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INFINITE SERVER QUEUES IN A

RANDOM FAST OSCILLATORY ENVIRONMENT

YIRAN LIU, HARSHA HONNAPPA, SAMY TINDEL, AND NUNG KWAN YIP

Abstract. In this paper, we consider a Gt/Gt/∞ infinite server queueing model in a
random environment. More specifically, the arrival rate in our server is modeled as a
highly fluctuating stochastic process, which arguably takes into account some small time
scale variations often observed in practice. We show a homogenization property for this
system, which yields an approximation by a Mt/Gt/∞ queue with modified parameters.
Our limiting results include the description of the number of active servers, the total
accumulated input and the solution of the storage equation. Hence in the fast oscillatory
context under consideration, we show how the queuing system in a random environment
can be approximated by a more classical Markovian system.

1. Introduction

Nonstationary models have been extensively studied in the literature on queues, par-
ticularly in the Markovian setting. A typical assumption in this setting is that the arrival
and service intensities are deterministic time-varying functions. In Markovian settings,
it is also natural to assume that the intensity functions are smooth [34]. However, in
practice, queueing systems are often subject to “environmental” noise: for instance, while
arrival intensities to call centers and hospitals display time-of-day (or “diurnal”) effects,
the intensity functions also vary based on the day-of-week and seasonal effects. In other
queueing systems, particularly those with high intensity arrivals such as computer net-
works or cloud service systems, there is also intra-day and intra-hour stochastic variation
in the intensity process. The performance of these queueing systems is therefore affected
by both the smaller time-scale stochastic variations, as well as (relatively) longer time-
scale time-of-day effects.

Our objective in this paper is to understand the interplay between short time-scale
stochastic fluctuations and long time-scale variations in the model intensities, and the im-
pact these effects have on the computation of system performance metrics. To this end,
we study a Gt/Gt/∞ infinite server queueing model imbedded in a random environment.
While infinite server queues are an approximation in the real world, they are a useful
vehicle to address the questions of interest to us. We assume a doubly stochastic Poisson
process (DSPP) traffic model, so that conditional on the stochastic intensity the cumula-
tive number of arrivals in a fixed time interval is Poisson distributed. We assume that the
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stochastic intensity is modeled as µ(s) = Ψ(s, Zs), where Zs is an ergodic stochastic pro-
cess (as we will see later on, a typical example of such process is an Ornstein-Uhlenbeck
type process). We will develop much of our theory under the special case of a “separable”
stochastic intensity function, denoted by µε and defined by

µε(ds) = λ(s)ψ(Zs/ε)ds, ε > 0, s > 0 (1)

where a deterministic function of time λ(s) (modeling time-of-day effects) is multiplied
by some positive function of a stochastic process Z (modeling fluctuations). Note the
time scale ε−1t associated with Z. The constant ε in this paper is intended to be a small
parameter reflecting the fast oscillatory nature of the fluctuations. Coming to the service
model, we consider a general setting where the parameters of the service time distribution
functions are assumed to vary temporally with the long time-scale variations in the traffic
intensity. An example is given by Pareto service times, with temporally-varying scale
coefficients that depend on the arrival epoch.

Performance analysis of non-Markovian queueing models is in general rather difficult.
Consequently, we focus on developing stochastic process approximations as the parameter
ε → 0. Our main result in Theorem 4.6 shows that in the limit the Gt/Gt/∞ queue is
closely approximated by a Mt/Gt/∞ queue; i.e., an infinite server queue where traffic is
modeled by a Poisson process with deterministic time-varying intensity function. Such a
limiting procedure is often called ‘homogenization,’ in the sense that the fast oscillating
process is averaged out to produce an effective description which is usually much easier to
analyze. More precisely, let N ε be the quenched stochastic process representing the state
of the Gt/Gt/∞ queue. Then N ε converges weakly to a Poisson point process N that is
the state of an Mt/Gt/∞ queue. We write this limit as

{N ε(t) : t ∈ [0, T ]}
(d)
−→ {N(t) : t ∈ [0, T ]}, PZ − a.s. (2)

where T > 0 is an arbitrary time horizon and PZ denotes the quenched probability for a
fixed environment Z. In order to better specify a notion of quenched in this context, note
that there are inherently two stochasticities in our model: one is the random fluctuation
for the arrival rate process µε defined by (1), and the other is the actual arrival process
N ε given the rate. The notion of “quenched” refers to the probability space upon fixing
or given one particular random fluctuation in µε.

The proof of our main result is crucially dependent on the assumption that the short-
term stochastic fluctuation model mixes rapidly enough (see Hypothesis 2.1 for a more
precise statement). Consequently, the stochastic fluctuations can reach a steady state
within the relatively longer time-scale of the time-of-day effects, thereby “averaging” out
the short time-scale fluctuations. The proof relies on first showing that the mean measure
of the queue state satisfies a strong law type limit. Namely it can be seen that the
mean measure of the queue state is an additive functional of the stochastic fluctuations,
and when the latter reach steady state fast enough, the mean measure converges to a
deterministic limit. This type of result is well known for general Markov processes [17].
Our homogenization limit follows by leveraging the convergence of mean measure to show
that the finite dimensional distributions of the Poisson random measure corresponding
to the (quenched) state N ε of the Gt/Gt/∞ queue converge to those of the state N
of an Mt/Gt/∞ queue. A further tightness condition leads to the convergence of the
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whole process. As the reader can see, the main technical novelty in our paper consists in
combining those homogenization results with some more standard considerations about
limits for queues.

Our main result Theorem 4.6 yields two crucial insights into the performance analy-
sis of queueing models imbedded in random environments. First, it shows that ergodic
properties of the underlying stochastic fluctuations play a critical role in separating the
fast stochastic fluctuations from the longer time-scale temporal variations. Second, it
shows that under our homogenization limit, it is possible to safely ignore the stochas-
tic fluctuations and model the system using an Mt/Gt/∞ queueing model. The latter
model has been extensively studied [7, 6, 23] and there is a substantial literature available
on its properties, particularly with stationary service. From a practical perspective, the
Mt/G/∞ queue is also significantly easier to use in simulation studies.

