], which is a special case of our model with a single least-load class with dj = d,
kj = 1.) The second scenario arises in systems where the current workloads are not observable, and which use
redundancy to improve performance. (See e.g. [12] for a general motivation for redundancy.) For example,
suppose a class-j job places dj “replicas” on dj randomly selected servers, and each server processes its work
(replicas of different jobs) in the First-Come-First-Serve (FCFS) order. Suppose the job, to be completed,
requires only kj (out of dj) replicas to be processed, and as soon as the first kj replicas of the job start
being processed, the remaining dj − kj replicas of the job are “canceled” and immediately removed from
their corresponding servers. This is usually referred to as cancel-on-start redundancy. (See e.g. [2,3], where a
special case kj = 1 is considered.) We will call it (dj , kj)-c.o.s. redundancy, where (dj , kj) are the parameters
of class j. Clearly, from the point of view of the server workload evolution (which need not be observable
in this case), the described (dj , kj)-c.o.s. redundancy is equivalent to simply placing kj job replicas on the
kj least loaded (out of dj) servers, and not placing any workload on the remaining dj − kj servers. Thus, a
job class using (dj , kj)-c.o.s. redundancy can be equivalently viewed as a least-load job class in terms of our
model, with the kj job components being the first kj replicas.

The water-filling job type motivation is also two-fold. First, suppose a job class j is of the water-filling type,
with kj = 1. Consider a class j job; it has one component. Suppose further that this component’s workload
can be arbitrarily divided between servers, in the sense that a parallel processing by multiple servers is
allowed. (For example, the servers may represent different data transmission channels, with a job being a
file that needs to be transmitted, and the job size being the file size.) Suppose the job can use dj randomly
selected servers. The servers process workload in the FCFS order. The job is completed when all its workload
is processed. Then, if the objective is to minimize the job completion time, its workload should be placed
into the selected dj servers in the water-filling fashion. This can be done directly, if the workloads of the
selected dj servers and the job workload are observable, or indirectly, as follows. The job joins the FCFS
queues at each of the selected servers. When this job, at any of the selected servers, reaches the head of the
queue – i.e., can start using that server – that server starts processing the job, possibly in parallel with other
selected servers. The job is completed when the total amount of service it receives from all servers is equal
to its size, at which point the job is removed from all queues. From the point of view of the server workload
evolution (which need not be observable in this case), the described procedure is equivalent to simply placing
the job’s single component on dj selected servers in the water-filling fashion.

The second motivation for the water-filling job type arises from cancel-on-completion redundancy ([1,2,7,8,
10,12,15]). Suppose a class-j job places dj job replicas on dj randomly selected servers. Each server processes
its work (replicas of different jobs) in the FCFS order. Suppose the job, to be completed, requires only kj
(out of dj) replicas to be processed, and as soon as the first kj replicas of the job complete their service,
the remaining dj − kj replicas of the job are “canceled” and immediately removed from their corresponding
servers. (Hence the name cancel-on-completion.) We will call this (dj , kj)-c.o.c. redundancy, where (dj , kj)
are the parameters of class j. Suppose, in addition, that the replica sizes for a class-j job are i.i.d. exponential
random variables with mean sj/kj . (This additional assumption, as well as the further assumption that
kj = 1, is used, e.g., in [7].) Under this additional assumption (of i.i.d. exponential replica sizes), it is easy
to observe that, from the point of view of the servers’ workload evolution (which need not be observable),
the described (dj , kj)-c.o.c. redundancy is equivalent to placing on the selected dj servers a water-filling job
with the following parameters: (dj , kj) are the same as above, and the component sizes are i.i.d. exponential
random variables with mean sj/kj . Indeed, the job component 1 places (stochastically) exactly the same
amounts of additional workload on the servers as the workloads placed by all replicas up to the time of

3

the first replica service completion. Similarly, the job component 2 places (stochastically) exactly the same
amounts of additional workload on the servers as the workloads placed by all replicas from the time of the
first replica service completion until the time of the second replica service completion. And so on. Thus, a
job class using (dj , kj)-c.o.c. redundancy (under the additional assumption of i.i.d. exponential replica sizes)
can be equivalently viewed as a water-filling job class in terms of our model, with parameters (dj , kj) and
i.i.d. exponentially distributed components.

We see that our model is very broad. In [5] it is proved (among other results) that the steady-state asymptotic
independence (our Corollary 2) holds for the special case of a single, least-load job class with kj = 1. (See
LL(d) model in [5].) The (d, 1)-c.o.c. model with i.i.d. exponential replica sizes, considered in [7], is a
special case of our model, with a single, water-filling job class, with kj = 1 and i.i.d. exponential component
sizes. One of the models considered in [10] (called LL(d,k,0) there) is a special case of ours, with a single
least-load job class. In both [7] and [10] the steady-state asymptotic independence was used as a conjecture;
our Corollary 2 proves this conjecture for both models. Furthermore, since our model allows multiple job
classes of different types, Corollary 2 establishes the steady-state asymptotic independence, for example, for
a system with two job classes – one as in [7] and one as the LL(d,k,0) class in [10].

3 Previous work

The work on the steady-state asymptotic independence in the large-scale regime, with the number of servers
and the arrival rate increasing to infinity, while the system load remains sub-critical, includes, e.g., papers
[5, 13, 16]. Papers [5, 16] prove this for the celebrated “power-of-d” choices algorithm, where each arriving
(single-component) job joins the shortest queue out of d randomly selected; [16] does this for the exponentially
distributed job sizes, while [5] extends the results to more general job size distributions, namely those with
decreasing hazard rate (DHR). Note that a standard power-of-d choices algorithm is not within the framework
of our model, because job placement decisions depend on the queue lengths (numbers of jobs), as opposed
to depending on the workloads. However, [5] also considers – and establishes the steady-state asymptotic
independence for – the LL(d) model, which is a special case of our model with the single, least-load job class
with dj = d and kj = 1. Note that, equivalently, this is the single-class (d, 1)-c.o.s. redundancy model. The
main results of [5] in turn rely on the uniform estimates of the marginal stationary distribution of a single
server state, obtained in [4]. Paper [13] proves the steady-state asymptotic independence under a pull-based
algorithm, also for the model with single-component jobs, having DHR size distributions. (The model in [13]
is also not within the framework of the present paper model.)

For the redundancy models, such as in [1–3, 7, 8, 10, 12, 15], we are not aware of any prior steady-state
asymptotic independence results, besides the already mentioned (d, 1)-c.o.s. result in [5]. However, the
steady-state asymptotic independence conjecture is often used (e.g. [7, 10, 15]) to obtain estimates of the
steady-state performance metrics of large scale systems.

Paper [15] introduces redundancy as a way to reduce job delays. It considers the (d, 1)-c.o.c. redundancy
model, with generally distributed replica sizes. (As such, this model is not within the framework of our
model.) The paper uses the steady-state asymptotic independence conjecture to estimate the average job
delay when the system is large.

Paper [12] introduces and motivates the (d, k)-c.o.c. redundancy model, and establishes a variety of mono-
tonicity properties of the average job delay with respect to the selection set size d, under different assumptions
on the replica size distribution. Some of the results of [12] are for the (d, k)-c.o.c. redundancy model with
i.i.d. exponential replica sizes, which is a special case of our model, but [12] does not consider the asymptotic
regime with n→∞.

As already described earlier, paper [7] studies the (d, 1)-c.o.c. redundancy model with i.i.d. exponential
replica sizes, and obtains asymptotically exact expressions for the job delay distribution, based on the
steady-state asymptotic independence conjecture. Our results prove this conjecture, thus completing formal

4

substantiation of those asymptotic expressions.

Paper [10] studies general redundancy models – more general than c.o.s. and c.o.c. that we described earlier
– and uses the steady-state asymptotic independence conjecture to characterize and compute steady-state
performance metrics. Some (not all) of the redundancy schemes in [10] are within our model framework.
For example, LL(d,k,0) redundancy in [10] is a special case of our model with a single least-load class. Thus,
again, by proving the steady-state asymptotic independence, our results complete formal substantiation of
some of the asymptotic results in [10].

Papers [1–3] derive explicit product-form stationary distributions for different versions of (d, 1)-c.o.c. and
(d, 1)-c.o.s. redundancy, assuming i.i.d. exponential replica sizes.

4 Basic notation

We denote by R and R+ the sets of real and real non-negative numbers, respectively, and by Rn and Rn+ the
corresponding n-dimensional product sets. By R̄+

.
= R+ ∪ {∞} we denote the one-point compactification

of R+, where ∞ is the point at infinity, with the natural topology. We say that a function is RCLL
if it is right-continuous with left-limits. Inequalities applied to vectors [resp. functions] are understood
component-wise [resp. for every value of the argument]. The sup-norm of a scalar function f(w) is denoted

‖f(·)‖ .
= supw |f(w)|; the corresponding convergence is denoted by

u→. U.o.c. convergence means uniform

on compact sets convergence, and is denoted by
u.o.c.→ . We use notation: a∨ b .= max{a, b}, a∧ b .= min{a, b}.

Abbreviation WLOG means without loss of generality.

For a random process Y (t), t ≥ 0, we denote by Y (∞) the random value of Y (t) in a stationary regime
(which will be clear from the context). Symbol ⇒ signifies convergence of random elements in distribution;
P→ means convergence in probability. W.p.1 means with probability one. I.i.d. means independent identically
distributed. Indicator of event or condition B is denoted by I(B). If X,Y are random elements taking values
in set X , on which a partial order ≤ is defined, then the stochastic order X ≤st Y means that X and Y can
be coupled (constructed on a common probability space) so that X ≤ Y w.p.1.

We will use the following non-standard notation. Suppose fnw, n→∞, is a sequence of random functions of
w, and fw is a deterministic function of w. Then, for a fixed w,

(P)lim inf
n→∞

fnw ≥ fw means [(fnw − fw) ∧ 0]
P→ 0, n→∞, (1)

and for a subset A of the domain of w,

(P)lim inf
n→∞

(fnw, w ∈ A) ≥ (fw, w ∈ A) means inf
w∈A

[(fnw − fw) ∧ 0]
P→ 0, n→∞. (2)

Analogously,

(P)lim sup
n→∞

fnw ≤ fw means [(fnw − fw) ∨ 0]
P→ 0, n→∞,

(P)lim sup
n→∞

(fnw, w ∈ A) ≤ (fw, w ∈ A) means sup
w∈A

[(fnw − fw) ∨ 0]
P→ 0, n→∞,

(P) lim
n→∞

fnw = fw means fnw
P→ fw, n→∞,

(P) lim
n→∞

(fnw, w ∈ A) = (fw, w ∈ A) means sup
w∈A
|fnw − fw|

P→ 0, n→∞.

5

5 Formal model and main results

5.1 Model

There are n identical servers. The unfinished work of a server at a given time will be referred to as its
workload. Each server processes its workload at rate 1. There is a finite set J of job classes, which are
indexed by j. (Set J does not depend on n.) Jobs of class j arrive according to a Poisson process of rate
λj(n)n. Associated with each class j there are three parameters: integers kj and dj such that 1 ≤ kj ≤ dj ,

and the exchangeable probability distribution Fj on Rkj+ . A class-j job consists of kj components, with each
component having a (random) size (which is the amount of new workload this component brings); Fj is the

joint distribution of random component sizes (ξ
(j)
1 , . . . , ξ

(j)
kj

) for a class-j job. Exchangeability of Fj means

that it is invariant w.r.t. permutations of component indices. We assume that sj
.
= E

∑
` ξ

(j)
` = kjEξ(j)1 <∞.

WLOG, we can and do assume that sj > 0 for each class j. We will denote d
.
= maxj dj .

Each job class j may be of one of the two types, either water-filling or least-load. The corresponding non-
intersecting subsets of J we denote by Jwf and Jll. (Either of them may be empty.) A job type determines
the way in which the arriving job adds workload to the servers. We will describe the job types separately.

A least-load job class j ∈ Jll. When such a job arrives, dj servers are selected uniformly at random; these
servers form the selection set of the job. Then kj of the selected servers, that are least-loaded (have the
smallest workload), are picked; the workload ties are broken in an arbitrary fashion. Then, independently
of the process history, random component sizes (ξ1, . . . , ξkj) are drawn according to distribution Fj . Then,
workload ξ1 is added to the least-loaded of those servers, ξ2 is added to the second least-loaded of those
servers, and so on.

A water-filling job class j ∈ Jwf . When such a job arrives, its selection set of dj servers is selected uniformly
at random. Then, independently of the process history, random component sizes (ξ1, . . . , ξkj) are drawn
according to distribution Fj . We “take” the first component, and place its ξ1-size workload on the servers
within the selection set in the “water-filling” fashion. (For example, suppose the selection set consists of 4
servers, 1, 2, 3, 4, with workloads W1 = 5,W2 = 12,W3 = 7,W4 = 16, and suppose ξ1 = 10. Then, adding
the workload of size 10 to these servers in the water-filling fashion will result in the new workloads being
W1 = 11,W2 = 12,W3 = 11,W4 = 16. That is servers 1 and 3 will receive non-zero additional workloads, 6
and 4, respectively, and will end up with equal workload 11. Servers 2 and 4 will not receive any of the first
component’s workload.) After this, there will be one or more selected servers that currently have the smallest
workload. (Servers 1 and 3 in the illustration above.) Let us call them component-1 servers. Then we pick
one of the component-1 servers (in an arbitrary fashion), and exclude it from further workload placement
by this job. Then, we “take” the second component, and place its ξ2-size workload on the remaining dj − 1
servers by continuing the water-filling. The servers that will have the smallest workload after that we call
component-2 servers. Then we exclude one of the component-2 servers, and so on, until the workload of
all kj components is placed. (Note that we could define an additional – different – water-filling type, such
that the water-filling continues to use all dj selected servers, without excluding one of the servers after each
component placement. This, however, is just a special case of the type we just defined, with kj components
replaced by the single component of the size

∑
i ξi.)

By the model definition, for each class j, regardless of its type, the total expected additional workload it
brings to the system is equal to sj .

5.2 Asymptotic regime. Mean-field scaled process

We consider the sequence of systems with n→∞, and assume

λj(n)→ λj > 0, j ∈ J .

6

Further assume that the system is (asymptotically) sub-critically loaded

ρ
.
=

∑
j

λjsj < 1. (3)

Denote the (limiting) total job arrival rate per server by

λ
.
=

∑
j

λj . (4)

WLOG, we can and will assume λ = ρ. (We can achieve this by rescaling time, if necessary.)

To improve paper readability, let us assume that λj(n) = λj for each n. Having converging λj(n) does
not change anything of substance, but clogs exposition. (However, we do need and will use the fact that
our results hold for converging arrival rates.) Similarly, throughout the paper, we will often consider “an
servers” for some real a, ignoring the fact that an may be non-integer; it would be more precise to consider, for
example, “an-rounded-up servers,” but it would just clog the exposition, rather than creating any difficulties.

From now on, the upper index n of a variable/quantity will indicate that it pertains to the system with n
servers, or n-th system. Let Wn

i (t) denote the workload of server i at time t in the n-th system. (When
Wn
i (t) = 0 we say that server i at time t is empty.) Consider the following mean-field, or fluid, scaled

quantities:

xnw(t)
.
= (1/n)

∑
i

I{Wn
i (t) > w}, w ≥ 0. (5)

That is, xnw(t) is the fraction of servers i with Wn
i (t) > w. Then xn(t) = (xnw(t), w ≥ 0) is the system state

at time t; note that xn0 (t) is the fraction of busy servers (the instantaneous system load).

For any n, the state space of the process (xn(t), t ≥ 0) is a subset of a common (for all n) state space
X , whose elements x = (xw, w ≥ 0) are non-increasing RCLL functions of w, with values xw ∈ [0, 1]. An
element x ∈ X defines a probability measure on R̄+, with 1−xw being the measure of [0, w] for 0 ≤ w <∞.
Denote x∞

.
= limw→∞ xw; then x∞ is the measure of {∞}. An element x ∈ X we will call proper, if x∞ = 0,

i.e. if the corresponding probability measure is concentrated on R+. We will equip the space X with the
topology of weak convergence of measures on R̄+; equivalently, y → x if and only if yw → xw for each
0 < w <∞ where x is continuous. We also can and do equip X with a metric consistent with the topology.
Obviously, X is compact.

For any n, process xn(t), t ≥ 0, is Markov with state space X , and with sample paths being RCLL functions
of t ≥ 0. Moreover, this is a renewal process, with renewals occurring when all servers become empty.

Under the subcriticality assumption (3), i.e. ρ = λ < 1, the stability (positive Harris recurrence) of the
process (xn(t), t ≥ 0), for any n, is not hard to establish. (Positive recurrence in this case simply means
that the expected time to return to the empty state is finite.) It can be established, for example, using the
fluid limit technique, analogously to the way it is done in [6]. The key property that the fluid limit for our
model shares with that in [6] is that if there is a subset of servers, whose fluid workloads are greater than
in the rest of the servers, the average per-server rate at which the servers within the subset will receive new
workload is at most ρ < 1. (See (12) in Section 6.2.) We do not provide further details of the stability proof.

Given that the process (xn(t), t ≥ 0) is stable, it has a unique stationary distribution. Let xn(∞) be a
random element whose distribution is the stationary distribution of the process; in other words, this is a
random system state in the stationary regime.

5.3 Main results

Theorem 1. There exists a unique proper element x∗ ∈ X , with x∗0 = λ = ρ, such that

xn(∞)⇒ x∗, n→∞. (6)

7

Function x∗w, w ≥ 0, is Lipschitz continuous and strictly decreasing (and then everywhere positive).

Corollary 2 (Steady-state asymptotic independence). For any fixed integer m ≥ 1, the following holds. For
each n, let [Wn

1 (∞), . . . ,Wn
m(∞)] denote the random value of [Wn

1 (t), . . . ,Wn
m(t)] in the stationary regime.