The aforementioned homogenization phenomenon put forward in Theorem 4.6 is sim-
ilar to the “rapid fluctuation” analysis in [36]. In that work, the weak convergence of a
general point process (for example, a DSPP) to a constant rate Poisson process (under
the assumption that the compensator of the point process satisfies a strong law) was used
to approximate the state distribution of a Gt/G/∞ queue by that of an Mt/G/∞ queue.
The analysis in [36] crucially used Taylor expansions of the state probability distribution
at a fixed time t in terms of the scaling parameter. The approach in the current paper
is completely different. Indeed, we mostly exploit the Poisson random measure represen-
tation of the state process, and then establish the process-level stochastic approximation
limit for this object. Our paper is also closely related to [28], where an infinite server
queue with “extremely” heavy-tailed Pareto service times is studied in a time homoge-
neous setting in order to explain network self-similarity effects. The relatively simple
homogeneous setting allowed the authors to establish not only a functional strong law of
large numbers (FSLLN), but also a functional central limit theorem (FCLT). Our results
in this paper substantially generalize the FSLLN result to a queueing model imbedded
in a random environment. However, the analysis to establish the corresponding FCLT in
our setting is significantly complicated; see our conclusion section.

Our paper can be related to multiple threads of research on nonstationary queueing
models and queues embedded in random environments. First, there is a significant body
of work developing both uniform acceleration ([22, 12, 21, 33]) and many-server heavy-
traffic limit theorems ([19, 18, 2]) to time-varying queues. In much of this literature, the
limit processes are shown to be (reflected) diffusion processes, where the time-of-day effects
manifest themselves as the drift function of the diffusion process. Note that all of this
work assumes that the nonstationarity manifests as a deterministic temporal variation.
There is also a growing body of work developing asymptotic expansions ([36, 35, 24, 26,
27, 13, 14]) of performance metrics. It is well known, however, that traffic arriving at call
centers and hospitals displays significant over-dispersion relative to a Poisson process with
deterministic intensity [15], implying that a DSPP is an appropriate model of the traffic in
these systems. There is a significant literature on queues in random environments. Much
of this literature assumes that either the traffic and/or service processes are Markov
modulated, where the underlying stochastic environment process is a finite state Markov
chain; the vast majority of the related literature focuses on characterizing stationary
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behavior, but [5, 26] exhibit a couple of examples where asymptotic limit theorems and
expansions can be established.

Most relevant to our current setting is the literature on infinite server queues in random
environments [25, 30, 31, 11, 10, 27]. While we cannot do a full review of this literature
here, we point out, in particular, [11] where the effect of over-dispersed traffic on the
performance of an infinite server queue is studied. Paralleling our findings, this paper
shows that a sufficiently rapidly fluctuating environment (relative to a slowly changing
arrival intensity) will, in an appropriate asymptotic regime, ensure that the infinite server
system behaves like a “standard” infinite server queue in steady-state. On the other
hand, in [11] the traffic intensity does not have an explicit time-of-day component and,
for analytical reasons, the random environment is formulated in a somewhat “stylized”
fashion. Our statements complement these results, and more significantly, show that
the standard infinite server queue behavior is preserved even with explicit time-of-day
effects in the traffic and service processes. In addition, let us observe again that our
result is obtained in the so-called quenched regime (as opposed to the annealed regime
of [11]). Otherwise stated, the main limit result (2) is valid for almost any realization of
the environment Z. This is usually believed to correspond to real world situations, where
only a single realization of Z is observed.

The rest of this paper is organized as follows. Section 2 introduces the notation that will
be used throughout this paper and constructs the random arrival model of interest with
appropriate hypotheses. Section 3 gives preliminary limiting results concerning the mean
mε of the Poisson random variable N ε. We present the main results for the homogenized
process N ε in Section 4, where we prove the convergence in law of N ε as a process. Finally,
we end in Section 5 with a recap of the results and directions for future research.

2. Basic Notation and Poisson-based Model

We model the Gt/Gt/∞ queue using a Poisson point process imbedded in a random
environment. Let (Ω,F ,P) be a probability space with respect to which we define all
random elements to follow. The expectation with respect to P is denoted as E(·).

2.1. Model for the random environment. As mentioned in the introduction, our
main contribution is to incorporate some fast oscillations modeled by an ergodic process
Z into the arrival rate of our queueing system. In this section we proceed to describe such
a process.

Hypothesis 2.1. Let Z = {Zt ; t ≥ 0} be a R
d-valued stochastic process defined on the

probability space (Ω,F ,P). The initial distribution L(Z0) of Z is denoted by ρ0, and we
suppose that Z possesses a unique invariant probability measure π. We also assume that Z
is strongly ergodic with rate κ > 0 in the following sense: for any regular enough function
ψ : Rd → R, there exists a finite random variable C = Cψ(ω) > 0 such that P-almost
surely we have

∣

∣

∣

∣

1

t

∫ t

0

ψ(Zu) du− ψ̄

∣

∣

∣

∣

≤
C

(1 + t)κ
, with ψ̄ =

∫

Rd

ψ(z) π(dz) . (3)
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Remark 2.2. Note that the above hypothesis gives a convergence rate in the law of large
number type statement. The constant C in general can depend on the realization of the
random process Z·. There exists an abundant literature about results of the form (3)
for Markov chains. A general framework is developed in [16], which yields the following
particular case: Set Zu = X[u], where [u] denotes the integer part of u and {Xj ; j ≥ 0} is
a reversible ergodic Markov chain on a countable state space E. Let ψ : E → R be such
that σ2(ψ) <∞, where

σ2(ψ) = lim
N→∞

1

N
Var

(

N−1
∑

j=0

ψ(Xj)

)

.

Then under some additional moment condition, it can be established that for any 0 <
κ < 1

2
, the following holds almost surely:

lim
t→∞

(1 + t)κ
[

1

t

∫ t

0

ψ(Zu)du− ψ̄

]

= 0 , (4)

which immediately implies relation (3). Other examples of Markov processes (more specif-
ically Harris chains) satisfying (3) are provided in [4, 20], based on the law of the iterated
logarithm. Notice that [20] handles directly some continuous time Markov processes.

Remark 2.3. Hypothesis 2.1 can also be fulfilled in non-Markovian contexts. Indeed,
consider an R

d-valued fractional Brownian motion B with Hurst parameter H ∈ (0, 1).
Let b : Rd → R

d be a function such that the following inward property is satisfied for a
constant a > 0:

〈b(x)− b(y), x− y〉
Rd ≤ −a ‖x− y‖2 .