Then
[Wn

1 (∞), . . . ,Wn
m(∞)]⇒ [W ∗1 , . . . ,W

∗
m], n→∞, (7)

where random variables W ∗i are i.i.d., with P{W ∗i > w} = x∗w, w ≥ 0.

Corollary 2 follows from Theorem 1 and the symmetry between (exchangeability of) servers. Indeed, by
the symmetry, the distribution of [Wn

1 (∞), . . . ,Wn
m(∞)] is equal to the joint distribution of workloads of m

servers chosen uniformly at random. Since m is fixed and as n → ∞ the steady-state empirical measure
xn(∞) of the server workloads converges to the deterministic element x∗, the statement easily follows.

6 More general systems

6.1 Infinite workloads and truncation. Monotonicity properties.

For the purposes of our analysis, it will be convenient to consider two generalizations of our model. (These
more general systems may be of independent interest as well.)

First, we generalize our original system defined above, by allowing some of the servers to have an infinite
workload. Specifically, if server i workload is initially infinite, Wn

i (0) = ∞, then, by convention, it remains
infinite at all times, Wn

i (t) = ∞, t ≥ 0. The same workload placement rules apply even if some server
workloads are infinite, with the convention that an infinite workload remains infinite when “more” workload
is added to it. Note that if one or more server workloads are initially infinite, this implies that xn∞(0) > 0
and xn∞(t) = xn∞(0) for all t ≥ 0.

A second convenient generalization is a system, where the workload of the servers is truncated at some level
c, where 0 ≤ c ≤ ∞. Such a truncated system is defined exactly as the original one, except when an arriving
job adds workload to servers, each server’s workload is capped (truncated) at level c every time the algorithm
would increase it above c. The workload lost due to truncation is removed from the system. The case c =∞
corresponds to the original, non-truncated system, where the arriving workload is never lost. Note that, if
c < ∞, then the stability for any n (and any λ) is automatic. The process corresponding to the truncated
system with parameter c, we denote by xn,c(t), t ≥ 0; if superscript c is absent, this corresponds to c =∞,
i.e. the process xn(·) is for the original non-truncated system.

Finally, if the process starts specifically from the “empty” initial state (with all servers having zero initial

workload), we will add superscript ∅ to the process notation: xn,c,∅(t), t ≥ 0; therefore, xn,c,∅0 (0) = 0. So,
for example, xn,∅(·) denotes the original non-truncated process, starting from the empty state.

The analysis in this paper relies on the system monotonicity, and related properties. We will need several
such properties. They are all related and rather simple.

Lemma 3. Consider two versions of the process, xn,c(·) and x̂n,ĉ(·), such that xn,c(0) ≤ x̂n,ĉ(0), c ≤ ĉ.
Then these processes can be coupled so that, w.p.1,

xn,c(t) ≤ x̂n,ĉ(t), ∀t ≥ 0. (8)

Furthermore, if the process x̂n,ĉ(·) is modified so that, in addition to the job arrival process (as defined in
our model), arbitrary amounts of workload may be added at arbitrary times to arbitrary servers, the property
(8) still holds.

Proof. As far as the mean-field scaled processes xn,c(·) and x̂n,ĉ(·) are concerned, WLOG, we can assume
that, after each job arrival and/or other workload addition(s), the actual servers 1, . . . , n are relabeled, so

8

that the workloads Wn
1 , . . . ,W

n
n are non-decreasing. Then, for the two processes it is sufficient to couple in

the natural way the arrival processes and the job selection sets, to see that (8) must prevail at all times. 2

From Lemma 3, we obtain the following

Corollary 4. For any 0 ≤ c ≤ ∞, the process xn,c,∅(·) is monotone in time t ≥ 0, namely

xn,c,∅(t1) ≤st xn,c,∅(t2), ∀t1 ≤ t2.

Lemma 5. Consider two versions of the process, xn,c(·) and x̂n,ĉ(·), such that c, ĉ ∈ [0,∞]. Suppose that
for some fixed w ∈ [0, c ∧ ĉ], we have xn,cv (0) = x̂n,ĉv (0) for 0 ≤ v ≤ w. Then these processes can be coupled
so that, w.p.1, for t ∈ [0, w] and v ∈ [0, w − t],

xn,cv (t) = x̂n,ĉv (t). (9)

Proof. We couple the two processes in the natural way, as in the proof of Lemma 3. The proof then follows
by induction on the times of job arrivals in the interval [0, w]. Indeed, if t1 ≤ w in the time of the first job
arrival, (9) of course holds for all t ∈ [0, t1). It is then easy to see that the changes of xn,cv and x̂n,ĉv for
v ≤ w − t1, at time t1, only depend on those servers with workloads at most w − t1, which are the same
for both systems; we also observe that if any of those servers changes its workload to a value not exceeding
w − t1, the change will be exactly same in both systems. Then (9) holds for t = t1. Then, (9) holds until
the time t2 of the second job arrival or w, whichever is smaller. And so on. 2

Lemma 5 and Lemma 3 imply the following more general form of Lemma 5.

Lemma 6. Consider two versions of the process, xn,c(·) and x̂n,ĉ(·), such that c, ĉ ∈ [0,∞]. Suppose that
for some fixed w ∈ [0, c ∧ ĉ], we have xn,cv (0) ≤ x̂n,ĉv (0) for 0 ≤ v ≤ w. Then these processes can be coupled
so that, w.p.1, for t ∈ [0, w] and v ∈ [0, w − t],

xn,cv (t) ≤ x̂n,ĉv (t). (10)

6.2 Equivalent representation of a system with some workloads being infinite.

Let b ∈ (0, 1] be fixed. For each n, consider the system with the initial state such that (1− b)n servers have
infinite workloads, while the remaining bn servers’ workloads are finite. Let B = B(n) denote the set of
servers with finite workloads. Then, for each n, the evolution of the subsystem consisting of servers in B –
let us call it B-subsystem – can be equivalently described as follows. The number of servers is bn. Each job
class j “breaks down” into multiple classes (j,m), m = 1, . . . , dj , as follows. Let πj,m(n) be the probability
that exactly m servers selected by a class j job, will be in B. Note that∑

m

πj,m(n)m = bdj .

Then, for a given n, class (j,m) in the B-system has the following parameters: arrival rate per server
λj,m(n) = λjπj,m(n)/b, dj,m = m, kj,m = kj ∧ m, the distribution Fj,m of the component sizes is the
projection of the distribution Fj on the first m components. (dj,m, kj,m and Fj,m do not depend on n.)
Clearly, as far as evolution of the B-system is concerned, this new description is consistent with the actual
behavior. The load of the B-system is

ρB(n) =
∑
j,m

λj,m(n)sj(kj,m/kj).

Recall that the load of the original system, for any n, is ρ =
∑
j λjsj .

The following fact is very intuitive – by the nature of the workload placement algorithm, the arriving workload
“prefers” servers with finite workloads.

9

Lemma 7. For each n,
ρB(n) ≥ ρ. (11)

Proof. We can write:

ρ =
∑
j

λjsj =
∑
j

∑
m

λjπj,m(n)

b

m

dj
sj ≤

∑
j

∑
m

λjπj,m(n)

b

m ∧ kj
dj ∧ kj

sj =
∑
j

∑
m

λj,m(n)
kj,m
kj

sj = ρB(n).

2

Note that, if ρA(n) is the load of the complementary subsystem, consisting of the (1− b)n infinite-workload
servers, then ρ = bρB(n) + (1− b)ρA(n) and, therefore,

ρA(n) ≤ ρ. (12)

Consider now a sequence of the above systems, with n → ∞. Recall that the number of servers in the
B-system is bn. Note that

lim
n
πj,m(n) = πj,m =

dj !

m!(dj −m)!
bm(1− b)dj−m.

Then,
λj,m(n)→ λj,m = λjπj,m/b,

and the B-subsystem (limiting) load is
ρB = lim

n
ρB(n) ≥ ρ. (13)

We see that the sequence of B-systems is just like our original sequence of systems, but has different param-
eters. (Recall that our original model does allow converging arrival rates per server, not just constant.)

7 Some auxiliary facts

Lemma 8. Let a ∈ [0, 1] be fixed. Consider a sequence of processes such that, for each n, at time 0, we
identify a subset, consisting of an servers. As the process evolves, for t ≥ 0, we will keep track of those
servers – let us call them “tagged.” Denote by fn(t), t ≥ 0, the (scaled) number of the tagged servers, which
are not selected by any new job arrival in the interval [0, t]. Then, for any fixed t ≥ 0,

(P)lim inf
n→∞

fn(t) ≥ ae−λd
2t. (14)

Since, by definition, fn(t) is non-increasing in t, as a corollary of (14), we obtain the following stronger
property: for any t ≥ 0,

(P)lim inf
n→∞

(fn(τ), τ ∈ [0, t]) ≥ ae−λd
2t. (15)

Proof. Using coupling, we see that the stochastic lower bound f̂n(t) of the process fn(t) can be obtained by
considering the following “worst case” unaffected tagged set scenario: (a) each new job arrival selection set
consists of d servers and (b) if at least one of the selected servers is within the set of currently unaffected

tagged servers, the latter set is reduced by d servers. For the worst case unaffected tagged set, f̂(t) = ae−λd
2t

is the deterministic mean-field (fluid) limit, solving f̂ ′(t) = −(λd)df̂(t) with f̂(0) = a; here λdf̂(t) is the
(scaled, limiting) rate at which arriving jobs select a server within the set and d is the number of servers
removed upon each such event. Namely, using standard techniques (“large number of servers” fluid limit),
cf. [11], it is straightforward to show that, for any t ≥ 0,

(P) lim
n→∞

(f̂n(τ), τ ∈ [0, t]) = (f̂(τ), τ ∈ [0, t]),

which then implies (14). 2

10

Lemma 9. Let a ∈ [0, 1] and h > 0 be fixed. Consider a sequence of processes xn(·) with initial states xn(0)
satisfying the following condition: the (scaled) number of servers with workload exactly equal to h, is at least
a; namely, xnh−(0)− xnh(0) ≥ a. Then,

(P)lim inf
n→∞

(xnh−t−(t)− xnh−t(t), 0 ≤ t < h) ≥ ae−λd
2h. (16)

(Informally, in words, “when n is large, then with high probability a positive, bounded away from zero, jump
in xn(t) “moves” left at speed 1 from initial point w = h.)

Proof. Consider the servers with initial workload exactly equal to h as tagged servers, and apply Lemma 8.
2

8 Asymptotic independence over a finite interval

The constructions and the results in this section closely follow those in [5] (Section 7) and (to a lesser degree)
in [9] (proofs of Lemmas 3.1 and 3.2). We give them here (along with proofs) in the setting/notation that
we need for our model.

Suppose a finite set of fractions (a probability distribution) a1, a2, . . . , aK is fixed, where all ak > 0 and∑
k ak = 1. Also fixed is a set of numbers wk ∈ [0,∞], k = 1, . . . ,K. Let the truncation parameter

c ∈ [0,∞] be fixed. In this section, we consider a sequence of our systems, indexed by n → ∞, with initial
states such that akn servers have workload exactly wk, k = 1, . . . ,K. Suppose, initially the server indices
1, . . . , n are assigned in the order of a server set permutation chosen uniformly at random. This means, in
particular, that P{Wn

1 (0) = wk} = ak.

We now formally construct a random process U1(t), t ≥ 0. Lemma 11 below will show that, for each t,
Wn

1 (t) ⇒ U1(t) as n → ∞. So, informally speaking, this is a construction of the evolution of a server
workload in a system with “infinite number of servers.”

Fix t ≥ 0. Suppose we consider a server, labeled 1 to be specific. Let U1(t) denote its workload at time
t. Just like for our original system (with a finite number of servers), we will use the terminology of a job
selection set, although here the latter will be defined formally, not as a result of an actual selection process.
Denote αj = λjdj , α =

∑
j αj . Then, by definition, the job arrivals of type j selecting server 1 occur

according to an independent Poisson process of rate αj . We now define the dependence set D̄1(t) of server
1 at time t. It is defined via a branching process, running in reverse time from t to 0; the reverse time index
is 0 ≤ s ≤ t, with s corresponding to actual (forward) time t− s. To improve the exposition, we will define
the construction via an example, shown in Figure 1; in this example we also assume that there are two job
classes, with d1 = 3 and d2 = 2. Ovals indicate job arrivals, with crosses showing the servers they select. By
definition, set A(s) at s = 0 is A(0) = {1}. As s increases, set A(s) increases as follows. There is a Poisson
process (in reversed time s) of rate αj , for each class j, of job arrivals selecting server 1. Suppose first such
arrival occurs at time s1 (which corresponds to forward time t1 = t− s1 shown in Figure 1), and it happens
to be a class-2 job arrival. The set A(s) remains unchanged in the interval [0, s1], and at time s1 we add
d2−1 = 1 servers to the set, which we call “children” of node 1 added at time s1; each added child server is a
new server with distinct index – it is server 8 in Figure 1. So, A(s1+) = {1, 8}, if we adopt a (non-essential)
convention that A(s) is left-continuous. Starting time s1, each server in A(s) receives job arrivals according
to independent Poisson processes, same as for server 1. Let s2 (corresponding to forward time t1 = t − s1
in Figure 1) be the next job arrival time, to any of the servers in set A(s); in Figure 1 it is class-1 job
arrival to server 8. Then A(s) is constant in (s1, s2], and at time s2 we add d1 − 1 = 2 new servers, with
distinct indices 9, 10 – these are children of server 8 added at s2. After s2 we consider independent Poisson
job arrival processes to each of servers in A(s). The next job arrival is time s3 (corresponding to forward
time t3 = t − s3 in Figure 1), which happens to be of class 1 at server 1, which adds two new children, 2
and 3, of server 1 at time s3; and so on. In Figure 1 there are 8 job arrivals in total in [0, t], and the final
set A(t) = {1, 2, . . . , 13}. We emphasize that each added child server in this construction is a new server

11

time

Server
index

1

2

4

3

5

6

7

8

9

10

11

12

13

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

t1
<latexit sha1_base64="FVaQdjUWZVLyUUalbbTR1NMDoKM=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpAft+3616NW8Oskr8glShQKPvfvUGCctirpBJakzX91IMcqpRMMmnlV5meErZmA5511JFY26CfH7qlJxZZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif953Qyj6yAXKs2QK7ZYFGWSYEJmf5OB0JyhnFhCmRb2VsJGVFOGNp2KDcFffnmVtC5qvlfz7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AAWYjZw=</latexit><latexit sha1_base64="FVaQdjUWZVLyUUalbbTR1NMDoKM=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpAft+3616NW8Oskr8glShQKPvfvUGCctirpBJakzX91IMcqpRMMmnlV5meErZmA5511JFY26CfH7qlJxZZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif953Qyj6yAXKs2QK7ZYFGWSYEJmf5OB0JyhnFhCmRb2VsJGVFOGNp2KDcFffnmVtC5qvlfz7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AAWYjZw=</latexit><latexit sha1_base64="FVaQdjUWZVLyUUalbbTR1NMDoKM=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpAft+3616NW8Oskr8glShQKPvfvUGCctirpBJakzX91IMcqpRMMmnlV5meErZmA5511JFY26CfH7qlJxZZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif953Qyj6yAXKs2QK7ZYFGWSYEJmf5OB0JyhnFhCmRb2VsJGVFOGNp2KDcFffnmVtC5qvlfz7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AAWYjZw=</latexit><latexit sha1_base64="FVaQdjUWZVLyUUalbbTR1NMDoKM=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpAft+3616NW8Oskr8glShQKPvfvUGCctirpBJakzX91IMcqpRMMmnlV5meErZmA5511JFY26CfH7qlJxZZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif953Qyj6yAXKs2QK7ZYFGWSYEJmf5OB0JyhnFhCmRb2VsJGVFOGNp2KDcFffnmVtC5qvlfz7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AAWYjZw=</latexit>

t2
<latexit sha1_base64="P4+gfywhwn2dG1TBnMWEEbekCJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1XOr3v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDwccjZ0=</latexit><latexit sha1_base64="P4+gfywhwn2dG1TBnMWEEbekCJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1XOr3v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDwccjZ0=</latexit><latexit sha1_base64="P4+gfywhwn2dG1TBnMWEEbekCJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1XOr3v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDwccjZ0=</latexit><latexit sha1_base64="P4+gfywhwn2dG1TBnMWEEbekCJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1XOr3v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDwccjZ0=</latexit>

t3
<latexit sha1_base64="WKj3HyKx2Jed9SQ/fr+DW4J1Vsw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+xf9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvftapX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHwigjZ4=</latexit><latexit sha1_base64="WKj3HyKx2Jed9SQ/fr+DW4J1Vsw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+xf9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvftapX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHwigjZ4=</latexit><latexit sha1_base64="WKj3HyKx2Jed9SQ/fr+DW4J1Vsw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+xf9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvftapX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHwigjZ4=</latexit><latexit sha1_base64="WKj3HyKx2Jed9SQ/fr+DW4J1Vsw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+xf9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvftapX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHwigjZ4=</latexit>

t4
<latexit sha1_base64="oXLlsRihnG4vP5PAn6ddosrFpZw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqudWvftapXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDwokjZ8=</latexit><latexit sha1_base64="oXLlsRihnG4vP5PAn6ddosrFpZw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqudWvftapXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDwokjZ8=</latexit><latexit sha1_base64="oXLlsRihnG4vP5PAn6ddosrFpZw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqudWvftapXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDwokjZ8=</latexit><latexit sha1_base64="oXLlsRihnG4vP5PAn6ddosrFpZw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqudWvftapXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDwokjZ8=</latexit>