We consider the process Z which solves to the following stochastic differential equation:

Zt = a+

∫ t

0

b(Zs) ds+Bt ,

where a ∈ R
d. Then combining [32] and [9], one can prove that Z satisfies Hypothesis 2.1

(details are omitted since this result is unrelated to the main message of the current
paper). Observe that the case of a Brownian motion B with b = −a Id Rd corresponds to
the classical Ornstein-Uhlenbeck case, for which Hypothesis 2.1 thus holds.

2.2. Model for the system state. Having specified our random environment, we now
describe our model for the system state. It is determined by the arrival and service times
that we proceed to define below.

Our random environment will enter into the intensity of the arrival process. Namely,
the arrival process is conceived as follows.

Hypothesis 2.4. Given ε > 0, the sequence of arrival times {Γεk ; k ≥ 1} is distributed as
a Poisson process with nonhomogeneous intensity {λ(s)ψ(Zs/ε) ; s ≥ 0}, where Z fulfills
Hypothesis 2.1 and ψ : Rd → R+ is a positive Lipschitz function. In addition, the functions
λ : R+ → R+ and ψ : Rd → R+ are assumed to be continuous and bounded by a constant,
say, K > 0.
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We now turn our attention to the service process. It is given as a family {Lεk ; k ≥ 1} of
random variables which are independent conditional on the arrival process {Γεk ; k ≥ 1}.
Their law satisfies L(Lεk|Γ

ε
k) ≡ ν(Γεk, dr) for all k. Furthermore, we assume that the

complementary cumulative distribution function of the service times

F̄s(r) :=

∫ ∞

r

ν(s, dτ), r ≥ 0 (5)

satisfies the following tail and increment bounds.

Hypothesis 2.5. There exists α > 0 and a constant c > 0 such that

F̄s(r) ≤ c

(

1

rα
∧ 1

)

, for all r, s > 0 (6)

and
∣

∣F̄s(r)− F̄t(r)
∣

∣ ≤ c(1 + r)−1−α(t− s) , for all 0 < s < t and r > 0.

Remark 2.6. Hypothesis 2.5 covers a large variety of service time distributions, including
both “light tailed” models such as the Gamma distribution, as well as “heavy tailed” models
such as the Pareto-like distributions. The latter is of particular interest, as attested by
Resnick and Rootzén [28], for example. Therefore, a typical example the reader might
have in mind is given by

F̄s(r) = ks(r)1[0,ds](r) +
cs
rα

1(ds ,∞)(r) , (7)

where for each s > 0, ks is a smooth function, where ds and cs are positive constants,
α > 0, and where proper assumptions are made so that F̄s(r) is a continuous function.
Notice that a positive random variable X whose distribution function F satisfies (7) is
such that E[Xβ] < ∞ for β < α and E[Xβ] = ∞ for β ≥ α. Hence relation (7) allows a
good calibration of the boundedness of moments for the service time.

Remark 2.7. The function s 7→ cs in (7) is thought of as a smooth and bounded slowly-
varying function which modulates the service according to the arrival time. A specific
example is given by the following oscillating function:

cs = 1 + β sin(ks), with β ∈ (0, 1) and k ≥ 0. (8)

With the arrival and service times in hand, our queueing system is classically described
by a point process. Namely for ε > 0, we consider the following counting measure on
R+ × R+:

Mε :=
∞
∑

k=1

δ(Γε
k
,Lε

k
) . (9)

Then our main variable of interest is the number of active jobs in the infinite server queue
at time t which can be expressed as:

N ε(t) =

∞
∑

k=1

1{Γε
k
<t<Γε

k
+Lε

k
} =Mε{(x, y) ∈ R+ × R+, x < t < x+ y}. (10)

Our main aim in this paper is to derive a limit theorem for the process N ε = {N ε(t); t ∈
[0, T ]} as ε → 0, for an arbitrary time horizon T > 0.
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Remark 2.8. As the reader might have seen, there are two levels of randomness in our
model. The first level corresponds to the random environment Z described in Section 2.1,
while the second source of randomness is embodied in the Poisson point process N ε given
by (10). As in most of the literature on random environments, we shall play with the
notion of annealed and quenched probabilities. The annealed probability represents the
global probability with respect to all the randomness involved in our system and is denoted
by P. The quenched probability corresponds to conditioning on the process Z, and is
usually thought of as the physically observed probability (as already mentioned in the
Introduction). This probability will be denoted by PZ , with a corresponding expectation
EZ . The relation between quenched and annealed probabilities is summarized as

PZ(·) = P(·|Z) , and EZ [·] = E[·|Z] . (11)

3. Analysis of the mean measure

In the previous section we have defined the Poisson point process N ε describing our
queueing system in a random environment. We now turn to the analysis of the mean
measure mε of N ε, with a special focus on the asymptotics of mε as ε→ 0.

3.1. Mean measure of N ε. This section is devoted to a full description of the law of
N ε. The main result in this direction is summarized in the following proposition giving
the conditional law of N ε(t).

Proposition 3.1. Let Mε and {N ε(t) : t ≥ 0} be defined by (9) and (10), respectively.
Then under the quenched probability PZ , Mε is a Poisson random measure with mean
measure given by

ν̃ε(dx, dy) = ν(x, dy)µε(dx) , with µε(ds) = λ(s)ψ(Zs/ε)ds , (12)

where we recall that ν is introduced in (5). Furthermore, we have that for any t > 0,
N ε(t) is a Poisson random variable with parameter

mε(t) =

∫

{(x,y):x<t<x+y}

ν(x, dy)µε(dx) =

∫ t

0

∫ ∞

t−x

ν(x, dy)µε(dx). (13)

Proof. First, we will show that Mε is a Poisson random measure. To this aim, recall Re-
mark 2.8 for the definition of the quenched probability PZ . Then under PZ and according
to (9), the point process Mε is of the form

∑

k≥1 δ(Γε
k
, Lε

k
), where {Γεk ; k ≥ 1} is a Poisson

process (see Hypothesis 2.4). Thanks to [29, Proposition 2.2], we get that Mε is a Poisson
point process under PZ , whose mean measure ν̃ε can be decomposed as

ν̃ε(dx, dy) = ν(x, dy)µε(dx),

where ν is the measure featuring in (5) and µε is defined by (12).