t5
<latexit sha1_base64="YpGzjWobrP7MX/j56aSFMOyj/RE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHwuojaA=</latexit><latexit sha1_base64="YpGzjWobrP7MX/j56aSFMOyj/RE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHwuojaA=</latexit><latexit sha1_base64="YpGzjWobrP7MX/j56aSFMOyj/RE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHwuojaA=</latexit><latexit sha1_base64="YpGzjWobrP7MX/j56aSFMOyj/RE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHwuojaA=</latexit>

t6
<latexit sha1_base64="mzwerQ5cD2AmeP5TWnuhN2azh8A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHw0sjaE=</latexit><latexit sha1_base64="mzwerQ5cD2AmeP5TWnuhN2azh8A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHw0sjaE=</latexit><latexit sha1_base64="mzwerQ5cD2AmeP5TWnuhN2azh8A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHw0sjaE=</latexit><latexit sha1_base64="mzwerQ5cD2AmeP5TWnuhN2azh8A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHw0sjaE=</latexit>

t7
<latexit sha1_base64="l2eavb6efG2sNnMz+0VZf20q4TM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk/ZV1XOr3v11pXGTx1GEMziHS/CgBg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDw6wjaI=</latexit><latexit sha1_base64="l2eavb6efG2sNnMz+0VZf20q4TM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk/ZV1XOr3v11pXGTx1GEMziHS/CgBg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDw6wjaI=</latexit><latexit sha1_base64="l2eavb6efG2sNnMz+0VZf20q4TM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk/ZV1XOr3v11pXGTx1GEMziHS/CgBg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDw6wjaI=</latexit><latexit sha1_base64="l2eavb6efG2sNnMz+0VZf20q4TM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk/ZV1XOr3v11pXGTx1GEMziHS/CgBg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDw6wjaI=</latexit>

t8
<latexit sha1_base64="HWoUfEXyWRcX+jxHiP7A79armzk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk/ZV1XOr3v11pXGTx1GEMziHS/CgBg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDxA0jaM=</latexit><latexit sha1_base64="HWoUfEXyWRcX+jxHiP7A79armzk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk/ZV1XOr3v11pXGTx1GEMziHS/CgBg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDxA0jaM=</latexit><latexit sha1_base64="HWoUfEXyWRcX+jxHiP7A79armzk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk/ZV1XOr3v11pXGTx1GEMziHS/CgBg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDxA0jaM=</latexit><latexit sha1_base64="HWoUfEXyWRcX+jxHiP7A79armzk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk/ZV1XOr3v11pXGTx1GEMziHS/CgBg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDxA0jaM=</latexit>

<latexit sha1_base64="0AGfjvepY/LphEj4YoGdMk2hmJI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI9FLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3Vex2i9X3Jo7B1klXk4qkKPZL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbTrNe+i5t7VK43rPI4inMApnIMHl9CAW2hCCxgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gCYkI1W</latexit>

t
<latexit sha1_base64="GAYLluzudWiz5dtGHwfIWoSCoh8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUxB4LXjxWtLXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJR8epYthmsYhVN6AaBZfYNtwI7CYKaRQIfAwmN3P/8QmV5rF8MNME/YiOJA85o8ZK91W3OihX3Jq7AFknXk4qkKM1KH/1hzFLI5SGCap1z3MT42dUGc4Ezkr9VGNC2YSOsGeppBFqP1ucOiMXVhmSMFa2pCEL9fdERiOtp1FgOyNqxnrVm4v/eb3UhA0/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddKp17yrmntXrzQbeRxFOINzuAQPrqEJt9CCNjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AEuOo0I</latexit>

0

Figure 1: Construction of dependence set D̄1(t).

with a distinct index. Then, by definition, D̄1(t) = A(t). From now on, with a slight abuse of terminology,
when we say “dependence set D̄1(t),” we assume that D̄1(t) includes not only the set of servers, but also the
graph describing the “parent-child” dependence structure and the job arrival times and classes. (For D̄1(t),
by construction, the graph describing the dependence structure is a tree.)

Now, given a realization of D̄1(t), the random value of U1(t) is obtained by letting the initial workloads of
all servers i ∈ D̄1(t) to be i.i.d. with the distribution P{Ui(0) = wk} = ak, k = 1, . . . ,K, and with the
component size vectors for the involved job arrivals being independent with the corresponding distributions.
As usual, between the times of job arrivals selecting a server, the workload Ui(t) of each server decreases at
rate 1 (unless and until it reaches 0). Clearly, if a server i ∈ D̄1(t) is added as a child at (forward) time τ ,
the evolution of its workload after time τ does not affect the value of U1(t). This completes the definition of
U1(t).

Lemma 10. For any t ≥ 0, the (random) cardinality f(t) = |D̄1(t)| of the dependence set D̄1(t) is finite.
Moreover, f(t) satisfies

f ′(t) = γf(t), with γ =
∑
j

αj(dj − 1), (17)

and therefore
E|D̄1(t)| = eγt, t ≥ 0.

Proof. The proof uses the branching process argument. (It is analogous to that used in Section 7 of
[5].) Clearly, f(s), s ≥ 0, can be equivalently viewed as the cardinality of set A(s) in the definition of
D̄1(t). In a small time interval [s, s + ∆s], the expected total number of all children that will be added is
f(s)[

∑
j αj(dj − 1)∆s+ o(∆s)]. This leads to ODE (17). We omit further details. 2

Lemma 11. For any t ≥ 0, as n→∞,
Wn

1 (t)⇒ U1(t) (18)

and, moreover,
P{Wn

1 (t) > w} → P{U1(t) > w} for any w ≥ 0. (19)

12

Proof. Note that the workloads Wn
i (t) are those of the servers i = 1, . . . , n, in the system with finite n.

(Also recall that initially the servers’ indices are assigned in a random order.) Let us define the dependence
set Dn

i (t) for server i at time t, in the system with given n. The construction of Dn
i (t) is analogous to the

construction of D̄1(t) for the “infinite system,” except here, as we increase the set Ani (s) (analogous to set
A(s) in the definition of D̄1(t)) in reversed time s, the children are added according to actual job arrivals
in the finite system with n servers. As a result: (a) a single job arrival may simultaneously select multiple
servers in Ani (s); (b) when children are added at time s, they may be servers already present in Ani (s); (c)
the graph describing the parent-child dependence of servers in Dn

i (t) is not necessarily a tree.

Note that, marginally for each server i, the job arrival processes of different classes j selecting this server
are still independent Poisson processes with rates αj ; however, the independence of these arrival processes
across the servers no longer holds. On the other hand, consider any fixed C > 0. Suppose there is a job
arrival selecting at least one server in Ani (s) at (reversed) time s. Consider event E(Ani (s)) = {The arriving
job selects more than one server Ani (s) or any of the children servers added by the arrival are already in
Ani (s).} Then, as n→∞, P{E(Ani (s))} → 0, uniformly in all possible Ani (s) with |Ani (s)| ≤ C. This in turn
implies that, as n→∞, the rate at which a class-j job arrival selecting a server in Ani (s) occurs, converges
to |Ani (s)|αj , uniformly in Ani (s) with |Ani (s)| ≤ C.

Using the above observations, the proof proceeds by showing that, as n → ∞, the set Dn
i (t) converges to

D̄1(t), in an appropriate sense specified below. It is easy to see that, for all sufficiently large n,

|Dn
1 (t)| ≤st |D̄1,ε(t)|,

where D̄1,ε(t) is constructed the same way as D̄1(t), but with arrival rates λj replaced by slightly larger rates
(1 + ε)λj , ε > 0. By Lemma 10,

E|D̄1,ε(t)| = eγ
′t, t ≥ 0, (20)

where γ′ = (1 + ε)
∑
j αj(dj − 1). We conclude that, uniformly in all sufficiently large n, |Dn

1 (t)| is stochas-
tically dominated by a proper non-negative random variable. Using this fact, along with the observations in
the previous paragraph, we can easily couple the constructions of Dn

1 (t) for each n and the construction of
D̄1(t) in such a way that, w.p.1,

Dn
1 (t)→ D̄1(t), Wn

1 (t)→ U1(t), (21)

where the Dn
1 (t) → D̄1(t) is defined as follows. We say that (the realizations of) Dn

1 (t) and D̄1(t) are
equivalent, and write Dn

1 (t) = D̄1(t) if they are equal, up to relabeling of servers other than server 1; this
means that they have equal sets of servers, equal number of job arrivals, equal parent-child dependence graph,
and equal job arrival times. We say that the convergence Dn

1 (t)→ D̄1(t) holds (for the realizations of Dn
1 (t)

and D̄1(t)) if Dn
1 (t) = D̄1(t) for all sufficiently large n. The convergence (21) proves (18). Moreover, clearly

the coupling construction can be such that, w.p.1, for all sufficiently large n, we in fact have Wn
1 (t) = U1(t);

this proves (19). 2

Let us denote:
xcw(t)

.
= P{U1(t) > w}. (22)

Lemma 12. For the sequence of systems, considered in this section, the following holds for any w ≥ 0 and
t ≥ 0:

xn,cw (t)
P→ xcw(t). (23)

Proof. Consider a fixed t, a fixed w, and two fixed servers 1 and 2. Denote by Eni
.
= {Wn

1 (t) > w}, i = 1, 2.
To prove (23), it suffices to prove that the covariance of I(En1) and I(En2) vanishes, namely

EI(En1 , En2)− EI(En1)EI(En2)→ 0, n→∞. (24)

Indeed, by the symmetry (exchangeability of the servers), from (19) and (22) we have that Exn,cw (t) =
EI(En1) = P{Wn

1 (t) > w} → P{U1(t) > w} = xcw(t); then the vanishing covariance (24) implies that the
variance of xn,cw (t) vanishes as well.