Therefore, according to [1, Chapter VI Theorem 2.9], the quenched Laplace transform
of Mε is given for all measurable and positive functions f : R+ × R+ → R by

EZ

[

e−M
εf
]

= e−ν̃
ε(1−e−f ). (14)
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where the notation ν̃ε(1 − e−f ) in the above stands for the integral of (1 − e−f) with
respect to the measure ν̃ε = ν(x, dy)µε(dx). Hence, we can rewrite (14) as

EZ

[

exp
{

−

∫

R+×R+

Mε(dx, dy)f(x, y)
}

]

= exp
{

−

∫

R+×R+

ν(x, dy)µε(dx)(1 − e−f(x,y))
}

. (15)

In addition, according to (10) we have N ε(t) =Mεf with f(x, y) = 1(x<t<x+y). Plugging
this expression into (15), we immediately get relation (13) completing the proof. �

3.2. Limit for mε(t). According to relation (13) in Proposition 3.1 and the fact that
µε(ds) = λ(s)ψ(Zs/ε)ds, the (quenched) mean of the random variableN ε(t) defined in (10)
is given by

mε(t) =

∫ t

0

(

λ(s)ψ(Zs/ε)

∫ ∞

t−s

ν(s, dr)

)

ds =

∫ t

0

λ(s)ψ(Zs/ε) F̄s(t− s) ds, (16)

where F̄s is the tail function given by (5). The following theorem gives a full description
of the almost sure asymptotic behavior of mε(t).

Theorem 3.2. Let us assume the same set-up and notations as in Proposition 3.1. Fur-
thermore, suppose that Hypotheses 2.1, 2.4 and 2.5 are satisfied. Then under the quenched
probability PZ , for any t > 0 we have almost surely

lim
ε→0

mε(t) = m̄(t) , (17)

where m̄(t) is given by

m̄(t) = σ(t)ψ̄ , (18)

and for which the quantities σ(t) and ψ̄ are respectively defined by

σ(t) =

∫ t

0

λ(s)F̄s(t− s)ds , and ψ̄ =

∫

Rd

ψ(z) π(dz) . (19)

In relation (19), π is the invariant measure of the process Z introduced in Hypothesis 2.1.

Proof. Starting from (16) and upon introducing the notation h(s, t) = λ(s)F̄s(t − s), we
write mε(t) as

mε(t) =

∫ t

0

h(s, t)ψ(Zs/ε) ds. (20)

We then compute, making use of a simple integration by parts,

mε(t) =

∫ t

0

h(s, t)
d

ds

(
∫ s

0

ψ(Zr/ε) dr

)

ds

= h(s, t)

∫ s

0

ψ(Zr/ε) dr

∣

∣

∣

∣

s=t

s=0

−

∫ t

0

d

ds
h(s, t)

(
∫ s

0

ψ(Zr/ε) dr

)

ds

= Aε1(t)− Aε2(t) , (21)
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where we have set

Aε1(t) = h(t, t)

∫ t

0

ψ(Zr/ε) dr , and Aε2(t) =

∫ t

0

d

ds
h(s, t)

(
∫ s

0

ψ(Zr/ε) dr

)

ds . (22)

We now treat the limits of Aε1(t) and Aε2(t) separately.

The term Aε1(t) can be analyzed as follows. The elementary change of variables r := r/ε
yields

Aε1(t) = h(t, t)t lim
ε→0

ε

t

∫ t/ε

0

ψ(Zr) dr .

Hence, invoking Hypothesis 2.1 we get

lim
ε→0

Aε1(t) = h(t, t)tψ̄ , PZ − a.s. (23)

For Aε2(t), we add and subtract ψ̄ to get

Aε2(t) =

∫ t

0

(

d

ds
h(s, t)

)

s

[

1

s

∫ s

0

ψ(Zr/ε) dr − ψ̄ + ψ̄

]

ds

=

∫ t

0

(

d

ds
h(s, t)

)

sψ̄ ds+

∫ t

0

(

d

ds
h(s, t)

)

s

[

1

s

∫ s

0

ψ(Zr/ε) dr − ψ̄

]

ds

≡ Aε2,1(t) + Aε2,2(t) . (24)

We now proceed to bound the term Aε2,2(t) in relation (24). Namely, a trivial integral
bound and the same change of variables as for Aε1(t) enable us to write

∣

∣Aε2,2(t)
∣

∣ ≤

∫ t

0

s

∣

∣

∣

∣

d

ds
h(s, t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

ε

s

∫ s/ε

0

ψ(Zr) dr − ψ̄

∣

∣

∣

∣

∣

ds .

Hence, invoking Hypothesis 2.1 we get

∣

∣Aε2,2(t)
∣

∣ ≤ C

∫ t

0

s

∣

∣

∣

∣

d

ds
h(s, t)

∣

∣

∣

∣

(1 + s/ε)−κ ds ,

and applying the Dominated Convergence Theorem we end up with

lim
ε→0

Aε2,2(t) = 0 . (25)

We also notice that the term Aε2,1(t) introduced in (24) can be simplified thanks to an
elementary integration by parts. We get

Aε2,1(t) =

∫ t

0

(

d

ds
h(s, t)

)

sψ̄ ds = h(t, t)tψ̄ − ψ̄

∫ t

0

h(s, t) ds , (26)

the right-hand side of which is finite, owing to Hypotheses 2.4 and 2.5. Therefore plug-
ging (26) and (25) into relation (24), we have obtained

lim
ε→0

Aε2(t) = h(t, t)tψ̄ − ψ̄

∫ t

0

h(s, t) ds . (27)

We can now conclude as follows. Gathering (23) and (27) into (21), we have

lim
ε→0

mε(t) = ψ̄

∫ t

0

h(s, t) ds , PZ − a.s. ,
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t1

t2

t1 t2

l

γ

A1

A2

A3

Figure 1. Three disjoint regions used for the limit of bivariate quantities.

which is exactly our claim (17). This completes the proof. �

4. Homogenized Process

With the limiting behavior of mε in hand, we are now ready to give the asymptotic
description of the process N ε. As usual, we will decompose this analysis into a study of
the convergence of the finite dimensional distributions and a tightness result.