13

In turn, to prove (24) it suffices to prove

EI(En1 , En2)→ [P{U1(t) > w}]2, n→∞. (25)

This follows from a straightforward extension of the constructions we used in the proof of Lemma 11. Namely,
consider two independent constructions of the “infinite server system” dependence sets D̄1(t) and D̄2(t); the
latter is defined the same way as the former, except the “seed” server is 2, not 1; WLOG we can assume that
the sets of server indices in D̄1(t) and D̄2(t) do not intersect. Then consider the joint construction of the
dependence sets Dn

1 (t) and Dn
2 (t), which starts with the “seed” set An(0) = {1, 2}, corresponding to time

t, and then goes “backwards in time.” In this case Dn
1 (t) and Dn

2 (t) are not independent, but exactly the
same argument as in the proof of Lemma 11 shows that a coupling exists such that, w.p.1, (Dn

1 (t), Dn
2 (t))→

(D̄1(t), D̄2(t)) and (Wn
1 (t),Wn

2 (t)) → (U1(t), U2(t). (The convergence (Dn
1 (t), Dn

2 (t)) → (D̄1(t), D̄2(t)) is
defined the same way asDn

1 (t)→ D̄1(t), except the equivalence (Dn
1 (t), Dn

2 (t)) = (D̄1(t), D̄2(t)) is understood
as equality up to relabeling of the servers other than 1 and 2.) Recall D̄1(t) and D̄2(t) (and U1(t) and U2(t))
are independent. Moreover, the coupling can be such that, w.p.1, for all sufficiently large n, we in fact have
(Wn

1 (t),Wn
2 (t)) = (U1(t), U2(t). This proves (25), and then the lemma. 2

9 Fluid sample paths

Suppose we are in the setting of Section 8. Defined there function xc(t), t ≥ 0, with values in X , we will call
a fluid sample path (FSP). Clearly, an FSP initial state is: xcw(0) =

∑
k akI{ak > w}, 0 ≤ w < ∞. (Note

that an FSP, by definition, arises as a result of the limiting procedure specified in Section 8. Namely, the
initial states of the pre-limit systems are such that exactly a fraction ak of servers has workload exactly wk,
for some fixed parameters ak > 0 (such that

∑
k ak = 1) and wk ∈ [0,∞]. In this paper we will only need

FSPs defined this way.)

By xc,∅(t), t ≥ 0, we will denote the special FSP with a1 = 1, w1 = 0; this means that each pre-limit system

starts from the “empty” initial state, with all initial workloads being 0. Of course, xc,∅0 (0) = 0. This is the
FSP “starting from the empty initial state.” As a special case of Lemma 12, we obtain that for any fixed
c ≤ ∞, w ≥ 0, t ≥ 0,

xn,c,∅w (t)
P→ xc,∅w (t). (26)

The FSP definition and Lemma 3 imply the following monotonicity property for the FSPs.

Lemma 13. (i) Consider two FSPs, xc(·) and x̂ĉ(·), such that c ≤ ĉ and xc(0) ≤ x̂ĉ(0). Then xc(t) ≤ x̂ĉ(t)
for all t ≥ 0. (ii) Consider two FSPs, x(·) and x̂(·), such that, for some 0 ≤ h < ∞ and τ ≥ 0, x̂h(0) = 0
and xh(τ) > x̂0(0). Then, x̂(t) ≤ x(τ + t) for all t ≥ 0.

10 Properties of FSPs starting from the empty initial state

In this section we study the properties of the FSPs xc,∅w (t), t ≥ 0, starting from the empty initial state.
Recall that c ∈ [0,∞] is the truncation parameter. Note that an FSP xc,∅w (t), t ≥ 0, can be viewed as a
scalar function of (c, w, t).

Lemma 14. Function xc,∅w (t) is non-decreasing in c, t, and is non-increasing in w.

Proof. This follows from (26), along with Lemma 3 and Corollary 4. 2

Lemma 15. For any c > 0 and t > 0, xc,∅(t) is proper and xc,∅w (t) > 0 for each w < c.

Proof. By definition (22), xc,∅w (t) = P{U1(t) > w}, where the construction of U1(t) is for the special case
when all servers’ workloads are initially 0. It follows from the construction that U1(t) is finite w.p.1 for any

14

finite t ≥ 0, that is xc,∅(t) is proper. Moreover, it is easy to see from the construction that, for any t ≥ 0
and w < c, the probability P{U1(t) > w} must be positive. 2

Sometimes, as in the proof of the next lemma, it will be convenient to interpret a given server workload
evolution as the movement of a “particle” in [0,∞], with the workload being the particle location. With
this interpretation, between the times of job arrivals that select the server, the particle moves left at the
constant speed 1 until/unless it “hits” 0. At the times when a new job arrival adds to the server workload,
the particle “jumps right” by the distance equal to the added workload.

Lemma 16. As a function of w ≥ 0, xc,∅w (t) is Lipschitz, uniformly in c ≤ ∞ and t ≥ 0.

Proof. Consider time t and interval [w,w + δ]. Consider the (pre-limit) system and process, with fixed n.
All particles (server workloads) that are in [w,w+ δ] at time t, at time t+ δ will be in [0, w], unless they are
selected by new job arrivals in [t, t+ δ]. Recall that new jobs arrive as a Poisson process of (unscaled) rate
λn, for a given n, and each job selects at most d particles. Let gnw be the (scaled) number of particles that
cross point w from left to right in the interval [t, t+ δ]. By the law of large numbers,

(P)lim sup
n→∞

gnw ≤ λdδ.

Therefore,
xw(t+ δ)− xw(t) = (P) lim

n→∞
[xnw(t+ δ)− xnw(t)] ≤

−(P) lim
n→∞

[xnw(t)− xnw+δ(t)] + (P)lim sup
n→∞

gnw ≤ −[xw(t)− xw+δ(t)] + λdδ.

But, 0 ≤ xw(t+ δ)− xw(t). Therefore, xw(t)− xw+δ(t) ≤ λdδ. 2

Lemma 17. For any fixed 0 ≤ w <∞, function x∅w(t), t ≥ 0, is strictly increasing in t. (Note that here we
consider specifically the non-truncated system, c =∞.)

Proof. Fix any τ ≥ 0, any δ > 0, and any w ≥ 0. We will show that x∅w(τ + δ) > x∅w(τ). Suppose, first,
that w > 0. By Lemma 15, at time δ, x∅(δ) is such that x∅u(δ) is positive for all u < ∞. Consider a state,
let us denote it x̂(δ), such that x̂u(δ) = a ∈ (0, 1) for u < w + τ , and x̂u(δ) = 0 for u ≥ w + τ . (Fraction a
of “servers” have workload exactly w + t, while the rest of the “servers” have workload 0.) We can and do
pick a > 0 small enough so that x∅u(δ) > x̂u(δ) for all u ≥ 0. For each n, let us consider the process xn,∅u (·)
in the time interval [δ,∞), and compare it with the process x̂n(·) in the same time interval, starting from
state x̂n(δ) = x̂(δ). We have that

lim
n→∞

P{xn,∅u (δ) ≥ x̂nu(δ), ∀u ≥ 0} = 1.

Given this, and using the monotonicity, we can couple these processes in a way such that

lim
n→∞

P{xn,∅u (δ + t) ≥ x̂nu(δ + t), ∀u ≥ 0, ∀t ≥ 0} = 1.

By Lemma 12, for any t ≥ 0 and u ≥ 0, x̂nu(δ + t)
P→ x̂u(δ + t), where, by monotonicity, x̂u(δ + t) ≥ x∅u(t).

Now, by Lemma 9,

(P)lim inf
n→∞

(x̂nw+τ−t−(δ + t)− x̂nw+τ−t(δ + t), 0 ≤ t < w + τ) ≥ ae−λd
2(w+τ) = ε > 0.

This implies that, for any 0 ≤ t < w + τ ,

x̂w+τ−t−(δ + t)− x̂w+τ−t(δ + t) ≥ ε,

and then
x̂w+τ−t−(δ + t)− x∅w+τ−t(t) ≥ ε,

15

and finally
x∅w+τ−t(δ + t)− x∅w+τ−t(t) ≥ ε. (27)

In particular, substituting t = τ , we obtain x∅w(δ + τ) − x∅w(τ) ≥ ε > 0, which completes the proof for the
case w > 0. To treat the case w = 0, observe that the proof of (27) in fact holds as is, with the same ε > 0
in the RHS, if in the LHS we replace w by any u ∈ (0, w]. Therefore, x∅u(δ+ τ)− x∅u(τ) ≥ ε > 0 for all small
positive u > 0, and then, by the continuity of x∅u(τ), for u = 0 as well. 2

As a corollary from the results in this section, we obtain the following uniform convergence to an FSP starting
from the empty initial state.

Lemma 18. For any t ≥ 0, ‖xn,c,∅(t)− xc,∅(t)‖ P→ 0.

11 Fixed point

Given the properties of the FSPs derived above, we see that, as t→∞,

xc,∅(t)
u.o.c.→ x∗,c ∈ X .

The element x∗,c ∈ X we will call the fixed point (for a given c). In particular, x∗ = x∗,∞.

Given that all functions xc,∅w (t), w ≥ 0, are uniformly Lipschitz, their u.o.c. limits x∗,cw , w ≥ 0, are uniformly
Lipschitz as well.

Lemma 19. The fixed point x∗,c is such that x∗,c0 ≤ λ.

Proof. The proof is by contradiction. Suppose not, i.e. x∗,c0 > λ. Choose T > 0 sufficiently large, so that

(1/T)

∫ T

0

xc,∅0 (t)dt > λ.

Note that, for any n,

(1/T)

∫ T

0

Exn,c,∅0 (t)dt ≤ λ,

because the LHS is the expected amount of work (per server per unit time) processed by the system in [0, T]
– it cannot exceed λ, which is the expected amount of work (per server per unit time) arrived into the system
in [0, T]. But we have

lim
n→∞

(1/T)

∫ T

0

Exn,c,∅0 (t)dt = (1/T)

∫ T

0

xc,∅0 (t)dt > λ.

This contradiction completes the proof. 2

Lemma 20. For any w ∈ [0,∞), as c ↑ ∞, x∗,cw ↑ x∗w.

Proof. It follows from Lemma 5, that the processes with a finite c and c = ∞ can be coupled so that
xn,c,∅w (t) = xn,∅w (t) for t < c−w. Therefore, xc,∅w (t) = x∅w(t) for t < c−w. Then, for any ε > 0, we can choose
a sufficiently large t and then sufficiently large c, so that

xc,∅w (t) = x∅w(t) > x∗w − ε,

and then x∗,cw > x∗w − ε. 2

In particular, from Lemma 20, x∗,c0 ↑ x∗0 as c ↑ ∞.

Note that, for a finite c, the fixed point x∗,c is automatically proper, since x∗,cc = 0. Our next goal is to show
that x∗ is proper, i.e. x∗w ↓ 0 as w →∞, and x∗0 = λ.

16

Lemma 21. If fixed point x∗ is proper, then x∗0 = λ.

Proof. Fix any ε > 0 and any ε′ > 0. Then fix a large h > 0 such that

1− (1− x∗h)d < ε′;

if we have a subset consisting of (1− x∗h)n servers, then the probability that an arriving job selects a server
outside this set is less than ε′. Finally, fix a sufficiently large finite c > h so that if a job selects only servers
with workloads at most h, then the expected amount of (this job’s) work lost due to truncation is less than
ε.

For each n, consider process xn,c,∅(·), with the chosen above truncation parameter c. For any t ≥ 0, since

xc,∅h (t) ≤ x∅h(t) < x∗h,

lim
n→∞

P{1− (1− xn,c,∅h (t))d < ε′} = 1.

Let gnlost(T) denote the expected total (scaled) amount of workload lost due to truncation in the interval
[0, T]. Recall that the job arrivals process is Poisson. Then,

lim sup
n→∞

gnlost(T)[λε′ + λ(1− ε′)ε]T ≤ λ(ε′ + ε)T.

Let gnout(T) denote the expected total (scaled) amount of workload processed (and left the system) in the
interval [0, T].

lim
n→∞

gnout(T) = lim
n→∞

∫ T

0

Exn,c,∅0 (t)dt =

∫ T

0

xc,∅0 (t)dt.

Recall that the process starts from the empty state, so by work conservation, for any T > 0,

gnout(T) ≥ λT − gnlost(T)− c.

We obtain
1

T

∫ T

0

xc,∅0 (t)dt ≥ λ(1− ε′ − ε)− c/T.

Letting T →∞, and recalling that limt→∞ xc,∅0 (t) = x∗,c0 ,

x∗,c0 ≥ λ(1− ε′ − ε).

Recall that such c can be chosen for arbitrarily small ε′ > 0 and ε > 0. Then x∗0 = limc x
∗,c
0 ≥ λ. And by

Lemma 19, x∗0 ≤ λ. 2

We now make the following observation. Up to this point in the paper (except in the statements of the main
results, Theorem 1 and Corollary 2), we never used the condition λ < 1. In particular, the definition of
the fixed point x∗,c does not depend on the condition λ < 1 and neither do the statements and proofs of
Lemmas 19 and 21. Using this fact, we obtain the following corollary from Lemmas 19 and 21, which will
be used later.

Corollary 22. Consider the dependence of the fixed point x∗ on λ. If for a given λ the fixed point x∗ is
proper, then x∗0 = λ (and then necessarily λ ≤ 1).

It is not difficult to strengthen Corollary 22, to show that if x∗ is proper, then necessarily x∗0 = λ < 1. But
we will not need this fact.

From now on, some of our results/proofs do require that λ < 1.

Lemma 23. Function x∗,cw , w ≥ 0, is strictly decreasing for 0 ≤ w < c. (This does require that λ < 1.)

17

Proof. The proof is by contradiction. Let u ≥ 0 be a point such that x∗,cw is flat in an interval to the right
of u, , i.e. x∗,cu = x∗,cv = a for some u < v < c. Note that a ≤ x∗,c0 ≤ λ < 1. Pick any ε > 0, and then t > 0
large enough, so that both xc,∅u (t) and xc,∅v (t) are in (a − ε, a). Pick any 0 < b < 1 − λ. At time t let us
consider the non-intersecting sets: B̄ = B̄(n) is the set of empty servers, A = A(n) is the set of servers with
workload greater than v. For their (scaled) cardinalities, we know that

lim
n→∞

P{1− xn,c,∅0 (t) > b} = 1,

lim
n→∞

P{xn,c,∅v (t) > a− ε} = 1.

Note that every server in set A will have a workload greater than u at time t + (u − v). If event B̄ ≥ bn
does hold at time t, let us pick a fixed subset B = B(n) of bn servers that are empty at t, and let us keep
track of the servers in set B over the time interval [t, t+ (v−u)]. By Lemma 3 the distribution of workloads
within this set stochastically dominates that of the following process: we consider only the servers in B and
we “ignore” any job arrival which selects at least one server outside B. Such a lower bounding process has
the same structure as our original process, except it has a smaller number of servers, bn, and the job type
arrival rates per server, λ′j , are different. Applying Lemma 15 and (26) to the lower bounding process, we
obtain the following property. Denote by gn the (scaled) number of servers in B, which at time t+ (v − u)
have workloads greater than u. Then, there exists δ > 0 such that

lim
n→∞

P{gn > δ} = 1.

Combining these estimates, we obtain that

lim
n→∞

P{xn,c,∅u (t+ (v − u)) > a− ε+ δ} = 1.

But, this is true for any ε > 0. So, we must have xc,∅u (t+ (v−u)) > a, and then x∗,cu > a, a contradiction. 2

Lemma 24. Fixed point x∗ is proper and x∗0 = λ. (This does require that λ < 1.)

Proof. Given Lemma 21 (or Corollary 22), it suffices to prove that x∗ is proper. Suppose not, i.e. x∗w ↓= a > 0
as w → ∞. Then we claim the following. Consider the FSP x̂(t) corresponding to the initial state with
fraction a of servers having initially infinite workload and the remaining fraction b = 1− a of servers being
empty. (This is the system described in Section 6.2, with the B-subsystem being initially empty.) So,
x̂w(0) = a for all w ≥ 0. We claim that

x̂w(t) ↑ x∗w, ∀w ≥ 0. (28)

(Consequently, ‖x̂(t) − x∗‖ → 0.) Note that by Lemma 13, x̂(t) ≥ x∅(t), so limt x̂w(t) ≥ x∗w. Then, to
prove (28), it suffices to show that for any t ≥ 0, x̂w(t) ≤ x∗w. For this, we consider the family of FSPs,
x̂(h)(·), parameterized by h < ∞, corresponding to initial states such that the fraction a of servers have
initial workloads h and the remaining fraction b = 1− a of servers are empty. For any fixed h, there exists
a sufficiently large τ > 0 such that x∅(τ) > x̂(h)(0). (Here we use the fact that x∗w > a for all finite w ≥ 0,
because x∗w is strictly decreasing in w.) Then, by Lemma 13, x̂(h)(t) ≤ x∅(τ + t) < x∗ for all t ≥ 0. It

remains to notice that for any fixed w ≥ 0 and t ≥ 0, if we choose h > w + t, then x̂w(t) = x̂
(h)
w (t). Thus,

claim (28) is proved.