4.1. Limit for the finite dimensional distributions. In order to simplify our presen-
tation, we will first derive the limit of bivariate quantities of the form (N ε(t1), N

ε(t2)) for
two instants t1 < t2. To this aim, inside the quadrant R+ × R+, we will consider three
disjoint regions {Ai , i = 1, 2, 3} defined as follows (see Figure 1):

A1 = {(γ, l) ∈ R+ × R+ : γ ≤ t1 and t1 < γ + l ≤ t2} ; (28)

A2 = {(γ, l) ∈ R+ × R+ : γ ≤ t1 and t2 < γ + l} ; (29)

A3 = {(γ, l) ∈ R+ × R+ : t1 < γ ≤ t2 and t2 < γ + l} . (30)

Notice that since the Ai’s are are disjoint, the quantities {Mε(Ai); i = 1, 2, 3} are inde-
pendent Poisson random variables. Similar to the proof of (13), their respective quenched
means are given by (see Proposition 3.1)

mε
i := EZ [M

ε(Ai)] =

∫

Ai

ν(s, dr)λ(s)ψ(Zs/ε)ds , for i = 1, 2, 3. (31)

Now observe that the vector (N ε(t1), N
ε(t2)) can be decomposed as

N ε(t1) =Mε(A1) +Mε(A2), N ε(t2) =Mε(A2) +Mε(A3). (32)

As a consequence, the means mε(t1), m
ε(t2) can also be written in terms of the mε

i ’s given
by (31):

mε(t1) = mε
1 +mε

2, mε(t2) = mε
2 +mε

3. (33)
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We now state a proposition giving the quenched limit in law for (N ε(t1), N
ε(t2)).

Proposition 4.1. Let Mε be the Poisson random measure on R+×R+ defined by (9), with
mean measure ν̃ε(ds, dr) = ν(s, dr)µε(ds), as given in (12). Assume that the conditions
in Hypotheses 2.1, 2.4 and 2.5 are met. Then for any fixed two time points 0 ≤ t1 < t2,
we have the following statements.

(i) PZ-almost surely we have that for all ξ1, ξ2 > 0,

lim
ε→0

EZ [e
−(ξ1Nε(t1)+ξ2Nε(t2))] = E[e−(ξ1N(t1)+ξ2N(t2))] . (34)

In the right-hand side of equation (34), the process {N(t); t ≥ 0}is independent of N ε

and is defined similarly to that of (10), albeit in a non-random environment. Namely, N
can be expressed as

N(t) =

∞
∑

k=1

1{Γk<t<Γk+Lk} =M{(x, y) ∈ R+ × R+, x < t < x+ y} , (35)

with M being a Poisson point process on R+ × R+ of the form M =
∑∞

k=1 δ(Γk ,Lk). The
mean measure of M is given by

ν̃(ds, dr) = ψ̄λ(s)ν(s, dr)ds , (36)

where we recall that ψ̄ is defined by (19).

(ii) PZ-almost surely we have the following limit in law as ε→ 0:

(N ε(t1), N
ε(t2))

(d)
−→ (N(t1), N(t2)).

Remark 4.2. In order to alleviate notations, we have assumed that our underlying proba-
bility space carries the family {N ε; ε ≥ 0} as well as the process N defined by (35). This
explains why we have expressed (34) with the same expectation E on both sides of the
relation.

Proof of Proposition 4.1. We first introduce the notation that will be used in the proof.
For i = 1, 2, 3, and λi > 0, we define the functions fi := λi1Ai

, where the sets Ai’s
are given by (28)-(30). We note that Mε(fi) = λiM

ε(Ai). By considering the Laplace
transform of Mε(Ai), we can see that Theorem 2.9 in Chapter VI of [1] yields

EZ [e
−

∑
3
i=1

λiM
ε(Ai)] = EZ [e

−
∑

3
i=1

Mε(fi)] = e−
∑

3
i=1

ν̃ε(1−e−fi) , (37)

where ν̃ε is the measure defined by (12). In equation (37), we specify again that ν̃ε(1−e−fi)
stands for the integral of (1− e−fi) with respect to the measure ν̃ε, as with (14). We now
split the analysis of (37) into several steps.

Step 1: Decomposition of the Laplace transform. Taking into account the expression (12)
for ν̃ε, the right-hand side of (37) can be rewritten as

e−
∑

3
i=1

ν̃ε(1−e−fi ) =

3
∏

i=1

exp
{

−ν̃ε(1− e−fi)
}

=

3
∏

i=1

exp {−Gε
i} , (38)
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where each function Gε
i , for i = 1, 2, 3, is given as the following integral,

Gε
i =

∫

R+×R+

(1− e−fi)ν(s, dr)µε(ds)

=

∫

R+×R+

(1− e−fi)ν(s, dr)λ(s)ψ(Zs/ε)ds . (39)

In the sequel, we shall characterize the limit of each Gε
i . Note first that owing to the

relation fi = λi1Ai
, we have

1− e−fi(s,r) = (1− e−λi)1Ai
(s, r).

Therefore, one can recast the term Gε
i as

Gε
i = (1− e−λi)mε

i , where we recall that mε
i =

∫

Ai

ν(s, dr)λ(s)ψ(Zs/ε)ds. (40)

In summary, substituting (40) into (38) and then (37), we have shown that

EZ [e
−

∑3
i=1

λiMε(Ai)] =

3
∏

i=1

exp
{

−(1− e−λi)mε
i

}

. (41)

We are now reduced to an examination of limε→0m
ε
i in the right-hand side of equation (41).

Step 2: Analysis of an integral with fast oscillatory integrand. In order to handle the
terms mε

i in (40), we will generalize slightly the analysis of integral expressions like (20).
Namely, consider a continuously differentiable function g : R+ → R and for ε > 0, let
Iε(τ1, τ2) be given in the following integral:

Iε(τ1, τ2) =

∫ τ1

0

g(s, τ2)ψ
(

Zs/ε
)

ds , (42)

for 0 ≤ τ1 ≤ τ2. Then following the same integration by parts procedure as for (21) in
the proof of Theorem 3.2, we have

Iε(τ1, τ2) =

∫ τ1

0

g(s, τ2)

(

d

ds

∫ s

0

ψ
(

Zr/ε
)

dr

)

ds

= g(s, τ2)

∫ s

0

ψ
(

Zr/ε
)

dr

∣

∣

∣

∣

s=τ1

s=0

−

∫ τ1

0

d

ds
g(s, τ2)

(
∫ s

0

ψ
(

Zr/ε
)

dr

)

ds

= g(τ1, τ2)

∫ τ1

0

ψ
(

Zr/ε
)

dr −

∫ τ1

0

d

ds
g(s, τ2)

(
∫ s

0

ψ
(

Zr/ε
)

dr

)

ds .