Denote by x̄∗ the element of X , defined by x̄∗w = (x∗w − a)/b, w ≥ 0. By this definition, x̄∗ is proper. Claim
(28) proves that x̄∗ is nothing else but the fixed point for the B-subsystem, as defined in Section 6.2, starting
from the empty state. Since x̄∗ is proper, by Corollary 22, x̄∗0 = ρB . By (13), ρB ≥ ρ = λ. But then
x∗0 = a+ bx̄∗0 ≥ a+ bλ > λ. This contradicts Lemma 19. 2

18

12 Proof of Theorem 1

Consider the sequence xn(∞). The sequence of their distributions is tight because X is compact. Consider
any fixed subsequence along which xn(∞) ⇒ x∗∗, where x∗∗ is a random element in X . It will suffice to
show that, x∗∗ = x∗.

Lemma 25. x∗ ≤st x∗∗.

Proof. We can construct a stationary version of the process, xn(·), and the process xn,∅(·) on a common
probability space, so that xn,∅w (t) ≤ xnw(t) for all w and t. We conclude that xn,∅(t) ≤st xn(t) for any t ≥ 0.

Recall that ‖xn,∅(t)− x∅(t)‖ P→ 0 as n→∞. This implies that, for any fixed h > 0 and t ≥ 0,

(P)lim inf
n→∞

(xnw(∞), w ∈ [0, h]) ≥ (x∅w(t), w ∈ [0, h]).

Since this is true for any t, and x∅w(t) is strictly increasing in t, we conclude that, for any fixed h > 0 and
t ≥ 0 the stronger property holds:

lim
n→∞

P{xnw(∞) ≥ x∅w(t), ∀w ∈ [0, h)} = 1. (29)

Recalling that x∅w(t) is continuous in w, observe that the subset {y ∈ X | yw ≥ x∅w(t), ∀w ∈ [0, h)} is closed.
Therefore,

P{x∗∗w ≥ x∅w(t), ∀w ∈ [0, h)} ≥ lim sup
n

P{xnw(∞) ≥ x∅w(t), ∀w ∈ [0, h)} = 1.

Thus, for any fixed h > 0 and t ≥ 0,

P{x∗∗w ≥ x∅w(t), ∀w ∈ [0, h)} = 1.

It remains to recall that x∅w(t) ↑ x∗w as t→∞, to finally conclude that

P{x∗∗w ≥ x∗w, ∀w ≥ 0} = 1.

2

For future reference, note that Lemma 25 (or (29)) implies, in particular,

(P)lim inf
n→∞

xn0 (∞) ≥ x∗0. (30)

Lemma 26. x∗∗ = x∗.

Proof. Suppose not, i.e. there exists w > 0 and a > 0 such that

P{x∗∗w > x∗w + a} = δ > 0.

We will show that this leads to a contradiction. Let xn(·) denote a stationary version of the process. The
subset {y ∈ X | yw > x∗w + a} is open, so

lim inf
n

P{xnw(∞) > x∗w + a} ≥ δ.

Pick a sufficiently small ε > 0, such that ε < ae−λd
2w. Pick a sufficiently large τ > 0 and then a sufficiently

small u > 0, such that u ≤ w and x∅u(τ) + ε > x∗0 + ε/2. Let x̂n(t)
.
= xn,∅(τ + t), so that x̂n(0) is equal

in distribution to xn,∅(τ). Since x∅v(τ) < x∗v for all v ≤ w, we know from the argument in the proof of
Lemma 25, that, if we take independent initial distributions of xn(·) and x̂n(·) then

lim
n

P{xnv (0) ≥ x̂nv (0), ∀v ≤ w} = 1.

19

Let us couple xn(·) and x̂n(·) in the natural way. By Lemma 6, if condition {xnv (0) ≥ x̂nv (0), ∀v ≤ w} does
hold, then condition {xnv (t) ≥ x̂nv (t), ∀v ≤ w − t, ∀t ≤ w} holds as well. Furthermore, coupled with these
processes, let us consider the following further modification x̃n(·) of the process xn(·). The initial state xn(0)
is replaced by the initial state x̃n(0), where

x̃nu(0) = xnu(0), u < w,

x̃nu(0) = x̂nu(0), u ≥ w.

Note that x̃nw−(0)− x̃nw(0) ≥ xnw(0)− x̃nw(0). Therefore, x̃n(0) is such that

lim inf
n

P{At least (scaled) number a of servers have workload exactly w} ≥ δ.

Consider the three coupled processes over the time interval t ∈ [0, w − u]. We can make the following
conclusions:

(P)lim inf
n→∞

x̂nu(w − u) ≥ x∅u(τ + w − u) > x∅u(τ)

which implies
(P)lim inf

n→∞
x̃nu(w − u) > x∅u(τ).

We also can use Lemma 16 to conclude that

lim inf
n

P{x̃nu−(w − u)− x̃nu(w − u) ≥ ε} ≥ δ.

Recalling our choice of ε and u, we obtain that

lim inf
n

P{x̃nu−(w − u) ≥ x∗0 + ε/2} ≥ δ.

We also have
lim
n

P{xnu−(w − u) ≥ x̃nu−(w − u)} = 1.

The last two displays imply that

lim inf
n

P{xn0 (w − u) ≥ x∗0 + ε/2} ≥ δ.

Recall that xn(·) is the stationary version of the process. Then,

lim inf
n

P{xn0 (∞) ≥ x∗0 + ε/2} ≥ δ.

From this display and (30),
lim inf

n
Exn0 (∞) ≥ x∗0 + δε/2 > x∗0 = λ,

which contradicts the conservation law Exn0 (∞) = λ. 2

Lemmas 25 and 26 imply that xn(∞)⇒ x∗, thus proving Theorem 1.

References

[1] I. Adan, I. Kleiner, R. Righter, and G. Weiss. Fcfs parallel service systems and matching models.
Performance Evaluation, 127:253–272, 2018.

[2] U. Ayesta, T. Bodas, and I. M. Verloop. On a unifying product form framework for redundancy models.
Performance Evaluation, 127:93–119, 2018.

[3] U. Ayesta, T. Bodas, and I. M. Verloop. On redundancy-d with cancel-on-start aka join-shortest-work
(d). ACM SIGMETRICS Performance Evaluation Review, 46(2):24–26, 2018.

20

[4] M. Bramson. Stability of join the shortest queue networks. The Annals of Applied Probability, 21:1568–
1625, 2011.

[5] M. Bramson, Y. Lu, and B. Prabhakar. Asymptotic independence of queues under randomized load
balancing. Queueing Systems, 71:247–292, 2012.

[6] S. Foss and N. Chernova. On the stability of a partially accessible multi-station queue with state-
dependent routing. Queueing Systems, 29:55–73, 1998.

[7] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, M. Velednitsky, and S. Zbarsky. Redundancy-d: The
power of d choices for redundancy. Operations Research, 65(4):1078–1094, 2017.

[8] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia. Reducing latency via redundant
requests: Exact analysis. ACM SIGMETRICS Performance Evaluation Review, 43(1):347–360, 2015.

[9] A. Greenberg, V. Malyshev, and S. Popov. Stochastic model of massively parallel computation. Markov
Processes and Related Fields, 2:473 – 490, 1997.

[10] T. Hellemans, T. Bodas, and B. Van Houdt. Performance analysis of workload dependent load balancing
policies. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 3(2):35, 2019.

[11] G. Pang, R. Talreja, and W. Whitt. Martingale proofs of many-server heavy-traffic limits for markovian
queues. Probability Surveys, 4:193–267, 2007.

[12] N. B. Shah, K. Lee, and K. Ramchandran. When do redundant requests reduce latency? IEEE
Transactions on Communications, 64(2):715–722, 2015.

[13] A. L. Stolyar. Pull-based load distribution in large-scale heterogeneous service systems. Queueing
Systems, 80(4):341–361, 2015.

[14] A. L. Stolyar. Pull-based load distribution among heterogeneous parallel servers: the case of multiple
routers. Queueing Systems, 85(1-2):31–65, 2017.

[15] A. Vulimiri, P. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Low latency via redundancy.
CoNEXT 2013 - Proceedings of the 2013 ACM International Conference on Emerging Networking
Experiments and Technologies, pages 283–294. Association for Computing Machinery, Jan. 2013.

[16] N. Vvedenskaya, R. Dobrushin, and F. Karpelevich. Queueing system with selection of the shortest of
two queues: an asymptotic approach. Problems of Information Transmission, 32(1):20–34, 1996.

21

	1 Introduction
	2 Discussion of the model and main results
	3 Previous work
	4 Basic notation
	5 Formal model and main results
	5.1 Model
	5.2 Asymptotic regime. Mean-field scaled process
	5.3 Main results

	6 More general systems
	6.1 Infinite workloads and truncation. Monotonicity properties.
	6.2 Equivalent representation of a system with some workloads being infinite.

	7 Some auxiliary facts
	8 Asymptotic independence over a finite interval
	9 Fluid sample paths
	10 Properties of FSPs starting from the empty initial state
	11 Fixed point
	12 Proof of Theorem 1