Then following the same steps as for the analysis of Aε1(t) and Aε2(t) in the proof of
Theorem 3.2 (see respectively (23) and (27)), we compute the limit of Iε(τ1, τ2) as ε→ 0:

lim
ε→0

Iε(τ1, τ2) = g(τ1, τ2)τ1ψ̄ −

∫ τ1

0

(

d

ds
g(s, τ2)

)

sψ̄ ds

=

[

g(τ1, τ2)τ1 − g(s, τ2)s

∣

∣

∣

∣

s=τ1

s=0

+

∫ τ1

0

g(s, τ2) ds

]

ψ̄

=

[
∫ τ1

0

g(s, τ2) ds

]

ψ̄ , (43)
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where the second equality is obtained thanks to another use of the integration by parts
formula.

Step 3: Analysis of mε
i , for i = 1, 2, 3. We will now resort to the general identity (43)

in order to analyze the terms mε
i in (40). We start by recasting mε

1 as an expression
involving (42). Namely, invoking the definition (5) of F̄s, we write

mε
1 =

∫ t1

0

(

λ(s)ψ(Zs/ε)

∫ t2−s

t1−s

ν(s, dr)

)

ds

=

∫ t1

0

λ(s)ψ(Zs/ε)
(

F̄s(t1 − s)− F̄s(t2 − s)
)

ds

=

∫ t1

0

λ(s)F̄s(t1 − s)ψ(Zs/ε) ds−

∫ t1

0

λ(s)F̄s(t2 − s)ψ(Zs/ε) ds . (44)

Upon setting

g(s, t) = λ(s)F̄s(t− s), (45)

and recalling (42), we can rewrite the expression (44) of mε
1 as follows:

mε
1 =

∫ t1

0

g(s, t1)ψ(Zs/ε)ds−

∫ t1

0

g(s, t2)ψ(Zs/ε)ds = Iε(t1, t1)− Iε(t1, t2) .

Due to the fact that λ and F̄s are continuous and bounded functions, we can apply directly
the result (43) from Step 2. We get the following PZ-almost sure limit for mε

1:

lim
ε→0

mε
1 =

[
∫ t1

0

g(s, t1) ds

]

ψ̄ −

[
∫ t1

0

g(s, t2) ds

]

ψ̄

=

[
∫ t1

0

[g(s, t1)− g(s, t2)] ds

]

ψ̄ ≡ m1 , (46)

where we recall that the function g is given by (45).

The analysis of mε
2 and mε

3 are obtained along similar lines. Hence we will just write
down the main steps and invite the patient reader to fill in the corresponding details.
First we have the following expressions

mε
2 =

∫ t1

0

λ(s)F̄s(t2 − s)ψ(Zs/ε)ds ;

mε
3 =

∫ t2

0

λ(s)F̄s(t2 − s)ψ(Zs/ε)ds−

∫ t1

0

λ(s)F̄s(t2 − s)ψ(Zs/ε)ds . (47)

Then we can obtain a PZ-almost sure limit of the form

lim
ε→0

mε
2 =

[
∫ t1

0

g(s, t2) ds

]

ψ̄ ≡ m2 ; (48)

lim
ε→0

mε
3 =

[
∫ t2

0

g(s, t2) ds

]

ψ̄ −

[
∫ t1

0

g(s, t2) ds

]

ψ̄ =

[
∫ t2

t1

g(s, t2) ds

]

ψ̄ ≡ m3 . (49)
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Hence, gathering (46), (48), and (49) into relation (41), we have obtained

lim
ε→0

EZ [e
−

∑3
i=1

λiMε(Ai)] =
3
∏

i=1

exp
{

−(1 − e−λi)mi

}

. (50)

Step 4: Final concluding steps. Recall that our aim is to analyze the left-hand side of
relation (34). To this aim, notice that owing to relation (32), we have

EZ [e
−(ξ1Nε(t1)+ξ2Nε(t2))] = EZ [e

−
∑3

i=1
λiMε(Ai)] ,

where we have set

λ1 = ξ1 , λ2 = ξ1 + ξ2 , and λ3 = ξ2 . (51)

Therefore, an immediate application of (50) yields

lim
ε→0

EZ

[

e−(ξ1Nε(t1)+ξ2Nε(t2))
]

=

3
∏

i=1

exp
{

−(1 − e−λi)mi

}

. (52)

By the definition fi := λi1Ai
given at the beginning of our proof and the expressions (46), (48),

and (49) for m1, m2, and m3, respectively, relation (52) can be rewritten as

lim
ε→0

EZ

[

e−(ξ1Nε(t1)+ξ2Nε(t2))
]

= e−
∑3

i=1 ν̃(1−e
−fi ) , (53)

where ν̃ stands for the mean measure of the point process M (see equation (36)). Taking
into account the values (51) for λ1, λ2, λ3 and the definition (35) of the process N , then
by Chapter VI Theorem 2.9 in [1] we end up with

e−
∑3

i=1 ν̃(1−e
−fi ) = E

[

e−
∑3

i=1M(fi)
]

= E

[

e−
∑3

i=1 λiM(Ai)
]

= E
[

e−(ξ1N(t1)+ξ2N(t2))
]

,

which leads to our claim (34). This proves statement (i).

Finally, in the light of statement (i) and Laplace transform properties, statement (ii)
holds. �

Once the limit for the bivariate vector (N ε(t1), N
ε(t2)) is obtained, the extension to the

multivariate case can be done through routine (though tedious) considerations. We state
this generalization and a sketch of its proof below.

Corollary 4.3. With the assumptions in Proposition 4.1, let t1 < t2 < · · · < tn be fixed.
Then PZ-almost surely we have that

(N ε(t1), N
ε(t2), . . . , N

ε(tn))
(d)
−→ (N(t1), N(t2), . . . , N(tn)) .

Proof. Following the same procedures as in the proof of Proposition 4.1, we first decompose
the quadrant R+ × R+ into several disjoint regions (see Figure 2 for a depiction of the
sets Ai,j):

{Ai,j : for 1 ≤ i ≤ n and 1 ≤ j ≤ n− i+ 1} ,

where for each i and j, the region is defined as

Ai,j = {(γ, l) ∈ R+ × R+ : ti−1 ≤ γ ≤ ti and tj ≤ γ + l ≤ tj+1} ,
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t1

t2

t3

tn

t1 t2 t3 tn−1 tn

A1,1

A1,2

A1,n

A2,1

A2,n−1

A3,n−2

An,1

l

γ

Figure 2. Disjoint regions used for the limit of finite dimensional distributions.

with the additional convention t0 = 0 and tn+1 = ∞. Since the Ai,j’s are disjoint regions,
the quantities {Mε(Ai,j) : i, j = 1, 2, ..., n} are independent Poisson random variables.
Similar to (31), their respective quenched means are given by

EZ [M
ε(Ai,j)] =

∫

Ai,j

ν(s, dr)λ(s)ψ(Zs/ε)ds .

Furthermore, as with (32) and (33), the quantity N ε(ti) can be written as

N ε(ti) =
n−i+1
∑

j=1

Mε(Ai,j) ,

whose mean can be expressed as

EZ [N
ε(ti)] = mε(ti) =

n−i+1
∑

j=1

EZ [M
ε(Ai,j)] .

Starting from this set of relations, the rest of the proof will be a repetition of that for
Proposition 4.1. We omit the details for the sake of conciseness. �
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4.2. Tightness and Homogenization Results. In this section, we shall summarize
our previous considerations about the limiting behavior of our queueing system. This will
yield the homogenization results alluded to in the introduction. The next natural step
in establishing our limiting description of the family {N ε; ε > 0} is a tightness result.
Due to the expression (10) for N ε, it is natural to consider this process (restricted on the
interval [0, T ]) as an element of the following space:

DT = {f : [0, T ] → R+; f right-continuous with left limits} . (54)

The Borel σ-field of DT will be denoted by D. Then according to [8, Proposition 4.2], the
tightness of {N ε ; ε > 0} in the space DT stems from the following criterion.

Proposition 4.4. Let X and Xn, n ∈ N, be random variables in (DT ,D). Suppose that

(1) (Xn(t1), . . . , Xn(tk))
(d)
−→ (X(t1), . . . , X(tk)), for k instants t1 < · · · < tk,

(2) X has jumps of size ±1, and
(3) Xn has integer-valued jumps.
Then the sequence {Xn : n ≥ 1} is tight.

Now we state a proposition about the tightness of {N ε; ε > 0} in the space DT .

Proposition 4.5. Let {N ε ; ε > 0} be the sequence of Poisson processes defined by (10),
which belongs to the space DT . Then, PZ-almost surely {N ε ; ε > 0} is tight.

Proof. We observe that N ε(t) defined by (10) and N(t) defined by (35) have intrinsically
jumps of size ±1. In the light of Corollary 4.3, the tightness of the sequence {N ε ; ε > 0}
is a direct consequence of Proposition 4.4. �

We now turn to our main result which is the following quenched limit theorem for the
process N ε.

Theorem 4.6. Consider an arbitrary time horizon T > 0. We assume that Hypothe-
ses 2.1, 2.4 and 2.5 are verified. Recall that the processes N ε and N are respectively
defined by (10) and (35), and the functional space DT is introduced in (54). Then as
ε→ 0, PZ-almost surely the following limit in distribution holds true in DT :

{N ε(t) : t ∈ [0, T ]}
(d)
−→ {N(t) : t ∈ [0, T ]}.

Proof. The convergence in law of N ε follows from Corollary 4.3 and Proposition 4.5. �

4.3. Limiting Description of Associated Processes. We now state some conse-
quences of Theorem 4.6 that are of interest in practice.

We first consider the total accumulated input on the interval [0, t], defined by

Aε(t) =

∫ t

0

N ε(s)ds . (55)

The process Aε is a continuous function on [0, T ], due to the fact that N ε ∈ DT . In
some real-world situations, this continuous quantity models a stochastic fluid input to a
queueing system. The limiting behavior of Aε is summarized in the following proposition.
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Proposition 4.7. Let CT be the space of continuous functions from [0, T ] to R. With
the same assumptions of Theorem 4.6, the input process Aε(t) defined by (55) converges
in distribution. More precisely, PZ-almost surely we have the following limit in law in the
space CT as ε → 0,

Aε(t) =

∫ t

0

N ε(s)ds
(d)
−→

∫ t

0

N(s)ds ,

where N is the process given by (35).

Proof. Let φ : DT → CT be defined by

[φ(f)]t =

∫ t

0

f(s)ds , for f ∈ DT .

It is readily checked that φ is a continuous function. Since N ε (d)
−→ N in DT , we get that

Aε = φ(N ε)
(d)
−→ φ(N) = A, in the space CT .

This completes our proof. �

Another useful corollary of our main Theorem 4.6 is the following. The quantity Aε(t)
defined by (55) may be treated as a Gt/Gt/∞-input for another single-server queue. The
state of the single server queue, Xε(t), satisfies the following storage equation driven by
dAε(t) = N ε(t)dt,

dXε(t) = N ε(t)dt− r1{Xε(t)>0}dt , Xε(0) = 0 ,

where we assume that the server works at constant rate r. Thanks to Skorohod’s lemma
on reflected processes (see e.g [3, Theorem 6.1]), the application N ε → Xε is continuous
from DT to CT . Therefore, we obtain a limiting behavior for Xε as follows:

Proposition 4.8. Let the assumptions of Theorem 4.6 prevail. Then PZ-almost surely,
Xε converges in distribution to a process X, such that X solves the following equation
driven by N ,

dX(t) = N(t)dt− r1{X(t)>0}dt,

with the initial condition X(0) = 0.

5. Generalizations and Conclusions

We now demonstrate, in Section 5.1, that our main result in Theorem 4.6 can be
extended to more general stochastic intensity models that do not have the product form
assumed before. We end in Section 5.2 with a summary of the paper and comments on
future research directions.
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5.1. Extension. Thus far we have assumed that the stochastic intensity model is of
product form: λ(s)ψ(Zs/ε). Our analysis can be applied to a more general of the stochastic
intensity Ψ : [0,∞) × R

d → R+, where Ψ is positive, and for simplicity assumed to be
bounded and uniformly continuous in both variables. The key to obtaining our limiting
results, therefore, lies in the analysis of

lim
ε→0

1

t

∫ t

0

Ψ(s, Zs/ε)ds. (56)

The following argument shows how the method presented in the previous sections can be
replicated in this general case.

Consider the Riemann sum of Ψ over [0, t] with uniform partition 0 = t0 < t1 < · · · <
tn = t; i.e., ti = it/n, for i = 0, 1, · · · , n. We rewrite the integral in (56) as

∫ t

0

Ψ(s, Zs/ε)ds =
n−1
∑

i=0

∫ ti+1

ti

Ψ(s, Zs/ε)ds.

By the uniform continuity of Ψ in the first variable, we have as n→ ∞ that

lim
n→∞

∣

∣

∣

∣

∣

n−1
∑

i=0

∫ ti+1

ti

(

Ψ(s, Zs/ε)−Ψ(ti, Zs/ε)
)

ds

∣

∣

∣

∣

∣

= 0.

The above procedure essentially freezes the time variable s to the discrete epochs ti’s.
Hence, the conclusion that the limit in (56) exists and is finite results from the following
computation:

lim
ε→0

∫ ti+1

ti

Ψ(ti, Zs/ε)ds = lim
ε→0

(ti+1 − ti)
1

ti+1 − ti

∫ ti+1

ti

Ψ(ti, Zs/ε)ds

= lim
ε→0

(ti+1 − ti)
1

ti+1−ti
ε

∫

ti+1

ε

ti
ε

Ψ(ti, Zs)ds

= (ti+1 − ti)E
[

Ψ(ti, Z̄)
]

where Z̄ is the stationary solution corresponding to the process Z and the limit holds
PZ-almost surely. Hence the limit in (56) can be consequently written as

lim
ε→0

∫ t

0

Ψ(s, Zs/ε)ds =

∫ t

0

E
[

Ψ(s, Z̄)
]

ds ≡

∫ t

0

(
∫

Ψ(s, y)π(dy)

)

ds

where π is the stationary measure for Z·.

It is then straightforward to show that the following analogue of Proposition 3.1 holds.

Proposition 5.1. Let Mε and {N ε(t) : t ≥ 0} be defined by (9) and (10), respectively.
Then under the quenched probability PZ , Mε is a Poisson random measure with mean
measure given by

ν̃ε(dx, dy) = ν(x, dy)µε(dx) , with µε(ds) = Ψ(s, Zs/ε)ds ,
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where we recall that ν is introduced in (5). Furthermore, we have that for any t > 0,
N ε(t) is a Poisson random variable with parameter

mε(t) =

∫

{(x,y):x<t<x+y}

ν(x, dy)µε(dx) =

∫ t

0

Ψ(s, Zs/ǫ)F̄s(t− s)ds.

Consequently, analogous to Theorem 3.2, we claim that:

Theorem 5.2. Let the assumptions of Proposition 5.1 prevail. We also suppose that Hy-
potheses 2.1 and 2.5 hold without change, while Hypothesis 2.4 holds with the intensity
{Ψ(s, Zs/ǫ); s ≥ 0}. Then under the quenched probability PZ , for any t > 0 we have almost
surely

lim
ε→0

mε(t) = m̄(t),

where

m̄(t) =

∫ t

0

E[Ψ(s, Z̄)]F̄s(t− s)ds.

The asymptotic convergence result in Theorem 4.6, therefore, can be generalized so that
the corresponding limit process {N(t) : t ∈ [0, T ]} is a Poisson point process with mean
intensity m̄(t). More importantly, observe that yet again, there is a time-scale separation
in the homogenization limit.

5.2. Conclusion and Perspectives. Our primary results in Theorems 4.6 and 5.2
demonstrate that the state of aGt/Gt/∞ queue in a random fast oscillatory environment is
closely approximated by that of a Mt/Gt/∞ queue with nonhomogeneous Poisson traffic,
in the homogenization limit. More precisely, the rapid fluctuations of the stochastic
intensity are averaged out in the limit. These results are very useful for performance
analysis since much is known about the properties of the Mt/G/∞ queue, which is also a
much simpler object to simulate. Our model assumes a two time-scale structure, wherein
time-of-day effects in the traffic intensity are modeled by a smoothly varying function,
and stochastic fluctuations are modeled by a strongly ergodic stochastic process. We also
assume a very general model of time-varying service wherein the service time distribution
itself depends on the arrival epoch. A crucial insight that emerges from our analysis is the
fact that we do not require exponential ergodicity of the stochastic environment, though
we do require a strong sense of ergodicity to be satisfied. Furthermore, our analysis
permits both light- and heavy-tailed service time distributions. Therefore, for a rather
broad range of infinite server queueing models, the system state is well approximated by
a much simpler Mt/G/∞ queue.

Of course, these insights are greatly facilitated by the fact that we study an infinite
server queue, allowing us to leverage the properties of Poisson point processes. In this
setting we anticipate proving a functional central limit theorem (FCLT) for the system
state in the homogenization limit, complementing Theorems 4.6 and 5.2 with a rate of
convergence. In a stationary setting where the arrival intensity λ(·) is a constant, it is well
known that a FCLT holds and that the approximating process is O-U; see [11, Section 3].
In our setting, however this analysis is complicated by the fact that the centering is by
a time-varying function m̄(·), and the analysis appears to require some further technical
development, that is outside the scope of this paper. Second, while our results are in the



20 Y. LIU, H. HONNAPPA, S. TINDEL, AND N. K. YIP

homogenization limit as ǫ→ 0, it would be interesting to consider the large time behavior
of the process N ǫ for a fixed ǫ > 0, when λ(·) is a constant. Given the more general
setting we are studying, this type of result would expand on the results in [11, Section 3].
It should also be noted that in [11] the traffic model is a special stationary DSPP where the
stochastic intensity process is constructed by sampling an i.i.d. stochastic process. That
paper establishes a rather interesting “trichotomy” result, in particular showing that if the
sampling is “rapid” then the traffic process is Poisson-like, reflecting an averaging effect;
on the other hand, they also find that if the sampling is “slow,” then the over-dispersed
nature of the DSPP is maintained in the limit, and consequently the limit process is
not a Mt/G/∞ queue. The small ǫ setting in this paper is, in a sense, a more general
“rapid” sampling procedure. One of the surprises of our results is the fact that we are
able to recover the Poisson-like structure in the limit, even with heavy-tailed service and
polynomial ergodicity of the underlying stochastic intensity. We do not, however, have a
result that parallels the “slow” sampling result in [11]. This suggests that there are regimes
where time-scale separation between the time-of-day effects and the stochastic intensity
are not manifested in the limit. This appears to require a more refined CLT-type analysis.
We will address this interesting phenomenon in a future paper.
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